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AbstractThis paper presents a timestep stability analysis fora class of discretisations applied to the linearised formof the Navier-Stokes equations on a 3D domain withperiodic boundary conditions. Using a suitable de�ni-tion of the `perturbation energy' it is shown that theenergy is monotonically decreasing for both the origi-nal p.d.e. and the semi-discrete system of o.d.e.'s arisingfrom a Galerkin discretisation on a tetrahedral grid. Us-ing recent theoretical results concerning algebraic andgeneralised stability, su�cient stability limits are ob-tained for both global and local timesteps for fully dis-crete algorithms using Runge-Kutta time integration.1 IntroductionOne motivation for the analysis in this paper was theobservation by Wigton of instabilities in Navier-Stokescalculations on structured grids [1]. It appeared thatthe instabilities might be connected to large variationsin the level of turbulent viscosity arising quite properlyin certain physical situations. A possible cause of the in-stability was thought to be the timestep de�nition whichwas based on Fourier stability theory assuming constantcoe�cients. Therefore, an objective of this analysis wasto determine su�cient conditions for the stability of dis-cretisations of the Navier-Stokes equations with nonuni-form viscosity.The second motivation was the requirement fortimestep stability limits for viscous calculations on un-structured grids. Inviscid calculations are now beingperformed almost routinely on unstructured grids for�Rolls-Royce Reader in CFD, email: giles@comlab.ox.ac.uk,Member AIAACopyright c
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complete aircraft geometries (e.g. [2, 3, 4, 5]). Us-ing energy analysis methods, Giles developed su�cientglobal and local timestep stability limits for a Galerkindiscretisation of the Euler equations on a tetrahedralgrid with two particular Runge-Kutta time integrationschemes [6]; this has been used on an ad hoc basisfor calculations using other algorithms including vari-ous upwinding and numerical smoothing formulations[3, 5]. Through parallel computing and e�cient multi-grid algorithms for unstructured grids [5], there is nowthe computational power to perform extremely largeNavier-Stokes calculations on unstructured grids, andso there is a need for the supporting numerical analy-sis to give accurate global and local timestep stabilitylimits.Fourier stability analysis can only be applied to lin-ear �nite di�erence equations with constant coe�cientson structured grids, and so it is not appropriate for thisapplication. There are two other well-documented sta-bility analysis methods which can be used with lineardiscretisations with variable coe�cients on unstructuredgrids. One is the energy method [7] which relies on thecareful construction of a suitably de�ned `energy' whichcan be proven to monotonically decrease. The di�cultyis usually in constructing an appropriate de�nition forthe energy, but when this method can be applied it isvery powerful in giving a very strong form of stability.It is used in this paper to prove the stability of theoriginal linearised form of the Navier-Stokes partial dif-ferential equations, and the semi-discretised system ofcoupled o.d.e.'s that is produced by the Galerkin spatialdiscretisation.The other stability analysis technique involves consid-eration of the eigenvalues of the matrix representing thediscretisation of the spatial di�erential operator. Thisleads to su�cient conditions for asymptotic stability,as t ! 1 for unsteady calculations or as n ! 1 forcalculations using local timesteps. Unfortunately, there1



are well-documented examples such as the �rst orderupwinding of the convection equation on a �nite 1D do-main (e.g. [8, 9, 10]) for which this is not a practical sta-bility criterion because it allows an unacceptably largetransient growth before the eventual exponential de-cay. The next section reviews this theory showing thatthe problem of large transient growth can arise when-ever the spatial discretisation matrix is non-normal. Itthen presents recent results on algebraic and generalisedstability for such applications giving su�cient condi-tions for stability. It is these new stability conditionswhich are used to construct su�cient stability limits forthe full Galerkin/Runge-Kutta Navier-Stokes discreti-sation.The analysis is performed for linear perturbations toa steady 
ow in which all 
ow variables are uniformwith the exception of the three viscosity coe�cients, �,the shear viscosity, �, the second coe�cient of viscos-ity, and k, the thermal di�usivity. This choice of modelproblem is critical in several ways. Although it is the lin-earisation of the laminar Navier-Stokes equations thatis used, the viscosity coe�cients can each be interpretedas the sum of the laminar value plus a turbulent valuearising from some turbulence model. Accordingly, thereis no assumption of any �xed relationship between thethree quantities, either the Stokes hypothesis linking �and �, or the assumption of a constant Prandtl num-ber linking � and k. The uniformity of the other 
owvariables is essential for key parts of the analysis. How-ever, a more fundamental aspect of the uniformity isthat it gives a physical situation in which 
ow pertur-bations are naturally damped, and so the 
ow is stable.Therefore, an instability of the semi-discrete or fully dis-crete equations can be viewed justi�ably as an incorrectbehaviour. The timestep limit which gives the onset ofthis instability can then be de�ned as the maximum sta-ble timestep. In contrast, if a vortex sheet were takenas the steady 
ow and then linear perturbations wereanalysed, it would be determined that both the ana-lytic and discrete equations were unstable. Even worse,the timescale of the most unstable discrete mode wouldbe proportional to �x so that it would be impossibleto distinguish between a `numerical instability' and thenatural Helmholtz instability of the vortex sheet. Itwould not therefore be possible to use this alternativemodel problem to make any deductions about stabletimestep limits.After the following section reviewing numerical stabil-ity theory, there are separate sections for the analysis ofthe di�erential, semi-discrete and fully discrete Navier-Stokes equations. To focus attention on the importantfeatures of the stability analysis, many of the supportingdetails are presented in the three appendices.

