Memory optimisations

CUDA Course
Istvan Reguly

Outline

Approaches to optimisation

How the hardware does it
Loads in Flight

Iterative optimisation of a transpose example

e occupancy
e coalescing
* shared memory

« memory level parallelism

Approaches to optimisation

e Optimising the algorithm: to reduce the amount of work done to compute the
answer

* Or to improve access patterns, expose more parallelism, etc...
* Most interesting kind of optimisation...
* Execution optimisation

* Maximising the utilisation of computational resources, given the algorithm
we have

Algorithm optimisation

* Reducing complexity (O(..))

e Always good to take a step back and think about the algorithm

* First thing to do is figure out on paper which is going to be better
e Cons:

* Ignores implementation details

e Constants in big O notation are tricky...

e Data locality!

Example: matrix operations

MATRIX-VECTOR

MATRIX-MATRIX

Flop count 3N*2-N 3NA3-N~2
O(..) runtime O(N*2) O(N~3)
Memory ops 2N~2+N 3N~2
Op per Access 1 O(N)

« Compare matrix-vector (GEMV) and matrix-matrix multiplication (GEMM)

 Without a lot of operations per data element, it’s going to be bound by

bandwidth!

Peak ratios

PEAK GFLOP/S PEAKGB/S OPS/BYTE OPS/WORD

K80 single 4368 240 ~18 ~72
K80 double 1456 240 ~6 ~48
Xeon 2690 single 416 68 ~6* ~24*
Xeon 2690 double 208 68 ~3* ~24*

*ignoring caches...

Memory operations

* To have computations and communications in balance, one needs a huge
amount of ops/word

* Rarely the case...

* We need to saturate the device bandwidth to get the best performance

 Maximise the number of loads in flight

Loads In flight

« One memory load is 32 or 128 bytes (depends on cache config, texture loads
are always 32)

 The latency of one transaction is ~400-600 clock cycles

 We need a whole lot of independent loads in flight: 288*1024/3/32 per
second...

Matrix transpose

 NxN matrix, rows <-> columns

* Algorithmic analysis:

LG
* O(N"2)] R B B ERBa
] B R E DEDE

* No computations

DE0E

Example in SDK samples: 6_Advanced/transpose
Or transpose.cu on the website

Naive transpose

void reference_transpose(int rows, int cols, float *in, float *out) {
for (inti=0;i < rows; ++i) {
for (intj = 0; j < cols; ++j) {
out[i*rows+j] = in[j*cols+i];
}
}
}

| loop’s iterations are independent!
Why not parallelise it on the GPU?

Naive CUDA implementation

__global__ void transposel (int rows, int cols, float *in, float *out) {
int | = blockldx.x * blockDim.x + threadldx.Xx;
for (int j = 0; j < cols; ++j) {
out[i*rows+j] = in[j*cols+i];
}
}

Launch 1D grid of 1D blocks, with 256 threads/block
Matrix size 2048”3 -> 8 blocks

Runs in 2.1ms on a K80. Is that good?

Performance

KERNEL FLOAT DOUBLE
transposet 15.25 GB/s 29.61 GB/s
Tesla K80

Telling how close we are

e When we know the theoretical bounds:

* How many loads would be required by the algorithm
« How many operations would be required by the algorithm
* bytes/sec or flops/s

« Compare to theoretical

Get info out of the profiler

* Gives metrics for throughput from L2 and DRAM
e dram_read_throughput

e |2_I1_read_throughput
e |2_tex_read_throughput

e These provide numbers from the L2/DRAM perspective
* Includes cache misses, that could have been hits

* Includes bandwidth used moving bytes not used by the algorithm
* Includes ECC

* Not really indicative or real performance...

Profiling naive version

i Kernel Performance Is Bound By Instruction And Memory Latency

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of
"Tesla KBO". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of
arithmetic or memory operations. Achieved compute throughput and/or memory bandwidth below 0% of peak typically
indicates latency issues.

B Memory operations

I Control-flow operations

B irithmetic operations

I Memory (Load/Store Instruction Unit)

Utilization

Compute Memory (Load/Store Instruction Unit)

Latency analysis

 We have 8 blocks of 256 threads, each doing only one load or store at the same time

e But we have 13 SMX units available

» Far too few loads in flight!

