CUDA Programming on NVIDIA GPUs
Mike Giles

Practical 1: Getting Started

This practical gives a gentle introduction to CUDA programming using a very
simple code. The main objectives in this practical are to learn about:

e the way in which an application consists of a host code to be executed on
the CPU, plus kernel code to be executed on the GPU

e how to copy data between the graphics card (device) and the CPU (host)

e how to include error-checking, and printing from a kernel

The practicals are to be carried out on the Frontera system. Before starting,
please read the notes at
https://people.maths.ox.ac.uk/gilesm/cuda/frontera notes.pdf.

(If you are reading this PDF document online, the link above should appear in
blue and you can click on it to go to the notes.)

What you are to do is as follows:

1. Copy all of the course files to your home directory, following the directions
given in the notes.

2. The two codes pracla and praclb are in the same directory pracl. They
are compiled and linked by the command
make
which carries out the steps within the Makefile.

3. Read through the pracla.cu source file and compare it to the pracib.cu
source file which adds in error-checking.

4. Run both codes:
./pracla
./pracib

and read them through to understand what they are doing — ask questions
if anything is not clear.


https://www.tacc.utexas.edu/systems/frontera
https://people.maths.ox.ac.uk/gilesm/cuda/frontera_notes.pdf

. Try introducing errors into both pracla.cu and praclb.cu, such as trying
to allocate too much memory (e.g. by specifying an enormous value like
(long long) 500000000000), or setting nblocks=0 or nthreads=10000,
and see what happens.

. Add a printf statement to the kernel routine my_first kernel, for
example to print out the value of tid. Note that the new output may be
written to the screen after the existing output from the main code, because
it gets put into a write buffer which is flushed only intermittently.

. Modify pracib.cu to add together two vectors which you initialise on the
host and then copy to the device. This will require additional memory
allocation and two memcpy operations to transfer the vector data from the
host to the device.

. There is a third version of the original code, praclc.cu, which uses
“managed memory” on top of Unified Memory. Read through the code to
see what it does, and try compiling and running it.

. If you have spare time, you can browse through the online info on
NVIDIA’s sample codes which are on GitHub at
https://github.com /nvidia/cuda-samples.


https://github.com/nvidia/cuda-samples