2 Review of stability theory forRunge-Kutta methodsDiscretisation of the scalar o.d.e.dudt = �u; (1)using an explicit Runge-Kutta method with timestep kyields a di�erence equation of the formu(n+1) = L(�k)u(n) (2)where L(z) is a polynomial function of degree pL(z) = pXm=0 amzm; (3)with a0 = a1 = 1; ap 6= 0. Discrete solutions of thisdi�erence equation on a �nite time interval 0� t� t0 willconverge to the analytic solution as k!0. In addition,the discretisation is said to be absolutely stable for aparticular value of k if it does not allow exponentiallygrowing solutions as t!1; this is satis�ed provided �klies within the stability region S in the complex planede�ned by S = fz : jL(z)j�1g : (4)Examples of stability regions for di�erent polynomialsare given in Appendix A.Suppose now that a real square matrix C has a com-plete set of eigenvectors and can thus be diagonalised,C = T�T�1; (5)with � being the diagonal matrix of eigenvalues of C,and the columns of T being the associated eigenvectors.The Runge-Kutta discretisation of the coupled systemof o.d.e.'s, dUdt = CU; (6)can be written asU (n+1) = L(kC)U (n) = T L(k�)T�1U (n); (7)since Cm = �T�T�1�m = T�mT�1: (8)Hence U (n) = T (L(k�))n T�1U (0): (9)The necessary and su�cient condition for absolutestability as n!1, requiring that there are no discretesolutions which grow exponentially with n, is thereforethat jL(k�)j � 1, or equivalently k� lies in S, for all2



eigenvalues � of C. If this condition is satis�ed, thenusing L2 vector and matrix norms it follows thatkU (n)k � kTk kL(k�)kn kT�1k kU (0)k � �(T ) kU (0)k;(10)where �(T ) is the condition number of the eigenvectormatrix T .If the matrix C is normal, meaning that it has anorthogonal set of eigenvectors then the eigenvectors canbe normalised so that �(T )=1. In this case, kU (n)k isa non-increasing function of n and kU (n)k2 representsa non-increasing `energy' which could be used in an en-ergy stability analysis.If C is not normal, then the growth in kU (n)k isbounded by the condition number of the eigenvector ma-trix, �(T ). Unfortunately, this can be very large indeed,allowing a very large transient growth in the solutioneven when for each eigenvalue k� lies strictly inside thestability region S and so kU (n)k must eventually decayexponentially. This problem can be particularly acutewhen the matrix C comes from the spatial discretisationof a p.d.e. in which case there is then a family of discreti-sations arising from a sequence of computational grids ofdecreasing mesh spacing h. It is possible in such circum-stances for the sequence of condition numbers �(T ) togrow exponentially, with an exponent inversely propor-tional to the mesh spacing [8]. There are two practicalconsequences of this exponential growth. In applica-tions concerned with the behaviour of the solution ast!1, it produces an unacceptably large ampli�cationof machine rounding errors in linear computations andcomplete failure of the discrete computation in nonlin-ear cases. In applications concerned with a �nite timeinterval, 0� t� t0, it prevents convergence of the dis-crete solution to the analytic solution as h; k!0 exceptin certain exceptional situations using spectral spatialdiscretisations.The stability of discretisations of systems of o.d.e.'swith non-normal matrices has been a major researchtopic in the numerical analysis community in recentyears [8, 9, 11, 12, 13, 14, 15]; A recent review arti-cle by van Dorsselaer et al [10] provides an excellentoverview of these and many other references. The ap-plication is often to families of non-normal matrices aris-ing from spatial discretisations of p.d.e.'s. Ideally, onewould hope to prove strong stability,kU (n)k � 
 kU (0)k; (11)with 
 being a constant which is not only independentof n but is also a uniform bound applying to all matricesin the family of spatial discretisations for di�erent meshspacings h but with the timestep k being a function of

h. One reason why strong stability is very desirable isthat the Lax Equivalence Theorem proves that it is anecessary and su�cient condition for convergence of dis-crete solutions to the analytic solution on a �nite timeinterval for all possible initial data, provided that thediscretisation of the p.d.e. is consistent for su�cientlysmooth initial data [7].At present, the conditions under which strong sta-bility can be proved are too restrictive to be useful inpractical computations. Instead, attention has focussedon weaker de�nitions of stability which are more easilyachieved and are still useful for practical computations.One is algebraic stability [8, 11, 12] which allows a lineargrowth in the transient solution of the formkU (n)k � 
 n kU (0)k; (12)where 
 is again a uniform constant. Another, due toKreiss and Wu [9], is generalised stability which is basedon exponentially weighted integrals over time for a in-homogeneous di�erence equation with homogeneous ini-tial conditions. For both of these de�nitions, a su�cientcondition for stability is that�(kC) � S; (13)where the numerical range �(kC) is a subset of the com-plex domain de�ned by�(kC) = �k W �CWW �W : W 6=0� (14)where W can be any non-zero complex vector of the re-quired dimension and W � is its Hermitian, the complexconjugate transpose. The proof of su�ciency for alge-braic stability is given by Lenferink and Spijker [12]. Itproceeds in two parts, �rst showing that a certain re-solvent condition is su�cient for algebraic stability, andthen showing that this resolvent condition is satis�ed ifthe numerical range lies inside S. Reddy and Trefethen[8] prove that the resolvent condition is necessary aswell as su�cient for algebraic stability, and the equiva-lence to generalised stability follows almost immediatelygiven the resolvent condition required by Kreiss and Wu[9].By considering W to be an eigenvector of C, it canbe seen that k� 2 �(kC) for each eigenvalue of C and sothe requirement that �(kC)�S is a tighter restrictionon the maximum allowable timestep than asymptoticstability. In comparison to strong stability, algebraicand generalised stability allow greater growth in tran-sients when considering the solution behaviour as t!1.On the �nite time interval, it can be shown that undersome very mild technical conditions they are su�cient3