& Grid Size Too Small To Hide Compute And Memory Latency

The kernel does not execute enough blocks to hide memory and operation latency. Typically the kernel grid size must
be large enough to fill the GPU with multiple "waves" of blocks. Based on theoretical occupancy, device "Tesla K80" can
simultaneously execute 8 blocks on each of the 13 SMs, so the kernel may need to execute a multiple of 104 blocks to

hide the compute and memaory latency. If the kernel is executing concurrently with other kernels then fewer blocks will
be required because the kernel is sharing the SMs with those kernels.

Optimization: Increase the number of blocks executed by the kernel. More...

Results

t Grid Size Too Small To Hide

The kernel does not execute enoug
enough to fill the GPU with multiple
execute 8 blocks on each of the 15
memory latency. If the kernel is exe
sharing the SMs with those kernels

Optimization: Increase the number

transposel(int, int, float*, float*)

Start 315.104 ms (319,104,
End 321.101 ms (321,100,
Duration 1.997 ms (1,996,711 r
Grid Size [8,1,1]
Block Size [256,1,1]
Registers/Thread 17
Shared Memory/Block 0B
= Occlnancy
Achieved @ 12.5%
Theoretical 100%
= Shared Memory Config
Shared Memory Requ 112 KiB
Shared Memory Execi 112 KiB
Shared Memory Bank 4B

:l grid size must be large
¢40c" can simultaneously
to hide the compute and
juired because the kernel is

More...

Occupancy and bandwidth

« The memory controllers can handle X number of transactions per second
* Golden rule: always keep the “bottleneck” resource busy
e Should be purely bandwidth bound

* More independent pieces of work, more threads, more parallelism, more
simultaneous loads -> more loads in flight

« GPU is good at throughput, not latency (unlike CPUs)

* Only way to hide latency is through parallelism - some threads wait, others
have work to do

* ->0Occupancy is the only way to hide latency (well...)

Find more parallelism

* Profiler says we need a bigger computational grid
* so we need more parallelism
 We need to find more parallelism
 Have each thread do less, distribute it across more threads

e Let’s parallelise both loops and use a 2D grid!

2D transpose

__global__ void transpose2(int rows, int cols, float *in, float *out) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
int j = blockldx.y * blockDim.y + threadldx.y;

out[i*rows+j] = in[j*cols+i];

}

e Launch a 2D grid, with 2048 total threads in each dimension

Performance

KERNEL FLOAT DOUBLE
transposetl 16.96 GB/s 33.94 GB/s
transpose2 (2D) 59.8 GB/s 109.5 GB/s
Improvement 3.5x 3.2x

Tesla K80

Profiling 2D version

i Kernel Performance Is Bound By Memory Bandwidth
For device "Tesla KB0" the kernel's compute utilization is significantly lower than its memory utilization. These utilization levels
indicate that the performance of the kernel is most likely being limited by the memory system. For this kernel the limiting
factor in the memory system is the bandwidth of the load/store instruction units within the multiprocessors.

Utilization

Compute

Memaory (Load/Store Instruction Unit)

I Memory operations

B Control-flow operations

I Arithmetic operations

Bl Memory (Load/Store Instruction Unit)

Bandwidth analysis

Global Memory Alignment and Access Pattern
Memory bandwidth is used most efficiently when each global memory load and store has proper alignment and access pattern.

Optimization: Select each entry below to open the source code to a global load or store within the kernel with an inefficient alignment or
access pattern. For each load or store improve the alignment and access pattern of the memory access.

= Line / File Etranspose.cu - fhome/fireguly/projects/cuda_course

24 Global Store L2 Transactions/Access = 32, |deal Transactions/Access = 4 [4194304 L2 transactions for 131072 total executions]

Line 24: out[i*rows+j] = in[j*cols+i];

Only complains about store access pattern!

