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Abstract

High aspect ratio cells in a computational mesh com-
pound the inherent stiffness in the Euler and Navier—
Stokes equations which arises from a disparity in
the propagative speeds of convective and acoustic
modes. A mesh-aligned preconditioning strategy
is examined which improves full coarsening multi-
grid performance by clustering high frequency com-
ponents of the spatial Fourier footprint away from
the origin for effective damping by a Runge-Kutta
time stepping scheme. For viscous computations on
highly stretched meshes, a J-coarsening multigrid al-
gorithm is adopted that provides adequate clustering
of all modes inside the boundary layer. In contrast to
previous approaches, the methods presented are ro-
bust when used in conjunction with high resolution
schemes on fine meshes and with multigrid. Sub-
stantial speed-ups are demonstrated for a variety of
Euler and laminar and turbulent Navier-Stokes test
cases.

1 Introduction

Explicit Euler and Navier—Stokes solvers based on
multigrid remain popular due to ease of program-
ming and suitability for parallelization despite the
fact that convergence is significantly hampered by
the use of a scalar time step limit which is ap-
propriate only for the fastest propagating mode.
This deficiency is most apparent in the stretched
boundary layer cells of a viscous mesh, where
the the CFL condition produces an explicit scalar
time step based on the transverse acoustic mode
At = O(Ay/c). This time step is typically several

* Doctoral Candidate, Student Member ATAA

t Rolls Royce Reader in CFD, Member ATAA

Copyright ©1996 by the American Institute of Aeronautics
and Astronautics, Inc. All rights reserved.

orders of magnitude more restrictive than neces-
sary for the streamwise and transverse convective
modes, for which a more appropriate constraint is
At = O(Az/u) = O(Ay/v). Motivated by the re-
sulting breakdown of multigrid convergence in highly
stretched boundary layer cells, Allmaras proposed
the use of an implicit ADI preconditioner for full
coarsening multigrid and preconditioners based on
point-implicit block-Jacobi and semi-implicit line-
Jacobi for the semi-coarsening multigrid algorithm
of Mulder [1, 2, 14, 15].

These suggestions are motivated by the realiza-
tion that for efficient multigrid performance, the re-
laxation scheme on each mesh must damp all modes
which cannot be resolved without aliasing on the
next coarser mesh in the cycle. Preconditioning is
intended to cluster the residual eigenvalues of these
unresolvable modes away from the origin in Fourier
space so that they can be rapidly damped by a
multi-stage time stepping scheme. Using full coars-
ening multigrid in 2D, only modes which are low
frequency in both mesh directions can be resolved
on the coarser grids, so the relaxation scheme must
damp all high frequency modes and also those modes
that are high frequency in one mesh direction and
low frequency in the other. Allmaras recommends
an implicit preconditioner because explicit methods
are notoriously poor at damping modes with a low
frequency component [2].

Alternatively, the semi-coarsening algorithm pro-
posed by Mulder [14, 15] coarsens separately in each
mesh direction and therefore reduces the region of
Fourier space for which the relaxation scheme on
each mesh must successfully damp modes for the al-
gorithm to function efficiently. To obtain an O(N)
method for a 3D mesh with N points, Mulder defined
a restriction and prolongation structure in which not
all grids are coarsened in every direction. For 2D
grids that are coarsened separately in both direc-



tions, only those modes which are high frequency in
both mesh directions need by damped by the relax-
ation scheme. For this purpose, Allmaras suggests a
point-implicit block-Jacobi preconditioner that has
previously been demonstrated to be effective in clus-
tering high frequency eigenvalues away from the ori-
gin [1]. For grids that are not coarsened in one of
the mesh directions, Allmaras proposes using a semi-
implicit line-Jacobi preconditioner in that direction
[2].

These strategies for preconditioning in the con-
text of both full and semi-coarsening multigrid are
well-conceived. The drawback to implicit precondi-
tioning for full coarsening multigrid is the increased
complexity in developing parallel implementations.
The drawback to a semi-coarsening approach is that
for a 3D computation, the cost of a full coarsening
W-cycle is bounded by %N , while a semi-coarsening
W-cycle is no longer O(N) and the bounds for V and
F-cycles are 8N and 32N, respectively [9, 14].

The present work explores the possibility of de-
veloping an effective strategy for stretched mesh
computations that combines the simplicity of point-
implicit block-Jacobi preconditioning with the low
cost of full coarsening multigrid or a reduced semi-
coarsening algorithm. Analytic expressions for the
preconditioned Fourier footprints are obtained for
six important asymptotic limits of flow and cell
variables, including two cases for the full Navier—
Stokes equations. Clustering behavior is examined
for high frequency modes and the implications for
modes with a low frequency component in one mesh
direction are also considered. Emphasis is placed
on demonstrating viability for practical aerodynamic
computations including turbulent flows.