for convergence of discrete solutions to the analytic so-lution as h; k ! 0 provided the initial data is smoothand the discretisation is consistent. It thus appears thatthese stability de�nitions are useful tools in analysingnumerical discretisations, but additional research is stillrequired.In the Navier-Stokes application in this paper we willneed to consider a slight generalisation to a system ofo.d.e.'s of the form M dUdt = CU; (15)in whichM is a real symmetric positive-de�nite matrix.The `energy' is de�ned as U�MU which suggests thede�nition of new variables,V =M1=2U; (16)so that kV k2 = U�MU . If M is diagonal then M1=2is the diagonal matrix whose elements are the positivesquare root of the corresponding elements of M . If Mis not diagonal then M1=2 is equal to T�1�1=2T where� is the diagonal matrix of eigenvalues of M and T isthe corresponding matrix of orthonormal eigenvectors.T�1 = T � and hence both M1=2 and M�1=2 are sym-metric and positive de�nite.Under the change of variables, the system of o.d.e.'sbecomes dVdt =M�1=2CM�1=2 V; (17)which is algebraically stable provided�(kM�1=2CM�1=2) � S. If C is either symmetric oranti-symmetric then so too is M�1=2CM�1=2 becauseof the symmetry ofM�1=2. Therefore, as discussed ear-lier the condition that the numerical range lies inside Salso ensures that the energy, kV k2 = U�MU , will benon-increasing.3 Analytic equationsThe starting point for the analysis is the nonlinearNavier-Stokes equations,@U@t + @Fx@x + @Fy@y + @Fz@z = 0: (18)U is the vector of conservation variables(�; �u; �v; �w; �E)T and the 
ux terms are all de�nedin Appendix B together with the equation of state foran ideal gas and the de�nitions of the stress tensor andthe viscous heat 
ux vector. The equations are to besolved on a unit cubic domain 
 with periodic boundary

conditions. The choice of periodic b.c.'s avoids the com-plication of analysing the in
uence of di�erent analyticand discrete boundary conditions.The �rst step is to linearise the Navier-Stokes equa-tions by considering perturbations to a steady 
owwhich is uniform apart from spatial variations in theviscosity parameters �; �; k. Perturbations to the con-served variables are related to the vector of primitiveperturbations, V = (~�; ~u; ~v; ~w; ~p)T , by the equationeU = RV: (19)The uniform transformation matrix R is given in Ap-pendix B. Together, the linearisation and the change ofvariables yields@V@t +A0x@V@x +A0y @V@y +A0z @V@y =@@x �D0xx@V@x +D0xy @V@y +D0xz @V@z �+ @@y �D0yx@V@x +D0yy @V@y +D0yz @V@z �+ @@z �D0zx@V@x +D0zy @V@y +D0zz @V@z � :(20)All matrices in this equation are listed in Appendix B.The second step is to de�ne a further transformation ofvariables, V = SW: (21)The transformation matrix S, also given in AppendixB, is due to Abarbanel and Gottlieb [16]. It has theproperty that the corresponding transformed equations,@W@t +Ax@W@x +Ay @W@y +Az @W@y =@@x�Dxx@W@x +Dxy @W@y +Dxz @W@z �+ @@y�Dyx@W@x +Dyy @W@y +Dyz @W@z �+ @@z�Dzx @W@x +Dzy @W@y +Dzz @W@z � ;(22)are such that the matrices Ax; Ay; Az and the combineddissipation matrix0BBBB@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CCCCA4



are all symmetric. The matrices are listed in detail inAppendix B and it is also proved that the combined dis-sipation matrix is positive semi{de�nite provided that��0, 2�+3��0 and k�0. These three conditions aresatis�ed by the laminar viscosity coe�cients; it will beassumed that they are also satis�ed by the coe�cientsde�ned by the turbulence modelling.The perturbation `energy' is de�ned asE = Z
 12W �W dV; (23)where W � again denotes the Hermitian of W , and itsrate of change isdEdt = Z
 12 �W � @W@t + @W@t �W� dV= Z
 12 �W � @W@t +�W � @W@t ��� dV: (24)Using the fact that Ax is real and symmetric, andthen integrating by parts using the periodic boundaryconditions,Z
�W �Ax @W@x �� dV = Z
 @W@x �AxW dV= � Z
W �Ax @W@x dV=) Z
W �Ax @W@x +�W �Ax @W@x �� dV = 0: (25)Similarly,Z
W �Ay @W@y +�W �Ay @W@y �� dV = 0;Z
W �Az @W@z +�W �Az @W@z �� dV = 0: (26)Integrating the di�usion terms by parts and notingthat266640BBB@@W@x@W@y@W@z 1CCCA�0BBB@Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz1CCCA0BBB@@W@x@W@y@W@z 1CCCA37775� =0BBB@@W@x@W@y@W@z 1CCCA�0BBB@Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz1CCCA0BBB@@W@x@W@y@W@z 1CCCA (27)