Mapping programming model to
hardware

* You launch a thread block, with each thread executing the same code
 Each block gets assigned to an SM

 An SM has 192/128 little CUDA cores - but these are not independent
* Threads are bundled together into groups of 32 called warps

 Threads in a 2D thread block are mapped to warps in a row-contiguous
way

e All threads in a warp are executing the same instruction, just with different
data (lockstep)

Warp execution

* 1 program counter per warp (there are four on an SMM/SMX)
* The next instruction is issued to 32 parallel CUDA cores
 Each has its own set of registers
e So same instruction, just with different operands

* Note: even the register indexes are the same for a given instruction, just their
contents are different

* Repeat until done

Executing a load instruction

 When encountering a load instuctions, all 32 threads will load from individual
addresses in memory

. LD.E R2,[R6]

THR

—h

R6

oveddo0x0| =
rvead40x0

8veaddox0| ~
aveddoX0| o
09€d4doxo| =~
ra€AH0X0 | o
89€d40X0 | =

Executing a load instruction

 From the point of view of the thread
e Asks for a small chunk of memory (4-8 bytes)
» f=array[offset+threadldx.x]
e Called a or
 From the SM'’s perspective
. a load for the cache line that contains array[offset+threadldx.x]
 May need to issue multiple loads to satisfy all requests from all threads in the warp

» After the first, each further cache line load is a
 From the L2/DRAM perspective
 If the segment is valid in L2, return it from there
* Otherwise fill L2 from DRAM and send to value to SM

Views of bandwidth

* Thread’s view
 How much data the thread receives per unit time
« Usually very low number - but there are a lot of threads!
e SM’s view
* How much data is delivered to all the threads active on the SM

 Receives cache lines
 L2/DRAM view

« How mach data is moving between DRAM and L2 cache

Aggregate bandwidth from thread perspective
is not the as from L2/DRAM perspective!

Memory transactions and coalescing

* Access to global memory triggers transactions
» size of 32 or 128 bytes
 aligned to line length
 always fully R/W
» Degree of coalescing: #of bytes requested/#of bytes used

* more memory read than used -> performance penalty

L1-Cached Thread Index Access

» 32 adjacent threads requesting 32 adjacent words
« aligned but may be permuted
e all fall in one cache line (128B)
e 1 transaction

Addresses from warp

S S S ——

128 256

Addresses from warp

L2-Cached Thread Index Access

» 32 adjacent threads requesting 32 adjacent words
* all addresses fall within 4 segments

4 transactions

Addresses from warp

S 4 S 1 —

128 256

Addresses from warp

L1-Cache Shifted Access

« 32 adjacent threads requesting 32 adjacent words
* misaligned
» 2 transactions
e Cache line utilisation 50%
e 2D stencil operations
* In a 2D setting where leading dimension is not a multiple of cache line length - use padding

Addresses from warp

/A

128 256

L2-Cached Shifter Access

e 32 adjacent threads requesting 32 adjacent words
* all addresses fall within 5 segments
* 5 transactions - 80% utilisation

Addresses from warp

el e e

0 128 256 384

L1-Cached Single Access

e All 32 threads access the same word in memory

* Full 128B cache line is transferred - 3.125% utilisation

Addresses from warp

- —

0

L2-Cached Single Access

* All 32 threads access the same word in memory - same segment

* Full 32B cache line is transferred - 12.5% utilisation

Addresses from warp

el ———

0

L1-Cache Strided Access

« 32 adjacent threads requesting 32 words with stride 3
e addresses fall in 3 cache lines
» 3 transactions
e Cache line utilisation 33%
» Typical of 3D coordinate or RGB accesses -> use SoA layout!

Addresses from warp

0 128 256 384

L1-Cache Fully Random Access

« 32 adjacent threads requesting 32 words with random addresses
» addresses fall in 32 different cache lines
» 32 transactions
» Cache line utilisation 3.125%

* Pointer chasing, trees, etc.

Addresses from warp

Coalescing

* The way to minimise the number of operations required to satisfy all requests
from a single warp’s one load instruction

* If multiple addresses are in the same cache line, it only gets moved once
 The more in the same cache line the better
* Best: 32 addresses, each 4 bytes - a single 128B load
 One L1-L2 load and 4 L2-DRAM loads
e Worst: separate transactions for each - 31 replays
e 32 L1-L2 loads and 128 L2-DRAM loads

Good access patterns

e On CPUs, the advice is to do stride-1 accesses

for (inti=0;i< n; ++i) {
X += datali];

}

* Increases cache hits, easy to compute, prefetching work well, etc...

