
Memory optimisations
CUDA Course
István Reguly

Outline

• Approaches to optimisation
• How the hardware does it
• Loads in Flight
• Iterative optimisation of a transpose example

• occupancy
• coalescing
• shared memory
• memory level parallelism

Approaches to optimisation
• Optimising the algorithm: to reduce the amount of work done to compute the

answer

• Or to improve access patterns, expose more parallelism, etc…

• Most interesting kind of optimisation…

• Execution optimisation

• Maximising the utilisation of computational resources, given the algorithm
we have

Algorithm optimisation

• Reducing complexity (O(..))
• Always good to take a step back and think about the algorithm
• First thing to do is figure out on paper which is going to be better

• Cons:
• Ignores implementation details
• Constants in big O notation are tricky…
• Data locality!

Example: matrix operations

• Compare matrix-vector (GEMV) and matrix-matrix multiplication (GEMM)

MATRIX-VECTOR MATRIX-MATRIX

Flop count 3N^2-N 3N^3-N^2

O(..) runtime O(N^2) O(N^3)

Memory ops 2N^2+N 3N^2

Op per Access 1 O(N)

Peak ratios

• Without a lot of operations per data element, it’s going to be bound by
bandwidth!

PEAK GFLOP/S PEAK GB/S OPS/BYTE OPS/WORD

K80 single 4368 240 ~18 ~72

K80 double 1456 240 ~6 ~48

Xeon 2690 single 416 68 ~6* ~24*

Xeon 2690 double 208 68 ~3* ~24*

*ignoring caches…

Memory operations

• To have computations and communications in balance, one needs a huge
amount of ops/word

• Rarely the case…

• We need to saturate the device bandwidth to get the best performance

• Maximise the number of loads in flight

Loads in flight

• One memory load is 32 or 128 bytes (depends on cache config, texture loads
are always 32)

• The latency of one transaction is ~400-600 clock cycles

• We need a whole lot of independent loads in flight: 288*1024^3/32 per
second…

Matrix transpose

• NxN matrix, rows <-> columns

• Algorithmic analysis:

• O(N^2)

• No computations

Example in SDK samples: 6_Advanced/transpose
Or transpose.cu on the website

Naive transpose

void reference_transpose(int rows, int cols, float *in, float *out) {
 for (int i = 0; i < rows; ++i) {
 for (int j = 0; j < cols; ++j) {
 out[i*rows+j] = in[j*cols+i];
 }
 }
}

i loop’s iterations are independent!
Why not parallelise it on the GPU?

Naive CUDA implementation

__global__ void transpose1(int rows, int cols, float *in, float *out) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 for (int j = 0; j < cols; ++j) {
 out[i*rows+j] = in[j*cols+i];
 }
}

Launch 1D grid of 1D blocks, with 256 threads/block
Matrix size 2048^3 -> 8 blocks

Runs in 2.1ms on a K80. Is that good?

Performance
KERNEL FLOAT DOUBLE

transpose1 15.25 GB/s 29.61 GB/s

Tesla K80

Telling how close we are

• When we know the theoretical bounds:

• How many loads would be required by the algorithm

• How many operations would be required by the algorithm

• bytes/sec or flops/s

• Compare to theoretical

Get info out of the profiler
• Gives metrics for throughput from L2 and DRAM

• dram_read_throughput
• l2_l1_read_throughput
• l2_tex_read_throughput

• These provide numbers from the L2/DRAM perspective
• Includes cache misses, that could have been hits
• Includes bandwidth used moving bytes not used by the algorithm
• Includes ECC

• Not really indicative or real performance…

Profiling naive version

Latency analysis

• We have 8 blocks of 256 threads, each doing only one load or store at the same time

• But we have 13 SMX units available

• Far too few loads in flight!

Latency analysis

• We have 8 blocks of 256 threads, each doing only one load or store at the same time

• But we have 13 SMX units available

• Far too few loads in flight!

