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Abstract

This paper presents a timestep stability analysis for
a class of discretisations applied to the linearised form
of the Navier-Stokes equations on a 3D domain with
periodic boundary conditions. Using a suitable defini-
tion of the ‘perturbation energy’ it is shown that the
energy is monotonically decreasing for both the origi-
nal p.d.e. and the semi-discrete system of o.d.e.’s arising
from a Galerkin discretisation on a tetrahedral grid. Us-
ing recent theoretical results concerning algebraic and
generalised stability, sufficient stability limits are ob-
tained for both global and local timesteps for fully dis-
crete algorithms using Runge-Kutta time integration.

1 Introduction

One motivation for the analysis in this paper was the
observation by Wigton of instabilities in Navier-Stokes
calculations on structured grids [1]. It appeared that
the instabilities might be connected to large variations
in the level of turbulent viscosity arising quite properly
in certain physical situations. A possible cause of the in-
stability was thought to be the timestep definition which
was based on Fourier stability theory assuming constant
coefficients. Therefore, an objective of this analysis was
to determine sufficient conditions for the stability of dis-
cretisations of the Navier-Stokes equations with nonuni-
form viscosity.

The second motivation was the requirement for
timestep stability limits for viscous calculations on un-
structured grids. Inviscid calculations are now being
performed almost routinely on unstructured grids for
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complete aircraft geometries (e.g. [2, 3, 4, 5]). Us-
ing energy analysis methods, Giles developed sufficient
global and local timestep stability limits for a Galerkin
discretisation of the Euler equations on a tetrahedral
grid with two particular Runge-Kutta time integration
schemes [6]; this has been used on an ad hoc basis
for calculations using other algorithms including vari-
ous upwinding and numerical smoothing formulations
[3, 5]. Through parallel computing and efficient multi-
grid algorithms for unstructured grids [5], there is now
the computational power to perform extremely large
Navier-Stokes calculations on unstructured grids, and
so there is a need for the supporting numerical analy-
sis to give accurate global and local timestep stability
limits.

Fourier stability analysis can only be applied to lin-
ear finite difference equations with constant coefficients
on structured grids, and so it is not appropriate for this
application. There are two other well-documented sta-
bility analysis methods which can be used with linear
discretisations with variable coefficients on unstructured
grids. One is the energy method [7] which relies on the
careful construction of a suitably defined ‘energy’ which
can be proven to monotonically decrease. The difficulty
is usually in constructing an appropriate definition for
the energy, but when this method can be applied it is
very powerful in giving a very strong form of stability.
It is used in this paper to prove the stability of the
original linearised form of the Navier-Stokes partial dif-
ferential equations, and the semi-discretised system of
coupled o.d.e.’s that is produced by the Galerkin spatial
discretisation.

The other stability analysis technique involves consid-
eration of the eigenvalues of the matrix representing the
discretisation of the spatial differential operator. This
leads to sufficient conditions for asymptotic stability,
as t — oo for unsteady calculations or as n — oo for
calculations using local timesteps. Unfortunately, there



are well-documented examples such as the first order
upwinding of the convection equation on a finite 1D do-
main (e.g. [8, 9, 10]) for which this is not a practical sta-
bility criterion because it allows an unacceptably large
transient growth before the eventual exponential de-
cay. The next section reviews this theory showing that
the problem of large transient growth can arise when-
ever the spatial discretisation matrix is non-normal. It
then presents recent results on algebraic and generalised
stability for such applications giving sufficient condi-
tions for stability. It is these new stability conditions
which are used to construct sufficient stability limits for
the full Galerkin/Runge-Kutta Navier-Stokes discreti-
sation.

The analysis is performed for linear perturbations to
a steady flow in which all flow variables are uniform
with the exception of the three viscosity coefficients, pu,
the shear viscosity, A, the second coefficient of viscos-
ity, and k, the thermal diffusivity. This choice of model
problem is critical in several ways. Although it is the lin-
earisation of the laminar Navier-Stokes equations that
is used, the viscosity coefficients can each be interpreted
as the sum of the laminar value plus a turbulent value
arising from some turbulence model. Accordingly, there
is no assumption of any fixed relationship between the
three quantities, either the Stokes hypothesis linking
and A, or the assumption of a constant Prandtl num-
ber linking p and k. The uniformity of the other flow
variables is essential for key parts of the analysis. How-
ever, a more fundamental aspect of the uniformity is
that it gives a physical situation in which flow pertur-
bations are naturally damped, and so the flow is stable.
Therefore, an instability of the semi-discrete or fully dis-
crete equations can be viewed justifiably as an incorrect
behaviour. The timestep limit which gives the onset of
this instability can then be defined as the maximum sta-
ble timestep. In contrast, if a vortex sheet were taken
as the steady flow and then linear perturbations were
analysed, it would be determined that both the ana-
lytic and discrete equations were unstable. Even worse,
the timescale of the most unstable discrete mode would
be proportional to Az so that it would be impossible
to distinguish between a ‘numerical instability’ and the
natural Helmholtz instability of the vortex sheet. It
would not therefore be possible to use this alternative
model problem to make any deductions about stable
timestep limits.