Good access patterns

* Basically “transposed” to threads in GPU code:

for (int i = threadldx.x; i < n; i+= blockDim.x) {
X += data][i];

}

« Same idea of accessing the same cache line, except we do 32 accesses at
the same time

* You need locality across threads for one instruction instead of locality
across subsequent instructions for one thread

Back to transpose

Low Addresses High Addresses

ol

Stride-1 column accesses are stride-N accesses!

Back to transpose

 So what can we do with our transpose code?
 Reads are fine, but writes are bad
* Row read and row write is the most effective - how could we achieve that?

* Transpose in shared memory

Shared memory transpose

Warp reads row

to shared men
Warp reads column

from shared men

Warp stores
contiguous row

Shared memory transpose

#define TILE_SIZE 16
__global__ void transpose3(int rows, int cols, float *in, float *out) {
__shared__ float tile[TILE_SIZE][TILE_SIZE];

int 1 = blockldx.x * blockDim.x + threadldx.x;
int j = blockldx.y * blockDim.y + threadldx.y;
tile[threadldx.y][threadldx.x] = in[j*cols+i];
__syncthreads();

| = blockldx.y * blockDim.y + threadldx.x;

j = blockldx.x * blockDim.x + threadldx.y;
out[j*rows+i] = tile[threadldx.x][threadldx.y];

Syncthreads

* Producer-consumer thinking
 The write consumes the read value
* With previous examples, it was the same thread

« With shared memory transpose, one thread produces the value and an
other consumes it

 We have to make sure it was produced before we try to consume it

* Great tool if you are running into problems: cuda-memcheck --tool
racecheck

Performance

KERNEL FLOAT DOUBLE
transposetl 16.96 GB/s 33.94 GB/s
transpose2 (2D) 59.8 GB/s 109.5 GB/s
transpose3 (coalesced) 80.54 GB/s 102.3 GB/s
Improvement 1.32x 0.93x

Tesla K80

Bandwidth analysis

& Shared Memory Alignment and Access Pattern

Memory bandwidth is used most efficiently when each shared memory load and store has proper alignment and access pattern.

Optimization: Select each entry below to open the source code to a shared load or store within the kemel with an inefficient alignment or
access pattern. For each load or store improve the alignment and access pattern of the memory access.

= Line / File gtranspose.cu - fhomefirequly/proj
39

Shared Load Transactions/Access = 4, Ideal Transactions/Access = 1 [524288 transactions for 131072 total executions]

Line 39: out[j*rows+i] = tile[threadldx.x][threadldx.y];

Shared memory bank conflicts

e Shared memory is organised into banks
* 32 banks, new bank every 4 bytes (or possibly 8 in Kepler)
« Bank = (address/4)%32
e Can read one 32-bit word per bank per clock

 Warp access: reads 32 words from shared memory per instruction

Shared memory bank conflicts

BANK 1 BANK 2 BANK 3 BANK 4
0 1 p 3
32 33 34 35
64 65 66 67
96 97 98 99

* What happens when we write
 idx = threadldx.y*32+threadldx.x
* adjacent banks...

 What happens when we read
* idx = threadldx.x*32+threadldx.y
e same bank...

* Requires replays - 32x the cost!

Impact of replays

* |If a warp has to replay instructions, it cannot proceed until all replays are
completed - a load may take up to 32x the number of instructions

* Occupies the warp scheduler - no useful operations in the meanwhile
 Decreases number of loads in flight...

* Note: we saw replays for both shared memory bank conflicts and non-
coalesced global accesses - different reasons but the same effect

Avoiding bank conflicts

* Problem is with the index computation:

* bank = (threadldx.x*32+threadldx.y)%32, where threadldx.y is the same of
all thread in a warp

e So let’s pad our array to size 33:
e bank = (threadldx.x*33+threadldx.y) %32

Padded shared memory

#define TILE SIZE

__shared__ float tile[TILE_SIZE][TILE_SIZI:+1];
int 1 = blockldx.x * blockDim.x + threadldx.x;
int j = blockldx.y * blockDim.y + threadldx.y;
tile[threadldx.y][threadldx.x] = in[j*cols+i];
__syncthreads();

| = blockldx.y * blockDim.y + threadldx.x;

j = blockldx.x * blockDim.x + threadldx.y;
out[j*rows+i] = tile[threadldx.x][threadldx.y];