Occupancy and bandwidth

• The memory controllers can handle X number of transactions per second
• Golden rule: always keep the “bottleneck” resource busy

• Should be purely bandwidth bound
• More independent pieces of work, more threads, more parallelism, more

simultaneous loads -> more loads in flight
• GPU is good at throughput, not latency (unlike CPUs)

• Only way to hide latency is through parallelism - some threads wait, others
have work to do

• ->Occupancy is the only way to hide latency (well…)

Find more parallelism

• Profiler says we need a bigger computational grid

• so we need more parallelism

• We need to find more parallelism

• Have each thread do less, distribute it across more threads

• Let’s parallelise both loops and use a 2D grid!

2D transpose

• Launch a 2D grid, with 2048 total threads in each dimension

__global__ void transpose2(int rows, int cols, float *in, float *out) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 out[i*rows+j] = in[j*cols+i];
}

Performance
KERNEL FLOAT DOUBLE

transpose1 16.96 GB/s 33.94 GB/s

transpose2 (2D) 59.8 GB/s 109.5 GB/s

Improvement 3.5x 3.2x

Tesla K80

Profiling 2D version

Bandwidth analysis

Line 24: out[i*rows+j] = in[j*cols+i];

Only complains about store access pattern!

Mapping programming model to
hardware

• You launch a thread block, with each thread executing the same code
• Each block gets assigned to an SM
• An SM has 192/128 little CUDA cores - but these are not independent
• Threads are bundled together into groups of 32 called warps

• Threads in a 2D thread block are mapped to warps in a row-contiguous
way

• All threads in a warp are executing the same instruction, just with different
data (lockstep)

Warp execution
• 1 program counter per warp (there are four on an SMM/SMX)

• The next instruction is issued to 32 parallel CUDA cores

• Each has its own set of registers

• So same instruction, just with different operands

• Note: even the register indexes are the same for a given instruction, just their
contents are different

• Repeat until done

Executing a load instruction

• When encountering a load instuctions, all 32 threads will load from individual
addresses in memory

• LD.E R2,[R6]

….

THR 0 1 2 3 4 5 6

R6

0x0FD
3A0

0x0FD
3A4

0x0FD
3A8

0x0FD
3AB

0x0FD
3B0

0x0FD
3B4

0x0FD
3B8

Executing a load instruction
• From the point of view of the thread

• Asks for a small chunk of memory (4-8 bytes)
• f=array[offset+threadIdx.x]

• Called a request or access
• From the SM’s perspective

• Issues a load for the cache line that contains array[offset+threadIdx.x]
• May need to issue multiple loads to satisfy all requests from all threads in the warp
• After the first, each further cache line load is a replay

• From the L2/DRAM perspective
• If the segment is valid in L2, return it from there
• Otherwise fill L2 from DRAM and send to value to SM

Views of bandwidth

• Thread’s view
• How much data the thread receives per unit time
• Usually very low number - but there are a lot of threads!

• SM’s view
• How much data is delivered to all the threads active on the SM
• Receives cache lines

• L2/DRAM view
• How mach data is moving between DRAM and L2 cache

Aggregate bandwidth from thread perspective
is not the as from L2/DRAM perspective!

Memory transactions and coalescing
• Access to global memory triggers transactions

• size of 32 or 128 bytes

• aligned to line length

• always fully R/W

• Degree of coalescing: #of bytes requested/#of bytes used

• more memory read than used -> performance penalty

L1-Cached Thread Index Access

• 32 adjacent threads requesting 32 adjacent words
• aligned but may be permuted
• all fall in one cache line (128B)
• 1 transaction

L1-Cached Thread Index Access

! 32 adjacent threads requesting 32 aligned or permuted 4 byte words

! All addresses fall in one (128byte) cache line

! Bus utilization: 100%

! Transactions: 1

0 128 256 384

Addresses from warp

0 128 256 384

Addresses from warp

April 20-22, 2015 Slide 7GPU Programming with CUDA

a[tid]

L2-Cached Thread Index Access

• 32 adjacent threads requesting 32 adjacent words
• all addresses fall within 4 segments
• 4 transactions

L2-Cached Thread Index Access

! 32 adjacent threads requesting 32 aligned or permuted 4 byte words

! All addresses fall within 4 segments

! Bus utilization: 100%

! Transactions: 4

0 128 256 384

Addresses from warp

0 128 256 384

Addresses from warp

April 20-22, 2015 Slide 8GPU Programming with CUDA

a[tid]