After the following section reviewing numerical stabil-
ity theory, there are separate sections for the analysis of
the differential, semi-discrete and fully discrete Navier-
Stokes equations. To focus attention on the important
features of the stability analysis, many of the supporting
details are presented in the three appendices.

2 Review of stability theory for
Runge-Kutta methods

Discretisation of the scalar o.d.e.

du

— =\ 1

=, (1)
using an explicit Runge-Kutta method with timestep &
yields a difference equation of the form

™t = L(\E) u™ (2)

where L(z) is a polynomial function of degree p

L(z) = Z amz™, (3)
m=0

with ap = a1 = 1, ap # 0. Discrete solutions of this
difference equation on a finite time interval 0 <t <ty will
converge to the analytic solution as £— 0. In addition,
the discretisation is said to be absolutely stable for a
particular value of k if it does not allow exponentially
growing solutions as ¢ — oo; this is satisfied provided Ak
lies within the stability region S in the complex plane
defined by

S = {z:|L(x)| <1} (4)

Examples of stability regions for different polynomials
are given in Appendix A.

Suppose now that a real square matrix C has a com-
plete set of eigenvectors and can thus be diagonalised,

()

with A being the diagonal matrix of eigenvalues of C,
and the columns of T" being the associated eigenvectors.
The Runge-Kutta discretisation of the coupled system
of o.d.e.’s,

C =TAT',

dU

can be written as

Ut = L(kC)U™ =T L(EA)T U™, (7)
since

C™ = (TAT Y™ =TA™T . (8)

Hence
U™ =T (L(kA)” T~ UW©, (9)
The necessary and sufficient condition for absolute
stability as n — 0o, requiring that there are no discrete

solutions which grow exponentially with n, is therefore
that |L(kX)| < 1, or equivalently kX lies in S, for all



eigenvalues A of C. If this condition is satisfied, then
using Ly vector and matrix norms it follows that

™) < ITINZEDIIT TN < s T,

(10)
where k(T) is the condition number of the eigenvector
matrix 7.

If the matrix C' is normal, meaning that it has an
orthogonal set of eigenvectors then the eigenvectors can
be normalised so that x(T)=1. In this case, |[U™| is
a non-increasing function of n and ||[U(™||? represents
a non-increasing ‘energy’ which could be used in an en-
ergy stability analysis.

If C' is not normal, then the growth in ||U(™)|| is
bounded by the condition number of the eigenvector ma-
trix, k(T). Unfortunately, this can be very large indeed,
allowing a very large transient growth in the solution
even when for each eigenvalue kX lies strictly inside the
stability region S and so ||U(™|| must eventually decay
exponentially. This problem can be particularly acute
when the matrix C' comes from the spatial discretisation
of a p.d.e. in which case there is then a family of discreti-
sations arising from a sequence of computational grids of
decreasing mesh spacing h. It is possible in such circum-
stances for the sequence of condition numbers &(7T') to
grow exponentially, with an exponent inversely propor-
tional to the mesh spacing [8]. There are two practical
consequences of this exponential growth. In applica-
tions concerned with the behaviour of the solution as
t— 00, it produces an unacceptably large amplification
of machine rounding errors in linear computations and
complete failure of the discrete computation in nonlin-
ear cases. In applications concerned with a finite time
interval, 0 <t <tp, it prevents convergence of the dis-
crete solution to the analytic solution as h, k — 0 except
in certain exceptional situations using spectral spatial
discretisations.

The stability of discretisations of systems of o.d.e.’s
with non-normal matrices has been a major research
topic in the numerical analysis community in recent
years [8, 9, 11, 12, 13, 14, 15]; A recent review arti-
cle by van Dorsselaer et al [10] provides an excellent
overview of these and many other references. The ap-
plication is often to families of non-normal matrices aris-
ing from spatial discretisations of p.d.e.’s. Ideally, one
would hope to prove strong stability,

U™ < 4 U, (11)
with v being a constant which is not only independent
of n but is also a uniform bound applying to all matrices
in the family of spatial discretisations for different mesh
spacings h but with the timestep k being a function of

h. One reason why strong stability is very desirable is
that the Lax Equivalence Theorem proves that it is a
necessary and sufficient condition for convergence of dis-
crete solutions to the analytic solution on a finite time
interval for all possible initial data, provided that the
discretisation of the p.d.e. is consistent for sufficiently
smooth initial data [7].

