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Part One

A brief introduction to



What is SKA?

What is SKA?

SKA is a ground based radio telescope that 
will span continents. 

What does SKA stand for? 

Square Kilometre Array, so called because it 
will have an effective collecting area of a 
square kilometre.

Where will SKA be located? 

SKA will be built in South Africa and 
Australia.

Core
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Graphic courtesy of Anne Trefethen
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What is SKA?

SKA is a ground based telescope. This means that it is most sensitive to the radio range of
frequencies. The radio range of frequencies that can be observed from here on Earth is very
wide, specifically SKA will be sensitive to frequencies in the range of 50MHz to 20GHz
(wavelengths 15 mm to 6 m). This makes SKA ideal for studying lots of different science cases.

Image source Wikipedia. Authors: NASA (original); SVG by Mysid



What is SKA?

SKA will have the ability to use all of
its antennas to produce images of
the radio sky in unprecedented
accuracy and detail.

It will also be able to use
combinations of antennas to perform
multiple observations of different
regions of the sky at the same time.

In this scenario data from each beam
can be computed in parallel.



SKA science

SKA will study a wide range of science cases 
and aims to answer some of the fundamental 
questions mankind has about the universe we 
live in.

• How do galaxies evolve
– What is dark energy?

• Tests of General Relativity
– Was Einstein correct?

• Probing the cosmic dawn 
– How did stars form?

• The cradle of life 
– Are we alone in the Universe?



SKA time domain - signal processing

The time domain team is an
international team led by Oxford
and Manchester.

It aims to deliver an end-to-end
signal processing pipeline for
time domain science performed
by SKA (see right).

Image courtesy of Aris Karastergiou

Time Domain Team 

Search for periodic signals

search for fast radio bursts



SKA time domain - signal processing

Our work focussed on vertical
prototyping activities.

We delivered accelerated algorithms
for many-core technologies, such as
GPUs to perform the processing steps
within the signal processing pipeline
with the aim of achieving real-time
processing for the SKA.

Image courtesy of Aris Karastergiou

Search for periodic signals

search for fast radio bursts



SKA time domain science - Pulsars

Pulsars are magnetized, rotating 
neutron stars. They emit 
synchrotron radiation from the 
poles, e.g. Crab Nebula.

Their magnetic field is offset 
from the axis of rotation as such 
(as observed from here on Earth, 
they act as cosmic lighthouses.

They are extremely periodic and 
so make excellent clocks!

Hester et al.

Image: Amherst College

Hester et al.



https://commons.wikimedia.org/wiki/File:Planets_and_sun_size_comparison.jpg (Author: Lsmpascal)

Sun

Pulsars – size and scale

Earth

Pulsars are typically 1-3 Solar masses in
size, they have a diameter of 10-20
Kilometres and a pulse period ranging
from milliseconds to seconds.

Meaning that they are very small, very
dense and rotate extremely quickly.

Pulsar

https://commons.wikimedia.org/wiki/File:Planets_and_sun_size_comparison.jpg
https://commons.wikimedia.org/wiki/User:Lsmpascal


Credit: FRB110220 Dan Thornton (Manchester)

SKA time domain science - FRBs

Fast Radio Bursts (FRBs), were first
discovered in 2005 by Lorimer et al.

They are observed as extremely bright
single pulses that are extremely
dispersed (meaning that they are likely
to be far away, maybe extra galactic).

Now hundreds of FRBs have been
observed or found in survey data. They
are of unknown origin, but likely to
represent some of the most extreme
physics in our Universe.

Hence they are extremely interesting
objects to study.
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SKA time domain - data rates

The SKA will produce vast amounts of data. In
the case of time-domain science we expect the
telescope to be able to place ~2000 observing
beams on the sky at any one time (there are
trivially parallel to compute).

The telescope will take 20,000 samples per
second for each of those beams and then it
will measure power in 4096 frequency
channels for each time sample. Each of those
individual samples will comprise of 4x8 bits,
although we are only really interested in one
of the 8 bits of information.

