Introduction to CUDA Programming on NVIDIA GPUs
Mike Giles

Practical 3: finite difference equations

The main objectives in this practical are to learn about thread block optimisation
and the optimal way to handle multi-dimensional PDE applications. It also gives an
introduction to two approaches to application profiling.

This practical is based on a code which uses Jacobi iteration to solve a finite
difference approximation of the 3D Laplace equation. It performs the calculation on
both the GPU and the CPU to check that they give the same answers, and also
times how long it takes.

What you are to do is as follows:

1. Compile and run the executable laplace3d, and see the results produced and
the times taken.

2. Read through laplace3d.cu and laplace3d gold.cpp (the CPU reference
code).

In particular, note:

e The grid is cut into pieces of size 16 x 16 in the x — y direction, and each
thread block uses 256 threads, with each thread processing one element
in each 2D plane.

e In the kernel code, IOFF, JOFF, KOFF give the memory offsets in the
three coordinate directions.

The code is relatively short, so try to understand it completely, including the
ul, u2 pointer swapping in the main code, and the construction of the
execution grid (bx,by).

Please ask questions if anything is not clear.

3. Having verified that the GPU code and the Gold code produce the same
answers to within machine precision, comment out the running of the Gold
code and the comparison of the answers. You should also increase the grid size
to 10243 to give a longer execution time, keeping all of the SMs busy for most
of the time.

4. Try changing the thread block size to improve the performance — what are the
optimal dimensions?



5. Read through the source code for the new version in laplace3d new.cu. Note
that in the new version each thread handles a single grid point.

Again run it first to check that it gives the correct results, then comment out
the checks and increase the grid size to 10243,

Optimise its 3D thread block size, and compare its optimum running time to
the original version.

6. Use the NVIDIA command line profiler
ncu laplace3d

to see what information it gives you.

Count the number of integer and single precision floating point operations
using the following commands:

ncu —-metrics "smsp__sass_thread_inst_executed_op_fp32_pred_on.sum,
smsp__sass_thread_inst_executed_op_integer_pred_on.sum" laplace3d

ncu --metrics "smsp__sass_thread_inst_executed_op_fp32_pred_on.sum,
smsp__sass_thread_inst_executed_op_integer_pred_on.sum" laplace3d_new

(Note: you may have trouble doing a cut-and-paste of these instructions from
this PDF because the underscores may not get copied across.)

The number of integer operations is surprisingly high — I think this is due to
index arithmetic for the array references.

7. Estimate how much data is moved from the device memory into the GPU, and
from the GPU back to the device memory, in each iteration.

Given the execution time per iteration, what device memory bandwidth does
this imply?

This old NVIDIA blog article says the effective bandwidth is the sum of the
read and write bytes, divided by the execution time; use this in working out
your effective bandwidth.

Is this a good fraction of the peak bandwidth capability of the hardware?


https://developer.nvidia.com/blog/how-implement-performance-metrics-cuda-cc/