At present, the conditions under which strong sta-
bility can be proved are too restrictive to be useful in
practical computations. Instead, attention has focussed
on weaker definitions of stability which are more easily
achieved and are still useful for practical computations.
One is algebraic stability [8, 11, 12] which allows a linear
growth in the transient solution of the form

UMD < yn U, (12)
where v is again a uniform constant. Another, due to
Kreiss and Wu [9], is generalised stability which is based
on exponentially weighted integrals over time for a in-
homogeneous difference equation with homogeneous ini-
tial conditions. For both of these definitions, a sufficient
condition for stability is that

T(kC) C S, (13)
where the numerical range 7(kC) is a subset of the com-
plex domain defined by

w*Cw

o (1

T(kC) ={k :W;éO}
where W can be any non-zero complex vector of the re-
quired dimension and W* is its Hermitian, the complex
conjugate transpose. The proof of sufficiency for alge-
braic stability is given by Lenferink and Spijker [12]. It
proceeds in two parts, first showing that a certain re-
solvent, condition is sufficient for algebraic stability, and
then showing that this resolvent condition is satisfied if
the numerical range lies inside S. Reddy and Trefethen
[8] prove that the resolvent condition is necessary as
well as sufficient for algebraic stability, and the equiva-
lence to generalised stability follows almost immediately
given the resolvent condition required by Kreiss and Wu

[9]-

By considering W to be an eigenvector of C, it can
be seen that kA € 7(kC) for each eigenvalue of C' and so
the requirement that 7(kC) C S is a tighter restriction
on the maximum allowable timestep than asymptotic
stability. In comparison to strong stability, algebraic
and generalised stability allow greater growth in tran-
sients when considering the solution behaviour as t — cc.
On the finite time interval, it can be shown that under
some very mild technical conditions they are sufficient



for convergence of discrete solutions to the analytic so-
lution as h,k — 0 provided the initial data is smooth
and the discretisation is consistent. It thus appears that
these stability definitions are useful tools in analysing
numerical discretisations, but additional research is still
required.

In the Navier-Stokes application in this paper we will
need to consider a slight generalisation to a system of
o.d.e.’s of the form

Wl

pri CvU,

(15)
in which M is a real symmetric positive-definite matrix.
The ‘energy’ is defined as U*MU which suggests the
definition of new variables,

vV =M"U (16)
so that ||[V|> = U*MU. If M is diagonal then M'/?
is the diagonal matrix whose elements are the positive
square root of the corresponding elements of M. If M
is not diagonal then M'/2 is equal to T~'A'/2T where
A is the diagonal matrix of eigenvalues of M and T is
the corresponding matrix of orthonormal eigenvectors.
T—' =T* and hence both M'/?2 and M~'/? are sym-
metric and positive definite.

Under the change of variables, the system of o.d.e.’s
becomes

av.

dt

which is algebraically stable provided
r(k M~'2CM~'/?) ¢ S. If C is either symmetric or
anti-symmetric then so too is M~'/2CM~'/2 because
of the symmetry of M ~1/2. Therefore, as discussed ear-
lier the condition that the numerical range lies inside S
also ensures that the energy, ||V||?> = U*MU, will be
non-increasing.

=M~'2CM~2Y, (17)

3 Analytic equations

The starting point for the analysis is the nonlinear
Navier-Stokes equations,

ou oF, O0F, OF.
it ) Z —0. 1
ot " or "oy "o (18)
U is the vector of conservation variables

(p, pu, pv, pw, pE)T and the flux terms are all defined
in Appendix B together with the equation of state for
an ideal gas and the definitions of the stress tensor and
the viscous heat flux vector. The equations are to be
solved on a unit cubic domain §2 with periodic boundary

conditions. The choice of periodic b.c.’s avoids the com-
plication of analysing the influence of different analytic
and discrete boundary conditions.

The first step is to linearise the Navier-Stokes equa-
tions by considering perturbations to a steady flow
which is uniform apart from spatial variations in the
viscosity parameters u, A, k. Perturbations to the con-
served variables are related to the vector of primitive
perturbations, V = (p, @, ¥, @, p T by the equation

U=RV. (19)
The uniform transformation matrix R is given in Ap-
pendix B. Together, the linearisation and the change of
variables yields

ov...,ov oV
En +A’”8 +4, By =3y
0 , OV
ox \ % dx 2 dy
0 , OV , OV , OV
<Dym%+Dyya +Dyza>
8V ov ov
’ YV YV

vy
(20)

L

ov

+ D! + D!

ov
Tz 6

%wgﬂ

All matrices in this equation are listed in Appendix B.
The second step is to define a further transformation of
variables,

V=SW. (21)