Doing the math tells us that we will need to
process 160GB/s of relevant data. This is
approximately equal to analysing 50 hours of
HD television data per second.

The most costly computational operations in 
data processing pipeline are

DDTR ~ O(ndms * nbeams * nsamps * nchans )

FDAS ~ O(ndms * nbeams * nsamps * nacc * log(nsamps) * 1/tobs )

Requiring ~2 PetaFLOP of Compute!



SKA time domain – data challenges

Because we would like to monitor
interesting and exotic events as they occur
we need to process data in real-time (or as
near to as possible).

So storing the data and processing later
isn’t feasible. The data rates mean
transporting data offsite would be
challenging and costly.

So processing must happen close to the
telescope. But how do we put a computer
capable of processing big-data streams in
real-time close to the telescope?

Connectivity, power, operation all pose
significant problems.



Part Two

AstroAccelerate – A case study



AstroAccelerate

AstroAccelerate is a GPU enabled
software package that focuses on
achieving real-time processing of
time-domain radio-astronomy data.
It uses the CUDA programming
language for NVIDIA GPUs.

The massive computational power
of modern-day GPUs allows the
code to perform algorithms such as
de-dispersion, single pulse
searching and Fourier Domain
Acceleration Searching in real-time
on very large data-sets which are
comparable to those which will be
produced by next generation radio-
telescopes such as the SKA.

https://github.com/AstroAccelerateOrg/astro-accelerate



AstroAccelerate - Signal Processing

De-dispersion

Periodicity Search

Harmonic Sum

Fourier Domain Acceleration search

Single Pulse Search

Radio Frequency Interference Mitigation



AstroAccelerate - Features

AstroAccelerate has the following features…

• Zero DM and basic RFI Mitigation

• DDTR

• Single Pulse Search

• Fourier Domain Acceleration Search

• Periodicity search with harmonic sum



Case study 1: Real-time de-dispersion 
for the SKA

Mike Giles (Oxford)
Jan Novotný (Oxford)
Karel Adámek (Oxford)
Kate Clark (NVIDIA)
Tom Bradley (NVIDIA)
Tim Lanfear (NVIDIA)



Chromatic dispersion is
something we are all familiar
with. A good example of this
is when white light passes
through a prism.

Group velocity dispersion occurs

when pulse of light is spread in

time due to its different frequency

components travelling at different

velocities. An example of this is

when a pulse of light travels along

an optical fibre.

What isdispersion?



The interstellar medium (ISM) is the matter that exists between stars in a galaxy.

In warm regions of the ISM (~8000K) electrons are free and so can interact with and affect radio waves that 
pass through it.

Haffner et al. 2003

Dispersion by the ISM



The dispersion measure - DM



Most of the measured signals live in the noise of the apparatus.f

t

Experimental Data



Most of the measured signals live in the noise of the apparatus.

Hence frequency channels have to be “folded”

f

t

Experimental Data



Every DM is calculated to see if a signal is present.

In a blind search for a signal many different dispersion measures are calculated.

This results in many data points in the (f,t) domain being used multiple times for 

different dispersion searches.

This allows for data reuse in a GPU algorithm.

t

f

All of this must happen in real-time i.e. the time taken to process all of our data must 
not exceed the time taken to collect it

De-dispersion



De-dispersion Transform

Our DDTR is an implementation of 
incoherent brute force de-dispersion. 

1. We brute force optimise the tuneable 
parameters of the code, such as the 
thread block size and number of 
registers used.

2. It utilises GPU shared memory and 
typically achieves 60-80% of peak 
throughput.

3. It uses SIMD in work to process 
multiple time samples per machine 
word for data less than or equal to 16 
bits.

https://github.com/AstroAccelerateOrg/astro-accelerate/blob/master/lib/device_dedispersion_kernel.cu



De-dispersion Transform –
1. tuning

Each thread processes a tunable
number of time samples, each de-
dispersion trial associated with one
time sample is stored in a GPU
register.