Performance

KERNEL FLOAT DOUBLE
transposel 16.96 GB/s 33.94 GB/s
transpose2 (2D) 59.8 GB/s 109.5 GB/s
transpose3 (coalesced) 80.54 GB/s 102.3 GB/s
transpose4 (no bank conf) 127 GB/s 165.7 GB/s
Improvement 1.58x 1.61x

Note: on Maxwell, cost of bank conflicts is 2-5x less

Tesla K80

Shared memory performance

Shared Memory Access Latency with Bank Conflicts

GDOR0_ | 30 | s | © | % | % |
GOm0 | 82 | 96 | 18 | % | 481

)
S~
[aa)]
S
>
wn
—
V)
Q.
-
=]
o
<
o0
S
o
—
<
H

8 16 32 64

Active warps per SM

XinXin Mei et. al. “Dissecting GPU Memory Hierarchy through
Microbenchmarking”

Why is double precision better?

127 GB/s vs. 165 GB/s

Single precision:
* 1 warp, 32 loads each, 4 bytes each, fully coalesced

1 cache line; 4 DRAM transactions

Double precision:
* 1 warp, 32 loads each, 8 bytes each, fully coalesced

o 2 cache lines; 8 DRAM transactions

More loads in flight!

Even more loads in flight

 We can create a little loop that transposes multiple values per thread - more

independent loads!

 Total number of loads is still the same, but so is the number of active threads!

KERNEL FLOAT DOUBLE
transpose 4 (1/thread) 127.8 GB/s 165.7 GB/s
transpose 5 (2/thread) 161.1 GB/s 173.1 GB/s

We can keep increasing it until we run into occupancy problems

Memory level parallelism

* Multiple independent memory load operations in one thread
* Issue all loads before the value of any is consumed
» Makes better use of loads in flight
* Related to Instruction Level Parallelism
» Techniques for achieving it are quite similar
* Requires independent operations within the thread

e MLP usually creates some ILP

MLP & ILP

LD.E RO, [R8];
IMUL.U32.U32 R6,R5,0x84;
ISCADD ©.6,R3,R6,0x2;
STS [R6], RO;

BAR.SYNC 0x0;

LD.E R5, [R14];

IMAD.H'.X R13,R8,0x4,R15;
STS [R9+0x420],R7;

IMAD R14.CC,R8,0x4,R12;
LD.E R7,[R!2];

IMAD.HI.X R15,R8,0x4,R13
STS [R9+0x620],R6;

IMAD R10.CC,R8,0x4,R13;
LD.E R6,[R14];

IMAD.HI.X R11,R%,0x4,R15;
STS [R9+0x840],R5;

BAR.SYNC 0x0;

Overall performance

KERNEL FLOAT DOUBLE
transposetl 16.96 GB/s 33.94 GB/s
transpose2 (2D) 59.8 GB/s 109.5 GB/s
transpose3 (coalesced) 80.54 GB/s 102.3 GB/s
transpose4 (no bank conf) 127 GB/s 165.7 GB/s
transpose5 (multiple elem) 161.1 GB/s 173.1 GB/s
Improvement 9.5x 5.24x

Summary

* Without large amount of data-reuse (ops/byte), codes will be bound by
operand delivery

* Bandwidth and/or Latency
 Bandwidth saturation requires many loads in flight
* Best practices for GPU memory utilisation
* Address Coalescing: Efficient use of memory system
e Use shared memory to restructure loads/stores into coalesced patterns
e Latency hiding

e Occupancy, Instruction level parallelism

Local memory

 Due to the way the hardware works, for a given instruction, you always need to use
the same registers across all threads in a warp

* Registers cannot be dynamically indexed
* If you have local arrays (per thread arrays)
 Make sure their size is known at compile time
 Make sure all threads access the same element of the array at the same time

 Make sure the index is known at compile time: unroll loops!