The transformation matrix S, also given in Appendix
B, is due to Abarbanel and Gottlieb [16]. It has the
property that the corresponding transformed equations,

ow ow ow ow

St Ao A6+A26—y_
o oW

2 (Pra gy + Doy z)
o oW

5y (P gy + Dy + Dy, )

0 ow aW

5 (oG Py 05,

(22)

are such that the matrices 4,, A,, A, and the combined
dissipation matrix



are all symmetric. The matrices are listed in detail in
Appendix B and it is also proved that the combined dis-
sipation matrix is positive semi—definite provided that
>0, 2u+3X>0 and k>0. These three conditions are
satisfied by the laminar viscosity coefficients; it will be
assumed that they are also satisfied by the coefficients
defined by the turbulence modelling.

The perturbation ‘energy’ is defined as

E:/ TW*W dv, (23)
Q

where W* again denotes the Hermitian of W, and its
rate of change is

dE =/ (W*a—W+a—W W> dv
Q

dt ot ot

_ /Q <W*%—Vf 4 (W*Og) ) av.  (24)

Using the fact that A, is real and symmetric, and
then integrating by parts using the periodic boundary
conditions,

owr

ow
WA, _ A,
/Q< 8m> v = [ G AW
_ /W*A o av
ow oW
A, W L (wrea, 2V —0. (2
— /QW Al ( ax>dV0(5)
Similarly,
0 oW -
/QWAya (WA8—> v =0,
ow oW\
q, W q, W 0 @
/QW a+<W az> v = 0. (26)

Integrating the diffusion terms by parts and noting
that

oWN" (D,y Duy Dax\ (29\]

G| | Pve Dww D= | | 57 || =

oW D., D., D.. 5y _
ow " (Du» Duy D G
%_v; Dy, Dyy Dy %_v; 27)
%_V;/ D., Dzy D.. 6:9_‘2/

since the combined dissipation matrix is real and sym-
metric, yields the final result,

oW oW
i Dmm Dmy sz i
dE
— oW oW
oW oW
B Dew Dy D.o ) \ 5
(28)

Since the combined dissipation matrix is positive semi—
definite, the perturbation ‘energy’ is non-increasing
thereby proving stability in the energy norm.

4 Semi—discrete equations

Using an unstructured grid of tetrahedral cells with
W defined by linear interpolation between nodal val-
ues, the standard Galerkin spatial discretisation of the
transformed p.d.e. is

dw

Mg~ + AW = —DW, (29)
where
ma,; = /Q N;N; IdV
a; = /QNi (A a(;v + A, aév + A, 8(9];fj>dv
L~
* Dy 5y Doy
+D“63]Zi%> dv.

The vector W of discrete nodal variables has 5-
component subvectors w; at each node i. For a par-
ticular pair of nodes i, j, MG, i and d;; denote the
corresponding 5 x 5 submatrices of the matrices Mq, A
and D, respectively. IV; is the piecewise linear function
which is equal to unity at node ¢ and zero at all other
nodes, and the viscosity parameters p, A and k within
the dissipation matrices are defined to be constant on
each tetrahedron.

A standard modification is to ‘mass-lump’ the matrix
Mg, turning it into a diagonal matrix M with

mi =y ma,; :/QNiIdV:ViI, (31)
J



where V; is the volume associated with node 7, defined as
one quarter of the sum of the volumes of the surrounding
tetrahedra.

Another standard modification when interested in ac-
celerating convergence to a steady-state solution, is to
precondition the ‘mass-lumped’ matrix so that

Vi
At;

The objective of this preconditioning is to use local
timesteps, At;, which are larger in large computational
cells than in small ones, so that fewer iterations of the
fully-discrete equations will be needed to converge to
the steady-state solution to within some specified toler-
ance.

I. (32)

mi; =

The matrix A is antisymmetric since, integrating by
parts,

a;; = /A N-I-A aaNN + A, 38_7\7 N;dVv
= /N ATaN ATaN ATaN)dV
Y oy 0z
= a]Z (33)

The matrix D is clearly symmetric. Furthermore, for
any vector W,

o Dyy Dyy D,.\ [2X
W*DW = /Q o | | D, D, D, || 2|
BE)V! Dza: Dzy Dzz %
(34)
where
W _ ~ON
oxr - ox '
ow ON;
= = L w; 35
9y Z g " (35)
W _ 0N
0z - 0z U

Since the combined dissipation matrix is positive semi-
definite, it follows therefore that D is also positive semi-
definite.

Defining the ‘energy’ for arbitrary complex W as
either £ = %W*M(;W or £ = %W*MW, depending
whether or not mass-lumping is used,

dE
v -3 (W*(A+ D)W + W*(A+D)*W)
%( )W +W*(—A+D)W)

(36)

and so the energy is non-increasing. Since both Mg
and M are symmetric and positive definite this in turn
implies stability for the semi-discrete equations.