Along with this the number of time
samples per thread block and the
number of de-dispersion trials (which
is where data reuse comes from) are
tuned.

Finally the code performs a tunable
number of SIMD in word operations
which are periodically unloaded to a
floating point accumulator.

DM

t

Thread 
block 
size

Region of DM space 
processed by thread 

block

DM DM

t t

Optimising the parameterisation

https://github.com/AstroAccelerateOrg/astro-accelerate/blob/master/lib/device_dedispersion_kernel.cu



De-dispersion Transform –
2. shared memory

Each dispersion measure for a given frequency channel needs a shifted time value.

f

t

Constant DM’s with varying time.

In practice a thread will process 
multiple time samples and a thread 
block will also process neighboring 
DM trials to increase data reuse.

Incrementing all of the registers at 
every frequency step ensures a high 
data reuse of the stored frequency 
time data in the L1 cache or shared 
memory.

Exploiting registers and fast shared memory…



De-dispersion Transform –
2. time binning 

Signal
Δt

Δf

Signal
Δt'

Δf

Has the added advantage 
of reducing the amount 
threads that are needed 

to process a region of 
(DM,t) space, speeding 

up the code.

t

DM

One issue with using a shared
memory based algorithm is that for
high DM trials (those that represent
distant objects, forming long broad
curves in our input frequency-time
data) we need to store increasing
lengths of constant frequency
varying time data in shared memory.

This ultimately limits the highest DM
trial that can be searched at full time
resolution.

To overcome this we’ve added a
time binning (scrunching) kernel
that decimates data in time. This has
the effect of decreasing time
resolution and allows us to search to
arbitrary high DM trials.



De-dispersion Transform –
3. SIMD in word 

We exploit the fact that one frequency-
time sample of SKA data will be 8 bits.

We pack the data in such a way so that
we can perform two de-dispersion trials
per integer operation.

We convert the unsigned char to an
unsigned short and pack as ushort2, we
mask this as an int and add ints.

Once a single trial nears the maximum
allowable value for a ushort we store
the value in a floating point
accumulator. This has the effect of
increasing the speed of the code and
also it’s precision.

Recorded telescope data (tn = 8 bits) is stored in 
global as a uchar array

char[] = [t0,t1,t2,t3,t4,t5,t6 …]

This is converted to ushort when loaded though the 
texture pipe (doubling the size of the array stored 
because it is now interleaved with 8 bits of zeros

ushort[] = [0 t0, 0 t1, 0 t2, 0 t3, 0 t4, 0 t5, 0 t6, …]

Masking this with an int allows us to add two 
samples per one instruction issued.



De-dispersion Transform –
3. SIMD in word 

In reality we have to odd/even interleave the 
data to ensure correct byte alignment within 
shared memory banks (4 bytes wide).

For thread with an even shift (lets say 2)…

For thread with an odd shift (lets say 3)…

ushort2[] = [0 t0,0 t1][0 t1,0 t2][0 t2,0 t3][0 t3,0 t4]…

(t0,t1) (t1,t2) (t2,t3) (t3,t4) (t4,t5) (t5,t6)

ti= t2

ti+1= t3

(t0,t1) (t1,t2) (t2,t3) (t3,t4) (t4,t5) (t5,t6)

ti= t3

ti+1= t4

Now each thread computes the correct two time values and at double data rate



De-dispersion Transform - results

Results showing the shared memory utilisation, which is this codes limiting factor. We 
achieve 75% of peak throughput, limited by load/store. 

The total shared memory bandwidth throughput achieved on a TITAN V is 9 TB/s.



De-dispersion Transform - results
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Summary of the performance increases in our DDTR GPU algorithm 
over a 6 year period starting November 2012
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Energy used (KJ) by a GPU when performing 
the DDTR algorithm for a single SKA beam

These two plots demonstrate how we have reduced power consumption and increased performance for the 
DDTR algorithm over a six year period.

The bule star indicates the performance of our initial (optimised) code running on current hardware. 
Demonstrating how invested effort algorithm optimisation over a long period can deliver significant gains.