L1-Cache Shifted Access
• 32 adjacent threads requesting 32 adjacent words

• misaligned
• 2 transactions
• Cache line utilisation 50%

• 2D stencil operations
• In a 2D setting where leading dimension is not a multiple of cache line length - use padding

L1-Cached Shifted Access

! 32 adjacent threads requesting 32 misaligned consecutive 4 byte words

! All addresses fall in 2 cache lines

! Bus utilization: 50%

! Transactions: 2

0 128 256 384

Addresses from warp

April 20-22, 2015 Slide 9GPU Programming with CUDA

a[tid - 1]

! Stencil computations (a[tid – 1] + a[tid + 1])

! a[M][N], a[42][tid], N not multiple of transaction size

! Use cudaMallocPitch() to allocate 2D arrays or pad manually

L2-Cached Shifter Access

• 32 adjacent threads requesting 32 adjacent words
• all addresses fall within 5 segments
• 5 transactions - 80% utilisation

L2-Cached Shifted Access

! 32 adjacent threads requesting 32 aligned 4 byte words

! All addresses fall within 5 segments

! 160 bytes move across bus while 128 bytes are required

! Bus utilization: 80%

! Transactions: 5

0 128 256 384

Addresses from warp

April 20-22, 2015 Slide 10GPU Programming with CUDA

a[tid - 1]

L1-Cached Single Access

• All 32 threads access the same word in memory

• Full 128B cache line is transferred - 3.125% utilisation

L1-Cached Single Access

! 32 adjacent threads requesting the same 4 byte word

! Addresses fall in single cache line

! Warp requires 4 bytes but 128 bytes transferred

! Bus utilization is only 3.125%

0 128 256 384

Addresses from warp

April 20-22, 2015 Slide 11GPU Programming with CUDA

a[42]

L2-Cached Single Access

• All 32 threads access the same word in memory - same segment

• Full 32B cache line is transferred - 12.5% utilisation

L2-Cached Single Access

! 32 adjacent threads requesting the same 4 byte word

! Addresses fall in 1 segment

! Warp requires 4 bytes but 32 bytes transferred

! Bus utilization is only 12.5%

0 128 256 384

Addresses from warp

April 20-22, 2015 Slide 12GPU Programming with CUDA

a[42]

L1-Cache Strided Access
• 32 adjacent threads requesting 32 words with stride 3

• addresses fall in 3 cache lines
• 3 transactions
• Cache line utilisation 33%

• Typical of 3D coordinate or RGB accesses -> use SoA layout!

L1-Cached Strided Access

! 32 adjacent threads requesting 32 4-byte words with stride 3

! All addresses fall in 3 cache lines

! Bus utilization: 33%

! Transactions: 3

0 128 256 384

Addresses from warp

April 20-22, 2015 Slide 13GPU Programming with CUDA

a[3 * tid]

! struct {float x,y,z;} a; ... a[tid].x

! use structure-of-arrays (SoA)

! float a[M][N]; ... a[tid][42]

! multi-dimensional arrays: pay attention to coalescing

L1-Cache Fully Random Access
• 32 adjacent threads requesting 32 words with random addresses

• addresses fall in 32 different cache lines
• 32 transactions
• Cache line utilisation 3.125%

• Pointer chasing, trees, etc.

L1-Cached Fully Random Access

! 32 adjacent threads requesting 32 4-byte random words

! All addresses fall in 32 cache lines

! Bus utilization: only 3.125%

! Transactions: 32

0 128 256 384

Addresses from warp

April 20-22, 2015 Slide 14GPU Programming with CUDA

a[b[tid]]

! pointer chasing: lists, trees etc.