Note that other discretisations of the Navier-Stokes
equations will result in equations of the form,

wll

T CU,

(37)
where M is a symmetric positive definite ‘mass’ matrix
and C can be decomposed into its symmetric and anti—
symmetric components,

C=-(A+D), A=-Lc-c"), D=-LCc+c").

(38)
In general A will now contain some terms due to the vis-
cous discretisation, and D will contain some terms due
to the numerical smoothing associated with the con-
vective discretisation. D must still be positive semi—

definite to ensure stability.

5 Fully discrete equations

Using Runge-Kutta time integration the fully discrete
equations using one of the two diagonal mass matrices
are

Wt = L(kM—toyw™ (39)

where L(z) is the Runge-Kutta polynomial with stabil-
ity region S as defined in Section 2 and C'=—(A+D).
As explained in Section 2, sufficient conditions for alge-
braic and generalised stability are that

r(kM~2CM~'?) c S (40)

where

W*M71/20M71/2W
EM~Y20M Y2 = —k )
7( ¢ ) WW

(41)

For unsteady calculations with the diagonal mass-
lumped matrix, the aim is simply to find the largest
k such that the constraint, Eq. (40), is satisfied. For
steady-state calculations using the pre-conditioned mass
matrix, one uses a pseudo-timestep k=1 and then the
objective is to define the local timesteps At; to be as
large as possible, again subject to the sufficient stability
constraint, Eq. (40).

The difficulty is that direct evaluation of
7(k M~1/2CM~"/?) is not possible. Instead, a bound-
ing set is constructed to enclose the numerical range and
sufficient conditions are determined for this bounding
set to lie inside S. There are two choices of bounding set



which are relatively easily constructed, a half-disk and
a rectangle. The construction of the bounding half-disk
starts with the observation that

WrM-'\2oM-V 2w

< ||MTV2oMV2). (42
e <| I (2)
Let the variable r be defined by
r=max dmi max {3 eyl S llesll p o (43)
J J
where
Vi, mass-lumped matrix
m; = v
A; ) preconditioned mass-lumped matrix

(44)
Considering an arbitrary vector V', with subvector v; at
each node 1,

||M71/2OM71/2V||2

= > omi Y eig(my )
i j

— —1/2 —1/2

< " i Hleigllmg 2 ol ey o

0,5,k
< S my w1 lless | el

0,5,k
< Y mi ol lles ]

i,]

< 2|V,
= Mo MV2| <. (45)

The third line in the above derivation uses the inequality

—1/2
J

—-1/2 _ _
m 2 gl mi 2 okl < 5 (my gl +mit floel?)

(46)
followed by an interchange of subscripts to replace
mi logl|* by m; [|vj||* given that [|ei|| |cir| is sym-

metric in j and k.

Also, for an arbitrary vector W,

W*CW + (W*CW)*

w*(C+C*)W
= 2W*DW < 0, (47)
and so the real component of W*CW must be zero
or negative. Combined with the previous bound, this
means that 7(kM ~1/2C M ~'/?) must therefore lie in the
half-disk

{z=z+iy : <0, |z|<kr}.

For unsteady calculations, the necessary and sufficient
condition for the half-disk to lie inside S, and thus a suf-
ficient condition for algebraic and generalised stability
is

kr <re, (48)

where 7. is the radius of the half-disk inscribing S, as
defined and illustrated in Appendix A.

For preconditioned steady-state calculations with lo-
cal timesteps, k=1 and so the largest value for r for
which the half-disk lies inside S is r.. For each node i,
At; is then maximised subject to the definition of r by

reVi

max ¢ > flesll, Y llesil
i i

At; = (49)

These stability limits require knowledge of ||c;;||. Ap-
pendix C evaluates ||a;;|| exactly, using the fact that it
is a symmetric matrix. Since a;; = —ag;- = —ayj, it fol-
lows that ||aj;|| =|laij]|. Appendix C also constructs a
tight upper bound for ||d;;|| and ||dj;||. From these, an
upper bound for ||¢;;|| is obtained. Replacing ||c;;|| by
this upper bound in the above stability limits gives a
new slightly more restrictive sufficient stability condi-
tion which can be easily evaluated.

This completes the use of the half-disk as a bounding
set for the numerical range. The rectangular bounding
set, is obtained by considering separately the numerical
ranges of D and A.