De-dispersion Transform –
cost / benefit analysis

But is it worth the effort?

Estimated runtime for DDTR in the PSS pipeline (conservative 25%)
Estimate of speed increase compared to initial code ~17x

Total PSS pipeline acceleration ~ 4x

So to deliver the science in the same wall clock time you’d need 4x the GPU capacity.

Even if you’re prepared to wait 4x longer… Energy efficiency has increased by 14x 
Very rough estimate of PSS OpEx saving ~ £1M
Estimate of total effort ~ 1.0FTE for four years ~ £250K (FEC)

Hence a £750K saving in OpEx costs alone (this is a conservative estimate).

(You can’t just go out and buy this at a later date. Domain expertise in both radio astronomy data 
processing and many-core acceleration are needed)



Technology Kepler 
(K40)

Kepler 
(K80)

Kepler 
(780Ti)

Maxwell 
(980)

Maxwell
(Titan X)

Pascal    
(Titan XP)

Pascal
P100

Volta V100 Volta Titan 
V

Fraction of real-
time

1.035 2.5 2.88 2.3 3.3 6.1 8.1 12.5 10.9

Watts per beam 
(Average)

127W 76 W ~70W ~61W ~64W ~43W ~24W 13W 10W

Cost per beam 
(capital, 
accelerator 
only)

£3K? £4K? £250 £200 £240 ~£200 ~£420 ~£530 ~£270

Cost per beam 
(2 year survey, 
GPU only, based 
on 1KWh 
costing £0.2)

~£430 ~£265 ~£245 ~£213 ~£224 ~£151 ~£84 ~£45 ~£35

Improvement between generations comes from a combination of advances in both the 
hardware and algorithm

Conclusions – Comparisons of GPUs



Case study 2: Fourier Domain Acceleration 
Searching for the SKA

Sofia Dimoudi, Karel Adámek, Jack White, Mike Giles 
(Oxford)
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Light curve and slow motion picture of the solitary pulsar located in the centre of the Crab Nebula.

Image taken with a photon counting camera on the 80cm telescope of the Wendelstein Observatory, Dr. F. Fleischmann, 1998



http://www.eso.org/public/videos/eso1319a/ Author: ESO/L. Calçada 

Binary pulsars and gravitational waves

http://www.eso.org/public/videos/eso1319a/


Ransom, Eikenberry, Middleditch: AJ, Vol 24, Issue 3, pp. 1788-1809

Signals from binary systems can
undergo a Doppler shift due to
accelerated motion experienced
over the orbital period.

Much like the sound of a siren
approaching you and then
speeding away.

This can be corrected by using a
matched filter approach.

Fourier Domain Acceleration Search - FDAS

By Charly Whisky 18:20, 27 January 2007 (yyy) - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1606823



The two plots illustrate the effect of
orbital acceleration.

The first plot shows a signal without
acceleration, the signal is centred on its
frequency and lies on the f-dot template
corresponding to zero acceleration.

The second plot shows a signal with a
frequency derivative, and has drifted
from the original frequency by a
number of bins.

FDAS Example



Fourier Domain Acceleration Search

Use overlap-save algorithm to
compute cyclic N-point convolution
of template with signal segment.

Avoids the need for synchronisation
because contaminated ends of
convolved data are discarded (as
opposed to overlap-add).

Code calculates the convolution,
powers and extracts peaks.

For more info: Kundur: https://www.comm.utoronto.ca/~dkundur/course_info/real-time-DSP/notes/8_Kundur_Overlap_Save_Add.pdf

GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory: https://dl.acm.org/doi/10.1145/3394116

https://www.comm.utoronto.ca/~dkundur/course_info/real-time-DSP/notes/8_Kundur_Overlap_Save_Add.pdf
https://dl.acm.org/doi/10.1145/3394116


Fourier Domain Acceleration Search

Using cuFFT means many
transactions to device memory
on the GPU (represented by
grey arrows on the right of the
diagram).