since the combined dissipation matrix is real and sym-metric, yields the �nal result,dEdt = � Z
0BBBB@ @W@x@W@y@W@z 1CCCCA�0BBBB@Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz1CCCCA0BBBB@ @W@x@W@y@W@z 1CCCCA dV:(28)Since the combined dissipation matrix is positive semi{de�nite, the perturbation `energy' is non-increasingthereby proving stability in the energy norm.4 Semi{discrete equationsUsing an unstructured grid of tetrahedral cells withW de�ned by linear interpolation between nodal val-ues, the standard Galerkin spatial discretisation of thetransformed p.d.e. isMG dWdt +AW = �DW; (29)wheremGij = Z
NiNj I dVaij = Z
Ni�Ax @Nj@x +Ay @Nj@y +Az @Nj@x � dVdij = Z
� Dxx@Ni@x @Nj@x +Dxy @Ni@x @Nj@y+Dxz @Ni@x @Nj@z +Dyx@Ni@y @Nj@x (30)+Dyy @Ni@y @Nj@y +Dyz @Ni@y @Nj@z+Dzx@Ni@z @Nj@x +Dzy @Ni@z @Nj@y+Dzz @Ni@z @Nj@z � dV:The vector W of discrete nodal variables has 5-component subvectors wi at each node i. For a par-ticular pair of nodes i; j, mGij , aij and dij denote thecorresponding 5� 5 submatrices of the matrices MG, Aand D, respectively. Ni is the piecewise linear functionwhich is equal to unity at node i and zero at all othernodes, and the viscosity parameters �, � and k withinthe dissipation matrices are de�ned to be constant oneach tetrahedron.A standard modi�cation is to `mass-lump' the matrixMG, turning it into a diagonal matrix M withmii =Xj mGij = Z
Ni I dV = Vi I; (31)5



where Vi is the volume associated with node i, de�ned asone quarter of the sum of the volumes of the surroundingtetrahedra.Another standard modi�cation when interested in ac-celerating convergence to a steady-state solution, is toprecondition the `mass-lumped' matrix so thatmii = Vi�ti I: (32)The objective of this preconditioning is to use localtimesteps, �ti, which are larger in large computationalcells than in small ones, so that fewer iterations of thefully-discrete equations will be needed to converge tothe steady-state solution to within some speci�ed toler-ance.The matrix A is antisymmetric since, integrating byparts,aij = � Z Ax @Ni@x Nj +Ay @Ni@y Nj +Az @Ni@z Nj dV= � Z Nj(ATx @Ni@x +ATy @Ni@y +ATz @Ni@z ) dV= �(aji)T : (33)The matrix D is clearly symmetric. Furthermore, forany vector W ,W �DW =Z
0BB@ @W@x@W@y@W@z 1CCA�0BB@Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz1CCA0BB@ @W@x@W@y@W@z 1CCA dV;(34)where @W@x = Xi @Ni@x wi@W@y = Xi @Ni@y wi (35)@W@z = Xi @Ni@z wi:Since the combined dissipation matrix is positive semi-de�nite, it follows therefore that D is also positive semi-de�nite.De�ning the `energy' for arbitrary complex W aseither E = 12W �MGW or E = 12W �MW , dependingwhether or not mass-lumping is used,dEdt = � 12 (W �(A+D)W +W �(A+D)�W )= � 12 (W �(A+D)W +W �(�A+D)W )= �W �DW � 0 (36)

and so the energy is non-increasing. Since both MGand M are symmetric and positive de�nite this in turnimplies stability for the semi-discrete equations.Note that other discretisations of the Navier-Stokesequations will result in equations of the form,MdUdt = CU; (37)where M is a symmetric positive de�nite `mass' matrixand C can be decomposed into its symmetric and anti{symmetric components,C = �(A+D); A = � 12 (C�CT ); D = � 12 (C+CT ):(38)In general A will now contain some terms due to the vis-cous discretisation, and D will contain some terms dueto the numerical smoothing associated with the con-vective discretisation. D must still be positive semi{de�nite to ensure stability.5 Fully discrete equationsUsing Runge-Kutta time integration the fully discreteequations using one of the two diagonal mass matricesare W (n+1) = L(kM�1C)W (n) (39)where L(z) is the Runge-Kutta polynomial with stabil-ity region S as de�ned in Section 2 and C=�(A+D).As explained in Section 2, su�cient conditions for alge-braic and generalised stability are that�(kM�1=2CM�1=2) � S (40)where�(kM�1=2CM�1=2) = ��k W �M�1=2CM�1=2WW �W � :(41)For unsteady calculations with the diagonal mass-lumped matrix, the aim is simply to �nd the largestk such that the constraint, Eq. (40), is satis�ed. Forsteady-state calculations using the pre-conditioned massmatrix, one uses a pseudo-timestep k=1 and then theobjective is to de�ne the local timesteps �ti to be aslarge as possible, again subject to the su�cient stabilityconstraint, Eq. (40).The di�culty is that direct evaluation of�(kM�1=2CM�1=2) is not possible. Instead, a bound-ing set is constructed to enclose the numerical range andsu�cient conditions are determined for this boundingset to lie inside S. There are two choices of bounding set6