Since D is symmetric positive semidefinite, then
W*M71/2DM71/2W

T = is real and negative with

*

W*W
—x4<x<0 and x4 defined by

v = maoe d m;  max $ 3 s 3 il p o+ (50)
J J

Similarly, because A is anti-symmetric, then
) W*M71/2AM71/2W

y=1 W is real and |y| <y, with y,
defined by
Ya =

= max my ' max $ Y " lagjll, Y [layll
i i

= max {m 3 fay| G
J



Thus the numerical range 7(kM~'/2CM~"'/?) must
lie inside the rectangle

R={rtiy: —keg<a<0, |y|<kya}.  (52)

For unsteady calculations, a sufficient stability limit
is obtained by requiring that RC.S. If the boundary of
S can be represented by z =rexp(if) with r(8) being
a single-valued function for § <6 < 37” then this can
written as

ky/22 +y2 <r(f), tan(d) = —z—a.
d

For preconditioned steady-state calculations, we again
let k=1 and can then choose any rectangle R which
inscribes S. Appendix A shows the particular example
of a half-square for which z;=y,. The maximum local
timestep At; subject to the definitions of both zp and
YA is then

(53)

Vi Vi

i Ya
1Y ldsilly > llagl
J J

At; = min

Td
maX{Z lldi;
J

(54)
The final form of the stability limit is again obtained by
using the results of Appendix C to evaluate ||a;;|| and
place an upper bound on ||d;;|| and ||dj;]|.

It is difficult to predict a priori which bounding set
will give the least restrictive sufficient stability condi-
tions. It depends in part on the particular Runge-Kutta
method which is used. Appendix A shows that for some
methods the inscribing half-disk almost contains the in-
scribing half-square and other rectangles lying inside S
in this case the half-disk sufficient stability conditions
will probably be less restrictive. With other methods,
the half-square almost contains the inscribing half-disk
and for these the half-square stability conditions will
probably be less restrictive.

In either case, the timestep limits are sufficient con-
ditions for algebraic and generalised stability, but will
almost certainly not be necessary. This point is well
illustrated by considering the stability limits in the hy-
perbolic and parabolic extremes. In the hyperbolic case
in which D =0, corresponding to a discretisation of the
inviscid Euler equations, the best stability condition ob-
tained from the analysis in this paper comes from an
extreme limit of the rectangular bounding set. Setting
24=0 and y, =7, where r, is defined in Appendix A to
be the length of the positive imaginary axis lying inside
the stability region S, gives the local timestep stability
limit

Y/

Ta k2
> lasl
j

At; < (55)

As explained in Section 2, because A is anti-symmetric,
this will also ensure that the ‘energy’ W*MW will be
non-increasing. This represents a generalisation to arbi-
trary Runge-Kutta methods of the earlier energy anal-
ysis by Giles for two specific Runge-Kutta methods [6].
In that earlier work, the sufficient stability limit de-
rived by energy analysis was compared to the necessary
and sufficient Fourier stability limit for a uniform mesh.
At worst, when the Mach number is zero and the grid
spacing is the same in each direction, the timestep limit
from the energy analysis is 40% less than that from the
Fourier analysis. At best, at high Mach numbers or
on stretched grids, the two timestep limits are almost
equal.

In the parabolic case in which A = 0, which would
correspond to a simple diffusion problem, or the in-
compressible Navier-Stokes equations at a very low
Reynolds number, the corresponding stability limit
comes from setting y, = 0 and x4 = rg, where rg is
defined in Appendix A to be the length of the nega-
tive real axis lying inside the stability region S. The
sufficient timestep stability limit is then

At < raVi _
max{_ [ldijll, D lldjill}
J J

An ad hoc timestep limit which could perhaps be used
comes from combining these last two limits to give

1 1 1

— = — 4 —_—,
At2 A2, A2,

(57)
where At,; and Aty; are the hyperbolic and parabolic
timestep limits given by Eq. (55) and Eq. (56). It is
possible to rigorously justify this combined limit if the
grid is uniform, the viscous coefficients are uniform, and
the stability region S contains the half-ellipse passing
through the points ir,, —74, —ir,. However, in general
this timestep formulation can not be justified and so
should only be used with care. Its advantage over the
rigorous stability limits using the half-disk and the rect-
angle is that it will give a larger timestep which is hope-
fully still stable.

6 Conclusions

This paper has analysed the stability of one class
of discretisations of the Navier-Stokes equations on a
tetrahedral grid. The sufficient stability limits for both
global and local timesteps are based on recent advances
in numerical analysis. Additional research is needed
to validate the usefulness of these limits, whether they



are close enough to the necessary stability limits to
be a valuable practical criterion on which to base the
timestep in actual computations.