Spilling

* |f you use too big arrays, or indexing cannot be determined at compile-time,
or you artificially restricted the number of registers:

 The compiler will “spill” registers

* Basically puts them in global memory in a way that will result in coalesced
accesses

* On Kepler, by default it is the only thing cached in L1

* On Maxwell by default only cached in L2

Static indexing

__global__ void kernel2(float * buf)

__global__ void kernell (float * buf) {
{ float a[5];

float a[2];

float sum = 0.0f;

float sum = a[0] + a[1]; #pragma unroll

for(inti = 0; i < 5; ++i)
} sum += alil;
}

Static indexing - unrolled

float sum = 0.0F;
#pragma unroll FADD FIZ R4, R4, RO;

for(inti = 0; i < 5; ++i) LD.E RO, [R6+0x10];
sum += afi]] FADD.FTZ R3, R4, R3;

FADD.FTZ R3, R3, R2;
buf[tid] = sum; FADD.FTZ RO, R3, RO;
ST.E [R6], RO;

Assembly shows, that it was unrolled
Uses a total of 4(!) operations

Dynamic indexing

__global__ void kernel3(float * buf, int start_index)

{

float a[6];
STL.64 [R1+0x10], R8:
LDL R, [R7];
. oor LDL RO, [R7+0x4]:
sum = U_UF] -
float sum = 0.0f; #pragma unroll _ IIERI%)EF){.%'I'[;%?)%: RO;
forfint 1 2 O[SL Pl : LDL R4, [R7+0xc]
#pragma unroll sum = ajstart_index + 1L, LDL RO, [R7+0x10]:
L _ b = sum FADD FIZ R, R, R
for(inti=0; i< 5; ++i) FADD.FTZ RO, R4, R0;

ST.E [R2], RO;
sum += a[start_index + iJ;

But at least we get nice coalesced accesses...

Dynamic, non-uniform indexing

#define ARRAY_SIZE 32
__global__ void kernel4(float * buf, int * indexbuf)

{
float alARRAY_SIZE];

int index = indexbuf[threadldx.x + blockldx.x * blockDim.x];
float val = a[index];

How many replays?
} Based on how many different indexes...

Put it in shared memory

Thread 0 Thread 1 Thread 31

Element Element
index 0 index 0

One bank for
each thread

Thread 33

Element
index 0

Thread 1

Element
index 1

No bank conflicts
guaranteed!

// Should be multiple of 32
#define THREADBLOCK_SIZE 64

Shared memory code

// Could be any number, but the whole array should fit into shared memory
#define ARRAY_SIZE 32

__device__ _ forceinline__ int no_bank_conflict_index(int thread_id,

{
}

int logical_index)

return logical_index * THREADBLOCK_SIZE + thread_id;

__global__ void kernel5(float * buf, int * index_buf)

{

// Declare shared memory array A which will hold virtual
// private arrays of size ARRAY_SIZE elements for all
// THREADBLOCK_SIZE threads of a threadblock

__shared__ float AJARRAY_SIZE * THREADBLOCK _SIZE];

int index = index_buf[threadldx.x + blockldx.x * blockDim.x];

// Here we assume thread block is 1D so threadldx.x
// enumerates all threads in the thread block

float val = A[no_bank_conflict_index(threadldx.x, index)];

.) STS [R9], RS;
float x = A[no_bank_conflict_index(threadldx x, index)]; SHF.L.W R10. RZ. 0x2

float y = A[no_bank_conflict_index(threadldx.x, index + 1)]; LDS R6, [R10+0x100]:
float z = A[no_bank_conflict_index(threadldx x, index + 2)]; LDS R7j [R10]; '

float w = A[no_bank_conflict_index(threadldx x, index + 3)]; |= |« LDS R4, [R10+0x200];
sum=x+y+z+w — FADD.FTZ R7, R7, R6;

A[no_bank_conflict_index(threadldx x, index)] = sum;

Performance

B Uniform, Local

B Non-uniform, Local
m Shared

Sources

XinXin Mei et. al. “Dissecting GPU Memory Hierarchy through
Microbenchmarking”

Tony Scuderio, Memory Bandwidth Bootcamp: Best Practices

Tony Scuderio, Memory Bandwidth Bootcamp: Beyond Best Practices

Maxim Milakov: Fast Dynamic Indexing of Private Arrays in CUDA
Jiri Kraus, CUDA Performance Optimisation