Coalescing

• The way to minimise the number of operations required to satisfy all requests
from a single warp’s one load instruction

• If multiple addresses are in the same cache line, it only gets moved once
• The more in the same cache line the better
• Best: 32 addresses, each 4 bytes - a single 128B load

• One L1-L2 load and 4 L2-DRAM loads
• Worst: separate transactions for each - 31 replays

• 32 L1-L2 loads and 128 L2-DRAM loads

Good access patterns

• On CPUs, the advice is to do stride-1 accesses

• Increases cache hits, easy to compute, prefetching work well, etc…

for (int i = 0; i < n; ++i) {
 x += data[i];
}

Good access patterns
• Basically “transposed” to threads in GPU code:

• Same idea of accessing the same cache line, except we do 32 accesses at
the same time

• You need locality across threads for one instruction instead of locality
across subsequent instructions for one thread

for (int i = threadIdx.x; i < n; i+= blockDim.x) {
 x += data[i];
}

Back to transpose

Stride-1 column accesses are stride-N accesses!

Back to transpose

• So what can we do with our transpose code?

• Reads are fine, but writes are bad

• Row read and row write is the most effective - how could we achieve that?

• Transpose in shared memory

Shared memory transpose
Warp reads row
to shared men Warp reads column

from shared men

Warp stores
contiguous row

Shared memory transpose
#define TILE_SIZE 16
__global__ void transpose3(int rows, int cols, float *in, float *out) {
 __shared__ float tile[TILE_SIZE][TILE_SIZE];

 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;
 tile[threadIdx.y][threadIdx.x] = in[j*cols+i];

 __syncthreads();

 i = blockIdx.y * blockDim.y + threadIdx.x;
 j = blockIdx.x * blockDim.x + threadIdx.y;
 out[j*rows+i] = tile[threadIdx.x][threadIdx.y];

}

Syncthreads

• Producer-consumer thinking
• The write consumes the read value
• With previous examples, it was the same thread
• With shared memory transpose, one thread produces the value and an

other consumes it
• We have to make sure it was produced before we try to consume it

• Great tool if you are running into problems: cuda-memcheck --tool
racecheck

Performance
KERNEL FLOAT DOUBLE

transpose1 16.96 GB/s 33.94 GB/s

transpose2 (2D) 59.8 GB/s 109.5 GB/s

transpose3 (coalesced) 80.54 GB/s 102.3 GB/s

Improvement 1.32x 0.93x

Tesla K80

Bandwidth analysis

Line 39: out[j*rows+i] = tile[threadIdx.x][threadIdx.y];

Shared memory bank conflicts

• Shared memory is organised into banks

• 32 banks, new bank every 4 bytes (or possibly 8 in Kepler)

• Bank = (address/4)%32

• Can read one 32-bit word per bank per clock

• Warp access: reads 32 words from shared memory per instruction

Shared memory bank conflicts
• What happens when we write

• idx = threadIdx.y*32+threadIdx.x

• adjacent banks…

• What happens when we read

• idx = threadIdx.x*32+threadIdx.y

• same bank…

• Requires replays - 32x the cost!

BANK 1 BANK 2 BANK 3 BANK 4

0 1 2 3

32 33 34 35

64 65 66 67

96 97 98 99

…

Impact of replays

• If a warp has to replay instructions, it cannot proceed until all replays are
completed - a load may take up to 32x the number of instructions

• Occupies the warp scheduler - no useful operations in the meanwhile

• Decreases number of loads in flight…

• Note: we saw replays for both shared memory bank conflicts and non-
coalesced global accesses - different reasons but the same effect

Avoiding bank conflicts
• Problem is with the index computation:

• bank = (threadIdx.x*32+threadIdx.y)%32, where threadIdx.y is the same of
all thread in a warp

• So let’s pad our array to size 33:
• bank = (threadIdx.x*33+threadIdx.y)%32

Padded shared memory
#define TILE_SIZE
__global__ void transpose3(int rows, int cols, float *in, float *out) {
 __shared__ float tile[TILE_SIZE][TILE_SIZE+1];

 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;
 tile[threadIdx.y][threadIdx.x] = in[j*cols+i];

 __syncthreads();

 i = blockIdx.y * blockDim.y + threadIdx.x;
 j = blockIdx.x * blockDim.x + threadIdx.y;
 out[j*rows+i] = tile[threadIdx.x][threadIdx.y];