Another direction for future research is the extension
of the analysis to other discretisations. Upwind approx-
imations of the inviscid fluxes would be a particularly
interesting topic for study. As indicated at the end of
Section 4, this would change the definition of the dissi-
pation matrix D, but the overall approach to the stabil-
ity analysis would remain valid. It may also be possi-
ble to investigate the stability of different Navier-Stokes
boundary condition implementations by incorporating
these within the coupled system of o.d.e.’s.
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A Runge-Kutta stability curves

An example of a Runge-Kutta type of approximation
of the o.d.e.

du
— = 58
=, (58)
is the following two-stage predictor-corrector method,
uM = u" + kAu”
u"tt =+ kAu(Y, (59)
Combining these two equations gives
u"t = L(kX) u", (60)

where the Runge-Kutta polynomial function is L(z)
1+2+22. Figure 1a) shows the stability region S within
which |L|<1. It also shows the largest half-disk,

{z=z+iy : <0,|z| <7},
and the largest half-square,

which lie inside S. If the boundary of S is defined as
z = rexp(if) then r. and ry can be defined as

I RNk

rs =r(2m). (61)

The values of r. and rs are listed to the right of the
figure along with those of two other important param-
eters, r, = r(im), which is the length of the positive
imaginary axis segment within S, and r4 =r(7), which
is the length of the negative real axis segment within
S. The importance of all four of these parameters is
discussed in the main text in Section 5.

Figures 1b) and 1c) show the corresponding curves
and data for two other popular multistage integration
schemes.
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a) Predictor-corrector

u = u + ANAtU
L=y XAt
re = 1.0
rs = 1.414
ro = 1.0
rqg = 1.0

b) Three-stage scheme

P = 4"+ %)\Atun
u? = u" + INAL e
wt = w" A Atu?

re = 1.731

rs = 2.375

re = 1.731

rq = 2.513

c¢) Four-stage scheme

u = "+ INAtW"
u® ="+ INAL e
G — " 4 INAL u®
u"T = u" A At
re = 2.616
rs = 2.704
ro = 2.828
rq = 2.785

Figure 1: Stability boundary and inscribing half-disk
and half-square for three Runge-Kutta methods



B vectors, matrices and positivity

Starting with the conservative form of the Navier-
Stokes equations, the state vector and flux vectors are

p

pu
U = pv ,

pw
pE
pu
puitp o

F, = | pw — Tya
puw — Tax
pu(E + %) — UTpy — VTyw — WTeg + (o
pv
puv — Tay

F, = pv2 +p — Tyy
pow — Tay
po(E +2) —urpy —vryy —wry + gy
pw
puw — Tas

F, = pYwW — Ty:
pw? +p =T

pw(E + %) —UTpy — UTysy — WTss + (2
(62)

p,u,v,w,p, £ are the density, three Cartesian velocity
components, pressure and total internal energy, respec-
tively. To complete the system of equations requires an
equation of state for an ideal gas,

p=pRT = (y=1)p(E - {(®+v’+w?)),  (63)

in which R, T, are the gas constant, temperature and
uniform specific heat ratio, respectively, as well as equa-
tions defining the heat fluxes,

oT oT oT
and the viscous stress terms,
NI
Tez = Mg, Or Oy 0z)’
NI
T = May Or Oy 0z)’
I N
T = Wy, ox Oy 0z)’

11

ou
oy
ou
0z
ov
0z

ov
ox
ow
ox
ow
ay

~=Tza:=,u< >7
=sz=N< >7

The transformation from conservative to primitive

).

(65)

variables, (p u v w p)7T, is accomplished by the matrix
1 0 0 0 O
U p 0 0 O
R = v 0 p 0 O (66)
w 0 0 p O
W pu pu pw ﬁ

The linearised, transformed equations are

ov ov ov ov
AT UM TR ST | A
ot ey gy TG,
o /(. OV ov ov
—_ 4D 4D
8:6( “8:U+ zyay+ “3z>
0 ov ov ov
_DI_ DI_ DI_
+8y< Wa:n-i_ yy3y+ y23z>
0 oUu ov ov
_DI_ DI_ DI_
+Bz< ”Bx+ Zy6y+ “82>(67)
where
v p 000
0 u 00%
A;: 0 0 UOO 9
00 0uo
0w 00 u
v 0 p 0O
0Ov 0 00
A;: 00 wv 0% , (68)
00 0 v 0
00w 0 v
w 0 0 p O
0w 0 0 O
Al=]100w 0 0],
1
000 w ;
00 0 vp w



and
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The Prandt]l number is defined as

KCp YuR
P = —— =
r=— -k (70)

but is not assumed to be uniform since A and £ in gen-
eral represent combinations of laminar and turbulent
viscosities, each with their own Prandtl number.