which are relatively easily constructed, a half-disk anda rectangle. The construction of the bounding half-diskstarts with the observation that����W �M�1=2CM�1=2WW �W ���� � kM�1=2CM�1=2k: (42)Let the variable r be de�ned byr = maxi 8<:m�1i max8<:Xj kcijk;Xj kcjik9=;9=; (43)wheremi =8><>: Vi; mass-lumped matrixVi�ti ; preconditioned mass-lumped matrix(44)Considering an arbitrary vector V , with subvector vi ateach node i,kM�1=2CM�1=2V k2= Xi m�1i ������Xj cij(m�1=2j vj)������2� Xi;j;km�1i kcijkm�1=2j kvjk kcikkm�1=2k kvkk� Xi;j;km�1i m�1j kvjk2kcijk kcikk� rXi;j m�1j kvjk2kcijk� r2kV k2;=) kM�1=2CM�1=2k � r: (45)The third line in the above derivation uses the inequalitym�1=2j kvjk m�1=2k kvkk � 12 �m�1j kvjk2 +m�1k kvkk2� ;(46)followed by an interchange of subscripts to replacem�1k kvkk2 by m�1j kvjk2 given that kcijk kcikk is sym-metric in j and k.Also, for an arbitrary vector W ,W �CW + (W �CW )� = W �(C+C�)W= �2W �DW � 0; (47)and so the real component of W �CW must be zeroor negative. Combined with the previous bound, thismeans that �(kM�1=2CM�1=2) must therefore lie in thehalf-disk fz=x+iy : x�0; jzj�krg :

For unsteady calculations, the necessary and su�cientcondition for the half-disk to lie inside S, and thus a suf-�cient condition for algebraic and generalised stabilityis kr � rc; (48)where rc is the radius of the half-disk inscribing S, asde�ned and illustrated in Appendix A.For preconditioned steady-state calculations with lo-cal timesteps, k = 1 and so the largest value for r forwhich the half-disk lies inside S is rc. For each node i,�ti is then maximised subject to the de�nition of r by�ti = rcVimax8<:Xj kcijk;Xj kcjik9=; : (49)
These stability limits require knowledge of kcijk. Ap-pendix C evaluates kaijk exactly, using the fact that itis a symmetric matrix. Since aji =�aTij =�aij , it fol-lows that kajik= kaijk. Appendix C also constructs atight upper bound for kdijk and kdjik. From these, anupper bound for kcijk is obtained. Replacing kcijk bythis upper bound in the above stability limits gives anew slightly more restrictive su�cient stability condi-tion which can be easily evaluated.This completes the use of the half-disk as a boundingset for the numerical range. The rectangular boundingset is obtained by considering separately the numericalranges of D and A.Since D is symmetric positive semide�nite, thenx = �W �M�1=2DM�1=2WW �W is real and negative with�xd�x�0 and xd de�ned byxd = maxi 8<:m�1i max8<:Xj kdijk;Xj kdjik9=;9=; : (50)Similarly, because A is anti-symmetric, theny = i W �M�1=2AM�1=2WW �W is real and jyj�ya with yade�ned byya = maxi 8<:m�1i max8<:Xj kaijk;Xj kajik9=;9=;= maxi 8<:m�1i Xj kaijk9=; : (51)7



Thus the numerical range �(kM�1=2CM�1=2) mustlie inside the rectangleR = fx+iy : �kxd�x�0; jyj�kyag : (52)For unsteady calculations, a su�cient stability limitis obtained by requiring that R�S. If the boundary ofS can be represented by z = r exp(i�) with r(�) beinga single-valued function for �2 � � � 3�2 then this canwritten askqx2d + y2a � r(�); tan(�) = � yaxd : (53)For preconditioned steady-state calculations, we againlet k = 1 and can then choose any rectangle R whichinscribes S. Appendix A shows the particular exampleof a half-square for which xd=ya. The maximum localtimestep �ti subject to the de�nitions of both xD andyA is then�ti = min8>><>>: xdVimaxfXj kdijk;Xj kdjikg ; yaViXj kaijk9>>=>>; :(54)The �nal form of the stability limit is again obtained byusing the results of Appendix C to evaluate kaijk andplace an upper bound on kdijk and kdjik.It is di�cult to predict a priori which bounding setwill give the least restrictive su�cient stability condi-tions. It depends in part on the particular Runge-Kuttamethod which is used. Appendix A shows that for somemethods the inscribing half-disk almost contains the in-scribing half-square and other rectangles lying inside S;in this case the half-disk su�cient stability conditionswill probably be less restrictive. With other methods,the half-square almost contains the inscribing half-diskand for these the half-square stability conditions willprobably be less restrictive.In either case, the timestep limits are su�cient con-ditions for algebraic and generalised stability, but willalmost certainly not be necessary. This point is wellillustrated by considering the stability limits in the hy-perbolic and parabolic extremes. In the hyperbolic casein which D=0, corresponding to a discretisation of theinviscid Euler equations, the best stability condition ob-tained from the analysis in this paper comes from anextreme limit of the rectangular bounding set. Settingxd=0 and ya=ra, where ra is de�ned in Appendix A tobe the length of the positive imaginary axis lying insidethe stability region S, gives the local timestep stabilitylimit �ti � raViXj kaijk : (55)