}

Performance
KERNEL FLOAT DOUBLE

transpose1 16.96 GB/s 33.94 GB/s

transpose2 (2D) 59.8 GB/s 109.5 GB/s

transpose3 (coalesced) 80.54 GB/s 102.3 GB/s

transpose4 (no bank conf) 127 GB/s 165.7 GB/s

Improvement 1.58x 1.61x

Tesla K80

Note: on Maxwell, cost of bank conflicts is 2-5x less

Shared memory performance

11

TABLE 7
Theoretical and Achieved Throughput of Shared Memory

Device GTX560Ti GTX780 GTX980
W

bank

(byte/cycle) 2 8 4
f
core

(GHz) 0.950 1.006 1.279
W

SM

(GB/s) 60.80 257.54 163.84
W 0

SM

(GB/s) 34.90 83.81 137.41
Efficiency (%) 57.4 32.5 83.9

is about 3.5 times longer than on the Kepler and twice as
long as on the Fermi. The page table context switching
of the GTX980 is also much more expensive than that
of the GTX780.

To summarize, the Maxwell device has long global mem-
ory access latencies for cold cache misses and page table
context switching. Except for these rare access patterns,
its access latency cycles are close to those of the Kepler
device. In our experiment, because the GTX980 has higher
f

mem

than the GTX780, it actually offers the shortest global
memory access time (P2-P4).

6 SHARED MEMORY

The shared memory is designed with high bandwidth and
very short memory latency, and each SM has a dedicated
shared memory space. In CUDA programming, different
CTAs assigned to the same SM have to share the same phys-
ical memory space. On the Fermi and Kepler platforms, the
shared memory is physically integrated with the L1 cache.
On the Maxwell platform, it occupies a separate memory
space. Storing data in shared memory is a recognized opti-
mization strategy for GPU-accelerated applications [4], [5],
[9]. Programmers move the data into and out of shared
memory from global memory before and after arithmetic
execution, to avoid the frequent occurrence of long global
memory access latencies.

In this section, we micro-benchmark the throughput and
latency of shared memory. In particular, we discuss the
effects of the bank conflict on shared memory access latency.
We report a dramatic improvement in performance for the
Maxwell device.

6.1 Shared Memory Throughput
On all three GPU platforms, the shared memory is orga-
nized as 32 memory banks [15]. The bank width of the Fermi
and Maxwell devices is 4 bytes, while that of the Kepler
device is 8 bytes. Each bank has a bandwidth of W

bank

,
as shown in Table 7. The theoretical peak throughput of
each SM (W

SM

) is calculated as f

core

⇤ W

bank

⇤ 32. Our
microbenchmark results indicate that although the band-
width of shared memory is considerable, the real achieved
throughput could be much lower. This is most obvious on
our Fermi and Kepler devices.

The microbenchmark is designed as follows. We copy
a number of integers from one shared memory region to
another with various grid configurations and ILP levels.
Each thread copies ILP of 4-byte data and consumes 8*ILP
bytes of shared memory. For each SM, we measure the total
elapsed clock cycles with the syncthreads() and clock() for

1 2 4 8 16 32 64
0

50

100

150

200

Active warps per SM

Th
ro

ug
hp

ut
pe

r
SM

(G
B/

s)

GTX560Ti GTX780 GTX980

Fig. 15. Achieved shared memory peak throughput per SM.

all its active warps. The overhead of a pair of syncthreads()
and clock() is measured as 78, 37, and 36 cycles for Fermi,
Kepler, and Maxwell platforms, respectively. The achieved
throughput per SM is calculated as 2 * f

core

* sizeof(int) *
(number of active threads per SM) * ILP / (total latency of
each SM). We run the microbenchmark with CTA size = {32,
64, 128, 256, 512, 1024}, CTAs per SM ={1, 2, 3, 4, 5, 6},
and ILP={1, 2, 4, 6, 8}, subject to the constraint of shared
memory size per SM. Usually a large value of ILP results
in less active warps per SM. The peak throughput W

0
SM

denotes the respective maximum throughput of the above
combinations. Two key factors that affect the throughput
are the number of active warps per SM and the ILP level.