This causes the computation to
be limited by global memory
bandwidth (the lowest common
denominator on a GPU).

This means that a cuFFT based
implementation is very slow.



Fourier Domain Acceleration Search

By writing our own custom I/FFT codes to work on shared memory we can perform  the FFT, 
pointwise multiply and scale, IFFT and edge rejection all in one kernel. 

Karel Adámek, Sofia Dimoudi, Mike Giles, and Wesley Armour. 2020. GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory.
ACM Trans. Archit. Code Optim. 17, 3, Article 18 (August 2020). https://doi.org/10.1145/3394116

https://doi.org/10.1145/3394116


Fourier Domain Acceleration Search

Initial results from our tests on a Tesla P100. In the SKA region of interest –
signal length 223, template size of 512 (solid line) and no interbinning (left graph) 

Further optimisation achieved approximately a 3.5x speed increase on a V100 

Karel Adámek, Sofia Dimoudi, Mike Giles, and Wesley Armour. 2020. GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory.
ACM Trans. Archit. Code Optim. 17, 3, Article 18 (August 2020). https://doi.org/10.1145/3394116

Sofia Dimoudi et al 2018 ApJS 239 28 https://iopscience.iop.org/article/10.3847/1538-4365/aabe88

https://doi.org/10.1145/3394116
https://iopscience.iop.org/article/10.3847/1538-4365/aabe88


FDAS further optimisation

Jack’s work has focused on
implementing mixed precision for
FDAS.

By reducing the precision in the
convolution part of the algorithm
(where FFTs can be shorter and we
have far smaller accumulated
errors) we are able to double the
bandwidth throughput for the
convolution parts of the code.



FDAS further optimisation

Jack used bfloat16 (16 bits) for the
convolution part of FDAS. This is
because it has the same range as
float (fp32) so there is no need to
scale numbers, and due to the fact
that the exponent is the same as
fp32 we are easily able to type
convert between the two (on GPUs
the SFU performs type conversion
and it is a limited resource).



FDAS further optimisation

The work provides roughly a 1.7x
speed increase compared to a
single precision implementation.

So do consider whether you really
need to compute in double or float
or…..

Jack White et al 2023 ApJS 265 13   https://iopscience.iop.org/article/10.3847/1538-4365/acb351/meta

FFT Length

https://iopscience.iop.org/article/10.3847/1538-4365/acb351/meta


FDAS Energy optimisation

For a bandwidth bound
algorithm it makes no sense to
have the GPU cores running as
quickly as they can.

The reason is that your
memory cannot deliver data to
them quickly enough to utilise
all of the computation that
they can perform.



FDAS Energy optimisation

Because the FFT is bandwidth
bound we are able to reduce
the GPU core clock frequency
without having significant
impact on execution time.

The figure (right) shows the
energy saving for a given core
clock frequency. The shading
indicates the increase in
execution time.

K. Adámek, et al in IEEE Access   https://ieeexplore.ieee.org/abstract/document/9330509

https://ieeexplore.ieee.org/abstract/document/9330509


FDAS Energy optimisation

We can use NVML to change the
clock speed of the processing
cores to slow them down.

This has the advantage of
reducing the energy that the
GPU uses.

By combining mixed precision
with reduction in core clock
frequency we are able to
achieve speed increase and
energy savings.

Jack White et al Astronomical Data Analysis Software and Systems, ADASS XXXII

https://arxiv.org/pdf/2211.13517.pdf


Impact

Giant Metrewave Radio Telescope
Presentation
The Petabyte FRB Search Project
Presentation
MeerKAT (MeerTRAP)
paper (arxiv)

http://www.ncra.tifr.res.in/~nkanekar/VSRP/jroy_vsrp2019.pdf
https://www.youtube.com/watch?v=g2_z3GOwBY0&authuser=0
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11447/114470J/MeerTRAP-in-the-era-of-multi-messenger-astrophysics/10.1117/12.2559937.short
https://arxiv.org/abs/2103.08410v1
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