As explained in Section 2, because A is anti-symmetric,this will also ensure that the `energy' W �MW will benon-increasing. This represents a generalisation to arbi-trary Runge-Kutta methods of the earlier energy anal-ysis by Giles for two speci�c Runge-Kutta methods [6].In that earlier work, the su�cient stability limit de-rived by energy analysis was compared to the necessaryand su�cient Fourier stability limit for a uniform mesh.At worst, when the Mach number is zero and the gridspacing is the same in each direction, the timestep limitfrom the energy analysis is 40% less than that from theFourier analysis. At best, at high Mach numbers oron stretched grids, the two timestep limits are almostequal.In the parabolic case in which A = 0, which wouldcorrespond to a simple di�usion problem, or the in-compressible Navier-Stokes equations at a very lowReynolds number, the corresponding stability limitcomes from setting ya = 0 and xd = rd, where rd isde�ned in Appendix A to be the length of the nega-tive real axis lying inside the stability region S. Thesu�cient timestep stability limit is then�ti � rdVimaxfXj kdijk;Xj kdjikg : (56)An ad hoc timestep limit which could perhaps be usedcomes from combining these last two limits to give1�t2i = 1�t2a i + 1�t2d i ; (57)where �ta i and �td i are the hyperbolic and parabolictimestep limits given by Eq. (55) and Eq. (56). It ispossible to rigorously justify this combined limit if thegrid is uniform, the viscous coe�cients are uniform, andthe stability region S contains the half-ellipse passingthrough the points ira;�rd;�ira. However, in generalthis timestep formulation can not be justi�ed and soshould only be used with care. Its advantage over therigorous stability limits using the half-disk and the rect-angle is that it will give a larger timestep which is hope-fully still stable.6 ConclusionsThis paper has analysed the stability of one classof discretisations of the Navier-Stokes equations on atetrahedral grid. The su�cient stability limits for bothglobal and local timesteps are based on recent advancesin numerical analysis. Additional research is neededto validate the usefulness of these limits, whether they8



are close enough to the necessary stability limits tobe a valuable practical criterion on which to base thetimestep in actual computations.Another direction for future research is the extensionof the analysis to other discretisations. Upwind approx-imations of the inviscid 
uxes would be a particularlyinteresting topic for study. As indicated at the end ofSection 4, this would change the de�nition of the dissi-pation matrix D, but the overall approach to the stabil-ity analysis would remain valid. It may also be possi-ble to investigate the stability of di�erent Navier-Stokesboundary condition implementations by incorporatingthese within the coupled system of o.d.e.'s.AcknowledgementsI wish to thank Larry Wigton for stimulating thisresearch and Eli Turkel, Eitan Tadmor, Bill Morton,Endr�e S�uli, Nick Trefethen and Satish Reddy for theirhelp with the numerical analysis literature on the sta-bility of systems of o.d.e.'s with non-normal matrices,and for their valuable comments on the paper. The �-nancial support of Rolls-Royce plc, DTI and EPSRC isgratefully acknowledged.References[1] L. Wigton. Personal communication, 1994.[2] N.P. Weatherill, O. Hassan, M.J. Marchant, andD.L. Marcum. Adaptive inviscid 
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ows past in-stalled aero-engines. Comput. Mech., 11:433{451,1993.[4] R.D. Rausch, J.T. Batina, and H.T.Y. Yang.Three-dimensional time-marching aeroelastic anal-yses using an unstructured-grid Euler method.AIAA J., 31(9):1626{1633, 1993.[5] P. Crumpton and M.B. Giles. Aircraft computa-tions using multigrid and an unstructured parallellibrary. AIAA Paper 95-0210, 1995.[6] M.B. Giles. Energy stability analysis of multi-step methods on unstructured meshes. TechnicalReport TR-87-1, MIT Dept. of Aero. and Astro.,1987.
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A Runge-Kutta stability curvesAn example of a Runge-Kutta type of approximationof the o.d.e. dudt = �u; (58)is the following two-stage predictor-corrector method,u(1) = un + k�unun+1 = un + k�u(1): (59)Combining these two equations givesun+1 = L(k�) un; (60)where the Runge-Kutta polynomial function is L(z) =1+z+z2. Figure 1a) shows the stability region S withinwhich jLj�1. It also shows the largest half-disk,fz=x+iy : x�0; jzj�rcg ;and the largest half-square,�z=x+iy : � rsp2�x�0; jyj� rsp2� ;which lie inside S. If the boundary of S is de�ned asz = r exp(i�) then rc and rs can be de�ned asrc = min�2��� 3�2 r(�); rs = r( 34�): (61)The values of rc and rs are listed to the right of the�gure along with those of two other important param-eters, ra = r( 12�), which is the length of the positiveimaginary axis segment within S, and rd= r(�), whichis the length of the negative real axis segment withinS. The importance of all four of these parameters isdiscussed in the main text in Section 5.Figures 1b) and 1c) show the corresponding curvesand data for two other popular multistage integrationschemes.