We plot the achieved shared memory peak throughput
per SM against the number of active warps in Fig. 15. In
general the peak shared memory throughput grows with the
increase of active warps, until it reaches some threshold. The
peak shared memory throughput of the GTX560Ti occurs
when the CTA size = 512, CTAs per SM = 1 and ILP = 4,
i.e., 16 active warps per SM. The peak throughput is 34.90
GB/s, which is about 58.7% of the theoretical bandwidth.
The GTX780 reaches its peak throughput when the CTA size
= 1024, CTAs per SM = 1 and ILP = 6, i.e., 32 active warps per
SM. The peak throughput is 83.81 GB/s, which is only 32.5%
of the theoretical bandwidth. The GTX980 reaches its peak
throughput when the CTA size = 256, CTAs per SM = 2 and
ILP = 8, i.e., 16 active warps per SM. The peak throughput is
137.41 GB/s, about 83.9% of the theoretical bandwidth. The
Maxwell device shows the best use of its shared memory
bandwidth, and the Kepler device shows the worst.

Fig. 16 shows the achieved shared memory throughputs
for different combinations of ILP and number of active
warps per SM. Notice that on GTX560Ti and GTX780, when
there are 32 active warps, the maximum ILP is 6 due to
limited shared memory size. On the GTX560Ti, the achieved
throughput grows with the increase of ILP until it reaches 4.
On the GTX780, for low SM occupancy (i.e., 1 to 4 active
warps), ILP = 4 gives the highest throughput; while for
higher SM occupancy (i.e., 8 to 32 active warps), ILP = 6
or 8 give the highest throughput. GTX980 exhibits similar
behavior as GTX780: high ILP is required to achieve high
throughput for high SM occupancy.

According to Little’s Law, we roughly have: number of
active warps * ILP = latency cycles * throughput. Applying
the latency values in Section 6.2, the GTX780 requires about
94 active warps if ILP = 1, but the Kepler device allows

12

1 4 8 16 32
0

10

20

30

40

Active warps per SM

Th
ro

ug
hp

ut
(G

B/
s)

GTX560Ti

1 4 8 16 32
0

20

40

60

80

100

Active warps per SM

Th
ro

ug
hp

ut
(G

B/
s)

GTX780

1 4 8 16 32
0

50

100

150

Active warps per SM

Th
ro

ug
hp

ut
(G

B/
s)

GTX980

ILP=1 ILP=2 ILP=4 ILP=6 ILP=8

Fig. 16. Shared memory throughput per SM vs. ILP.

64 warps at most to be executed concurrently [15]. The
gap between the number of required active warps and the
number of allowed concurrent warps is particularly obvious
on the GTX780. We consider this to be the main reason
the achieved throughput of the GTX780 is poor compared
with its designed value. For the Maxwell device, due to
the significantly reduced access latency, we observe a higher
shared memory throughput.

6.2 Shared Memory Latency

1 for (i =0 ; i <= i t e r a t i o n s ; i ++) {
2 data=threadIdx . x⇤ s t r i d e ;
3 i f (i ==1) sum = 0 ; //omit cold miss
4 s t a r t t i m e = clock () ;
5 repeat64 (data=sdata [data] ;) ;
6 //64 times of s t r i d e a c c e s s
7 end time = clock () ;
8 sum += (end time � s t a r t t i m e) ;
9 }

Listing 4. Kernel function of shared memory stride access

We first use the P-chase kernel in Listing 4 with single
thread and single CTA to measure the shared memory la-
tencies without bank conflict. The shared memory latencies
on Fermi, Kepler and Maxwell devices are 50, 47 and 28
cycles, respectively. However, the shared memory access
latency will grow when bank conflicts occur. In this section,
we focus on the effect of bank conflicts on shared memory
access latency.

The shared memory space is divided into 32 banks.
Successive words are allocated to successive banks. If two
threads in the same warp access memory spaces in the same
bank, a 2-way bank conflict occurs. Listing 4 is also used
to measure the shared memory access latency with bank
conflicts. Different from the previous case, we launch a warp
of threads with a single CTA to access stride memory. We
multiply the thread id with an integer, stride, to get a shared
memory address. We perform the memory access 64 times
and record the total time consumption. We then calculate
the average memory latency for each memory access.