The second transformation matrix is

V2 000 0

0 100 0
S=| o o010 o , (71)
0 001 0

%pc 000 ,/VT—lpc

and the transformed matrices are

1
U WG 00 0
\/ch u 00 77_10
A, = STALS = 0 0 w0 0 ,
0 0 Ou O
0 e 00w
Y
1
v 0 \/_70 0 0
0O v 0 0 0
Ay =574 S = | e 0 w0 /TFe |,
0 0 0 v 0
0 0 77_100 v
1
w 00 Jec 0
0 w0 0 0
p :S_lA;S: 0 0 w 0 0 s
%c 00 w VTflc
0 00 VT—lc w
(72)
and
0 0 00 0
0 282 g 0 0
p
Doyy=[0 0 20 0 |,
0 0 04 o
p
0 0 00 g%

12



00 0 0 0
04 0 0 0
p
Dyy=]100 220 o |,
12
00 0 % 0
00 0 0 g&
000 O 0
040 0 0
p
D.=|00% 0o o0 [,
000 2222 o
p
000 0 p&
00000
00200
p
Dyy=DJ,=[0%000],
00000
00000
00000
A
00020
D,.=D' =[00000],
04000
p
00000
00000
00000
A
D,.=DI,=[000 20 (73)
00400
00000

An important feature of the transformed equations is
that the combined dissipation matrix,

Dz Dyy Dy
Dyz Dyy Dy.
D.e D.y D
is both symmetric and positive semi-definite. The sym-

metry is clear from the above definitions of the com-
ponent matrices, and the positivity comes from noting

that

Dzz Dzy Dzz
" | Dy Dy, D,. |z =
Dza: Dzy Dzz
H($3+$7)2 + H($4 -|'$12)2 + H(IQ +$13)2
P P P
To 2u+X A A Ta
+ T3 A 2u+X A T8
T14 A A 2u+A T14
TH :
The eigenvalues of
2u+X A A
A 2u+A A
A A 2u+ )

are 24, 2, 20+ 3X and hence the combined dissipation
matrix is positive semi-definite provided p >0, k£ >0
and 2p+3A>0.
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C L, norms of component matrices

Defining
/QM' VN, dV = S, (75)
then
aij = S(ngAy +nyAy +nzA;)
u.n %cnz %cny %cnz 0
den, i 0 N
=5 %cny 0 a.i 0 \/Vchny
%cnz 0 0 u.1 \/Vchnz
0 Ecnz \/VTTlcny \/Ecnz .1
(76)

Three of the eigenvalues of S~'a;; are equal to @.7 and
the other two are @.7 & ¢. Hence,

S(|a.i

using the fact that for symmetric matrices the Ly norm
is the magnitude of the largest eigenvalue.

| +c¢) (77)

laijll =

The quantity S7 can be interpreted geometrically.
First note that VN is non-zero only on tetrahedra sur-
rounding node j, and that on such a tetrahedron, la-
belled o,

! &
3V
where §3’ is the inward-pointing area vector of the face
of o opposite node j, and V7 is the volume of the tetra-
hedron. Summing over all tetrahedra for which both i
and j are corner nodes, gives

Ll
snzﬁgjsj

VN; = (78)

(79)

Define d;’j to be the contribution to d;; from the in-
tegration over tetrahedron o. Therefore,

dij = dej lldi;]l < Z lld; |

where again the summation is over tetrahedra common
to both 7 and j. On tetrahedron o, VIV; and VN; are
both uniform and therefore

— (80)
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o
v Gij
0 0 0 0 0
0 pAX ON; ON;  pdA ON; ON;  ptX ON; ON; 0
p Ox Ox p Ox Oy p Ox Oz
+%VN¢-VN]
0 KX ON: ONi  ptX ON; ON;  pt) ON; ON; 0
p Oy Oz p Oy Oy p Oy 0z
‘l‘%VM-V]VJ
0 btX N ON;  p4X ON; ON;  pt A ON; ON; 0
p 0Oz Ox p 0Oz 0Oy p 0Oz 0Oz
+Lvn wN;
T on
0 0 0 0 Prp VN VN
(81)
Hence,
I1d; ||<V"max{ VN VN + P o oy

ML} v/\ VA v\ 2
Prpw wi} 62

which can be re-expressed using the values for VNN, and
VN; as

u-l-/\

1 o o o o
151 < g mad 4137851+ 2135711851,

pr,JS S NC

where 5;" and §;’ are as defined previously. Note that
the upper bound on the right-hand-side of Eq. (83) is
unchanged if ¢ and j are interchanged, and so it is also
an upper bound for [|d;||. Hence,

max{||di;|, [|d; ||} <

Za: max{—|

The exact value for ||a;;|| and the upper bounds for
Ildi;|l, |d;i|| can then be combined by the triangle in-
equality,

. A -
ge. S;f|+’”

3711351, 22137 s%}

(84)

gVe

lleijll = llaij + dijl| < llagll + lldill, (85)

to get upper bounds for ||¢;;|| and ||¢;;|| for use in the
sufficient stability limits derived in Section 5 in the main
text.