0.5-0.5-1.5 -1.5-0.50.51.5 a) Predictor-correctoru(1) = un + ��t unun+1 = un + ��t u(1)rc = 1:0rs = 1:414ra = 1:0rd = 1:0
1.0-1.0-3.0 -3.0-1.01.03.0 b) Three-stage schemeu(1) = un + 13��t unu(2) = un + 12��t u(1)un+1 = un + ��t u(2)rc = 1:731rs = 2:375ra = 1:731rd = 2:513
1.0-1.0-3.0 -3.0-1.01.03.0 c) Four-stage schemeu(1) = un + 14��t unu(2) = un + 13��t u(1)u(3) = un + 12��t u(2)un+1 = un + ��t u(3)rc = 2:616rs = 2:704ra = 2:828rd = 2:785Figure 1: Stability boundary and inscribing half-diskand half-square for three Runge-Kutta methods
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B vectors, matrices and positivityStarting with the conservative form of the Navier-Stokes equations, the state vector and 
ux vectors areU = 0BBBBBBB@ ��u�v�w�E
1CCCCCCCA ;

Fx = 0BBBBBBB@ �u�u2 + p � �xx�uv � �yx�uw � �zx�u(E + p� ) �u�xx � v�yw � w�zx + qx
1CCCCCCCA

Fy = 0BBBBBBB@ �v�uv � �xy�v2 + p � �yy�vw � �zy�v(E + p� ) �u�xy � v�yy � w�zy + qy
1CCCCCCCA

Fz = 0BBBBBBB@ �w�uw � �xz�vw � �yz�w2 + p � �zz�w(E + p� ) �u�xz � v�yz � w�zz + qz
1CCCCCCCA :(62)�; u; v; w; p; E are the density, three Cartesian velocitycomponents, pressure and total internal energy, respec-tively. To complete the system of equations requires anequation of state for an ideal gas,p = �RT = (
�1) � (E � 12 (u2+v2+w2)); (63)in which R; T; 
 are the gas constant, temperature anduniform speci�c heat ratio, respectively, as well as equa-tions de�ning the heat 
uxes,qx = �k@T@x ; qy = �k@T@y ; qz = �k@T@z ; (64)and the viscous stress terms,�xx = 2�@u@x + ��@u@x + @v@y + @w@z � ;�yy = 2�@v@y + ��@u@x + @v@y + @w@z � ;�zz = 2�@w@z + ��@u@x + @v@y + @w@z � ;

�xy = �yx = ��@u@y + @v@x� ;�xz = �zx = ��@u@z + @w@x� ;�yz = �zy = ��@v@z + @w@y � ; (65)The transformation from conservative to primitivevariables, (� u v w p)T , is accomplished by the matrixR = 0BBBBBBB@ 1 0 0 0 0u � 0 0 0v 0 � 0 0w 0 0 � 0u2+v2+w22 �u �v �w 1
�1
1CCCCCCCA : (66)The linearised, transformed equations are@V@t +A0x @V@x +A0y @V@y +A0z @V@z =@@x�D0xx@V@x +D0xy @V@y +D0xz @V@z �+ @@y�D0yx@V@x +D0yy @V@y +D0yz @V@z �+ @@z�D0zx@U@x +D0zy @V@y +D0zz @V@z � (67)where A0x = 0BBBBBBB@ u � 0 0 00 u 0 0 1�0 0 u 0 00 0 0 u 00 
p 0 0 u

1CCCCCCCA ;
A0y = 0BBBBBBB@ v 0 � 0 00 v 0 0 00 0 v 0 1�0 0 0 v 00 0 
p 0 v

1CCCCCCCA ; (68)
A0z = 0BBBBBBB@w 0 0 � 00 w 0 0 00 0 w 0 00 0 0 w 1�0 0 0 
p w

1CCCCCCCA ;
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and
D0xx = 0BBBBBBBB@ 0 0 0 0 00 2�+�� 0 0 00 0 �� 0 00 0 0 �� 0� 
�pPr �2 0 0 0 
�Pr �

1CCCCCCCCA ;
D0yy = 0BBBBBBBB@ 0 0 0 0 00 �� 0 0 00 0 2�+�� 0 00 0 0 �� 0� 
�pPr �2 0 0 0 
�Pr�

1CCCCCCCCA ;
D0zz = 0BBBBBBBB@ 0 0 0 0 00 �� 0 0 00 0 �� 0 00 0 0 2�+�� 0� 
�pPr �2 0 0 0 
�Pr �

1CCCCCCCCA ;
D0xy = D0Tyx = 0BBBBBBBBB@

0 0 0 0 00 0 �� 0 00 �� 0 0 00 0 0 0 00 0 0 0 0
1CCCCCCCCCA ;

D0xz = D0Tzx = 0BBBBBBBBB@
0 0 0 0 00 0 0 �� 00 0 0 0 00 �� 0 0 00 0 0 0 0

1CCCCCCCCCA ;
D0yz = D0Tzy = 0BBBBBBBBB@

0 0 0 0 00 0 0 0 00 0 0 �� 00 0 �� 0 00 0 0 0 0
1CCCCCCCCCA : (69)

The Prandtl number is de�ned asPr = �cpk = 
�R(
�1)k ; (70)but is not assumed to be uniform since � and k in gen-eral represent combinations of laminar and turbulentviscosities, each with their own Prandtl number.The second transformation matrix isS = 0BBBBBBBBB@
p
 �c 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 01p
 �c 0 0 0 q
�1
 �c

1CCCCCCCCCA ; (71)and the transformed matrices areAx = S�1A0xS = 0BBBBBBBBB@
u 1p
 c 0 0 01p
 c u 0 0 q
�1
 c0 0 u 0 00 0 0 u 00 q
�1
 c 0 0 u

1CCCCCCCCCA ;
Ay = S�1A0yS = 0BBBBBBBBB@

v 0 1p
 c 0 00 v 0 0 01p
 c 0 v 0 q
�1
 c0 0 0 v 00 0 q
�1
 c 0 v
1CCCCCCCCCA ;