Fig. 17 illustrates a 2-way bank conflict caused by stride
memory access on the Fermi architecture. For example,
word 0 and word 32 are mapped onto the same bank. If
the stride is 2, threads 0 and 16 will visit words 0 and 32,
respectively, which causes a 2-way bank conflict. The num-
ber of potential bank conflicts equals the greatest common
divisor of the stride number and 32. There is no bank conflict

width: 4-byte threadIdx.x

...
Bank0

0

32

Bank1

1

33

Bank2

2

34

Bank30

30

62

Bank31

31

63

0

16

1

17

15

31

Fig. 17. 2-way shared memory bank conflict (stride=2).

TABLE 8
Shared Memory Access Latency with Bank Conflicts

Bank conflict 2-way 4-way 8-way 16-way 32-way
GTX980 30 34 42 58 90
GTX780 82 96 158 257 484

GTX560Ti 87 162 311 611 1209

for odd strides. Fermi and Maxwell devices have the same
number of potential bank conflicts because they have the
same architecture.

Kepler outperforms Fermi in terms of avoiding shared
memory bank conflicts by doubling the bank width [37].
The bank width of Kepler device is 8 bytes, yet it offers
two configurable modes to programmers: 4-byte mode and
8-byte mode. In the 8-byte mode, 64 successive integers are
mapped onto 32 successive banks, whereas in the 4-byte
mode, 32 successive integers are mapped onto 32 successive
banks. Fig. 18 illustrates the data mapping of the two modes.
A bank conflict only occurs when two or more threads
access different bank rows. Fig. 19 shows the Kepler shared
memory latencies with even strides for the 4-byte and 8-
byte modes. When the stride is 2, there is no bank conflict
in either mode, whereas there is a 2-way bank conflict on
Fermi. When the stride is 4, both modes show a 2-way bank
conflict. When the stride is 6 (Fig. 18), there is a 2-way bank
conflict for the 4-byte mode but no bank conflict for the 8-
byte mode. For the 4-byte mode, half of the shared memory
banks are visited. Thread i and thread i+16 access separate
rows in the same bank (i = 0, ..., 15). For the 8-byte mode,
32 threads visit 32 different banks with no conflict. Similarly,
the 8-byte mode is superior to the 4-byte mode for other
even strides if their number is not to the power of two.

We list our measured shared memory access latencies
according to the number of potential bank conflicts in Table

XinXin Mei et. al. “Dissecting GPU Memory Hierarchy through
Microbenchmarking”

Why is double precision better?
• 127 GB/s vs. 165 GB/s

• Single precision:

• 1 warp, 32 loads each, 4 bytes each, fully coalesced

• 1 cache line; 4 DRAM transactions

• Double precision:

• 1 warp, 32 loads each, 8 bytes each, fully coalesced

• 2 cache lines; 8 DRAM transactions

• More loads in flight!

Even more loads in flight

• We can create a little loop that transposes multiple values per thread - more
independent loads!

• Total number of loads is still the same, but so is the number of active threads!

KERNEL FLOAT DOUBLE

transpose 4 (1/thread) 127.8 GB/s 165.7 GB/s

transpose 5 (2/thread) 161.1 GB/s 173.1 GB/s

We can keep increasing it until we run into occupancy problems

Memory level parallelism
• Multiple independent memory load operations in one thread

• Issue all loads before the value of any is consumed

• Makes better use of loads in flight

• Related to Instruction Level Parallelism

• Techniques for achieving it are quite similar

• Requires independent operations within the thread

• MLP usually creates some ILP

MLP & ILP

LD.E R0, [R8];
IMUL.U32.U32 R6,R5,0x84;
ISCADD R6,R3,R6,0x2;
STS [R6], R0;
BAR.SYNC 0x0;

LD.E R5, [R14];
IMAD.HI.X R13,R8,0x4,R15;
STS [R9+0x420],R7;
IMAD R14.CC,R8,0x4,R12;
LD.E R7,[R12];
IMAD.HI.X R15,R8,0x4,R13
STS [R9+0x630],R6;
IMAD R10.CC,R8,0x4,R13;
LD.E R6,[R14];
IMAD.HI.X R11,R4,0x4,R15;
STS [R9+0x840],R5;
...
BAR.SYNC 0x0;

Original W
ith

 IL
P

&
M

LP

Overall performance
KERNEL FLOAT DOUBLE

transpose1 16.96 GB/s 33.94 GB/s

transpose2 (2D) 59.8 GB/s 109.5 GB/s

transpose3 (coalesced) 80.54 GB/s 102.3 GB/s

transpose4 (no bank conf) 127 GB/s 165.7 GB/s

transpose5 (multiple elem) 161.1 GB/s 173.1 GB/s

Improvement 9.5x 5.24x

Summary
• Without large amount of data-reuse (ops/byte), codes will be bound by

operand delivery
• Bandwidth and/or Latency

• Bandwidth saturation requires many loads in flight
• Best practices for GPU memory utilisation

• Address Coalescing: Efficient use of memory system
• Use shared memory to restructure loads/stores into coalesced patterns

• Latency hiding
• Occupancy, Instruction level parallelism

Local memory
• Due to the way the hardware works, for a given instruction, you always need to use

the same registers across all threads in a warp

• Registers cannot be dynamically indexed

• If you have local arrays (per thread arrays)

• Make sure their size is known at compile time

• Make sure all threads access the same element of the array at the same time

• Make sure the index is known at compile time: unroll loops!

Spilling
• If you use too big arrays, or indexing cannot be determined at compile-time,

or you artificially restricted the number of registers:

• The compiler will “spill” registers

• Basically puts them in global memory in a way that will result in coalesced
accesses

• On Kepler, by default it is the only thing cached in L1

• On Maxwell by default only cached in L2

Static indexing

__global__ void kernel1(float * buf)
{
 float a[2];
 ...
 float sum = a[0] + a[1];
 ...
}

__global__ void kernel2(float * buf)
{
 float a[5];
 ...
 float sum = 0.0f;
 #pragma unroll
 for(int i = 0; i < 5; ++i)
 sum += a[i];
 ...
}

Static indexing - unrolled

Assembly shows, that it was unrolled
Uses a total of 4(!) operations

Dynamic indexing
__global__ void kernel3(float * buf, int start_index)
{
 float a[6];
 ...
 float sum = 0.0f;
 #pragma unroll
 for(int i = 0; i < 5; ++i)
 sum += a[start_index + i];
 ...
} But at least we get nice coalesced accesses…

Dynamic, non-uniform indexing

#define ARRAY_SIZE 32
__global__ void kernel4(float * buf, int * indexbuf)
{
 float a[ARRAY_SIZE];
 ...
 int index = indexbuf[threadIdx.x + blockIdx.x * blockDim.x];
 float val = a[index];
 ...
}

How many replays?
Based on how many different indexes…

Put it in shared memory

No bank conflicts
guaranteed!

One bank for
each thread

Shared memory code// Should be multiple of 32
#define THREADBLOCK_SIZE 64
// Could be any number, but the whole array should fit into shared memory
#define ARRAY_SIZE 32

__device__ __forceinline__ int no_bank_conflict_index(int thread_id,
 int logical_index)
{
 return logical_index * THREADBLOCK_SIZE + thread_id;
}

__global__ void kernel5(float * buf, int * index_buf)
{
 // Declare shared memory array A which will hold virtual
 // private arrays of size ARRAY_SIZE elements for all
 // THREADBLOCK_SIZE threads of a threadblock
 __shared__ float A[ARRAY_SIZE * THREADBLOCK_SIZE];
 ...
 int index = index_buf[threadIdx.x + blockIdx.x * blockDim.x];

 // Here we assume thread block is 1D so threadIdx.x
 // enumerates all threads in the thread block
 float val = A[no_bank_conflict_index(threadIdx.x, index)];
 ...
}

Performance

Sources

XinXin Mei et. al. “Dissecting GPU Memory Hierarchy through
Microbenchmarking”
Tony Scuderio, Memory Bandwidth Bootcamp: Best Practices
Tony Scuderio, Memory Bandwidth Bootcamp: Beyond Best Practices
Maxim Milakov: Fast Dynamic Indexing of Private Arrays in CUDA
Jiri Kraus, CUDA Performance Optimisation