Az = S�1A0zS = 0BBBBBBBBB@
w 0 0 1p
 c 00 w 0 0 00 0 w 0 01p
 c 0 0 w q
�1
 c0 0 0 q
�1
 c w

1CCCCCCCCCA ;(72)and Dxx = 0BBBBBBBB@ 0 0 0 0 00 2�+�� 0 0 00 0 �� 0 00 0 0 �� 00 0 0 0 
�Pr �
1CCCCCCCCA ;
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Dyy = 0BBBBBBBB@ 0 0 0 0 00 �� 0 0 00 0 2�+�� 0 00 0 0 �� 00 0 0 0 
�Pr �
1CCCCCCCCA ;

Dzz = 0BBBBBBBB@ 0 0 0 0 00 �� 0 0 00 0 �� 0 00 0 0 2�+�� 00 0 0 0 
�Pr �
1CCCCCCCCA ;

Dxy = DTyx = 0BBBBBBBBB@
0 0 0 0 00 0 �� 0 00 �� 0 0 00 0 0 0 00 0 0 0 0

1CCCCCCCCCA ;
Dxz = DTzx = 0BBBBBBBBB@

0 0 0 0 00 0 0 �� 00 0 0 0 00 �� 0 0 00 0 0 0 0
1CCCCCCCCCA ;

Dyz = DTzy = 0BBBBBBBBB@
0 0 0 0 00 0 0 0 00 0 0 �� 00 0 �� 0 00 0 0 0 0

1CCCCCCCCCA : (73)
An important feature of the transformed equations isthat the combined dissipation matrix,0BBBB@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CCCCAis both symmetric and positive semi-de�nite. The sym-metry is clear from the above de�nitions of the com-ponent matrices, and the positivity comes from noting

thatxT 0BB@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CCAx =�� (x3+x7)2 + �� (x4+x12)2 + �� (x9+x13)2+ 1� 0BB@ x2x8x141CCAT 0BB@2�+� � �� 2�+� �� � 2�+�1CCA0BB@ x2x8x141CCA+ 
�Pr�(x25 + x210 + x215): (74)The eigenvalues of0BB@ 2�+� � �� 2�+� �� � 2�+� 1CCAare 2�; 2�; 2�+3� and hence the combined dissipationmatrix is positive semi-de�nite provided � � 0, k � 0and 2�+3��0.
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C L2 norms of component matricesDe�ning Z
NirNj dV = S ~n; (75)thenaij = S(nxAx + nyAy + nzAz)= S0BBBBBBBBB@
~u:~n 1p
 cnx 1p
 cny 1p
 cnz 01p
 cnx ~u:~n 0 0 q
�1
 cnx1p
 cny 0 ~u:~n 0 q
�1
 cny1p
 cnz 0 0 ~u:~n q
�1
 cnz0 q
�1
 cnx q
�1
 cny q
�1
 cnz ~u:~n

1CCCCCCCCCA(76)Three of the eigenvalues of S�1aij are equal to ~u:~n andthe other two are ~u:~n� c. Hence,kaijk = S(j~u:~nj+ c) (77)using the fact that for symmetric matrices the L2 normis the magnitude of the largest eigenvalue.The quantity S~n can be interpreted geometrically.First note that rNj is non-zero only on tetrahedra sur-rounding node j, and that on such a tetrahedron, la-belled �, rNj = 13V � ~S�j (78)where ~S�j is the inward-pointing area vector of the faceof � opposite node j, and V � is the volume of the tetra-hedron. Summing over all tetrahedra for which both iand j are corner nodes, givesS ~n = 112X� ~S�j (79)De�ne d�ij to be the contribution to dij from the in-tegration over tetrahedron �. Therefore,dij =X� d�ij =) kdijk �X� kd�ijk (80)where again the summation is over tetrahedra commonto both i and j. On tetrahedron �;rNi and rNj areboth uniform and therefore

1V � d�ij =0BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 00 �+�� @Ni@x @Nj@x �+�� @Ni@x @Nj@y �+�� @Ni@x @Nj@z 0+��rNi�rNj0 �+�� @Ni@y @Nj@x �+�� @Ni@y @Nj@y �+�� @Ni@y @Nj@z 0+��rNi�rNj0 �+�� @Ni@z @Nj@x �+�� @Ni@z @Nj@y �+�� @Ni@z @Nj@z 0+��rNi�rNj0 0 0 0 
�Pr�rNi�rNj

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA(81)Hence,kd�ijk � V �max��� jrNi �rNj j+ �+�� jrNij jrNj j ;
�Pr� jrNi �rNj j� (82)which can be re-expressed using the values for rNi andrNj askd�ijk � 19V � max��� j~S�i �~S�j j+ �+�� j~S�i j j~S�j j ;
�Pr� j~S�i �~S�j j� ; (83)where ~S�i and ~S�j are as de�ned previously. Note thatthe upper bound on the right-hand-side of Eq. (83) isunchanged if i and j are interchanged, and so it is alsoan upper bound for kd�jik. Hence,maxfkdijk; kdjikg �X� 19V � max��� j~S�i �~S�j j+�+�� j~S�i j j~S�j j; 
�Pr� j~S�i �~S�j j�(84)The exact value for kaijk and the upper bounds forkdijk; kdjik can then be combined by the triangle in-equality, kcijk = kaij + dijk � kaijk+ kdijk; (85)to get upper bounds for kcijk and kcjik for use in thesu�cient stability limits derived in Section 5 in the maintext.14