2 Approach

A preconditioned semi-discrete finite volume scheme
appears as

Wik 1 PR(W) =0, (1)

where R(W) is the residual vector of the spatial dis-
cretization and P is a local preconditioner designed
to reduce stiffness arising from variation in the flow
and mesh parameters. The form of the precondi-
tioner is based on the linearized 2D Navier—Stokes
equations in Cartesian coordinates
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from which the Euler equations may be obtained by
eliminating the viscous terms on the right hand side.
A Cartesian mesh is assumed to simplify notation,

but the theory extends naturally to a (£,n) mesh-
aligned coordinate system for real applications.

2.1 Scalar Preconditioner

A conservative time step estimate for the Navier—
Stokes equations is based on the purely hyperbolic
and parabolic time steps formed using the spectral
radii of the flux Jacobians [13],

Aty = Aty + Aty

where the hyperbolic time step is given by
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and the parabolic time step is

At = o (S5 + 25 + 22,

The factor of 4 in the parabolic time step arises from
considering the worst-case scenario of a checker-
board mode, W;; = W (t)e!™+7¥)  for which the
coefficients of the 2nd difference stencil reinforce
each other in both directions. The hyperbolic and
parabolic CFL numbers, CFLy and CFLp, reflect
the extent of the multi-stage time stepping scheme
stability region along the imaginary and negative
real axes, respectively. On a real computational
mesh in which Az and Ay vary, this time step
limit defines a suitable scalar preconditioner for the
Navier—Stokes equations, PS_;S = At&g, that re-
duces stiffness resulting from variation in spectral
radius and minimum cell dimension throughout the
mesh.

For the Euler equations, the corresponding scalar
preconditioner is defined by the purely hyperbolic
time step, PS_E1 = At;ll, assuming that the numer-
ical dissipation introduced to prevent decoupling is
sufficiently small so as not to limit the stability. The
implications of this assumption for the scaling of the
numerical dissipation are examined more thoroughly
in reference [16].

2.2 Block-Jacobi Preconditioner

The block-Jacobi preconditioner is based on the spe-
cific structure of the discrete residual vector. For a
preconditioned semi-discrete scheme of the form (1),
the residual for a standard spatial discretization in-
corporating a 2nd/4th difference switch of the type
introduced by Jameson et al. [11] applied to Roe-



averaged characteristic variables [17], takes the form
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(2)
where S is a switch taking values between zero and
one.

The block-Jacobi preconditioner is obtained by ex-
tracting the elements of the residual operator which
correspond to the central node

P—l — 1
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3%+ 23}

From this expression it is apparent that for a 4th dif-
ference dissipation coefficient of ¢(*) = %, the block-
Jacobi preconditioner is identical for both 2nd and
4th differences. This value is adopted to simplify
analysis and is found in practice to be a very suit-
able coefficient for matrix characteristic-based dis-
sipation, though it would be far too dissipative for
a scalar scheme. The simplified block-Jacobi pre-
conditioner for the 2D Navier—Stokes equations may
therefore be written

+

PJ_le = CFlLH (%+%+A2§2 +§_52)-
In this form it is equally suitable for both smooth
and shocked regions of the flow, where the two dif-
ferent types of numerical dissipation are active. The
block-Jacobi preconditioner for the 2D Euler equa-
tions is obtained by eliminating the viscous terms
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From these definitions, it is evident that block-
Jacobi preconditioners must be used in conjunction
with matrix dissipation, since they reduce to scalar
preconditioners by identity using standard scalar
dissipation based on the spectral radii of the flux
Jacobians.

3 Analysis

3.1 Fourier Footprints

In the context of a semi-discrete scheme (1), the
Fourier footprint of the spatial discretization is crit-
ical in determining the effectiveness of a multi-stage

time stepping scheme in damping error modes. The
footprint is found by substituting a semi-discrete
Fourier mode of the form

Wj P = W(t)ei(j0z+k9y)

into the discrete residual operator (2). The Fourier
amplitude W (t) satisfies the evolution equation

dW W —
S+ PZW =0,

where Z is the Fourier symbol of the residual oper-
ator
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The Fourier footprint is obtained numerically by
computing the eigenvalues of PZ for the desired
range of the Fourier angles (6,6, ). For stability, the
footprint must lie within the stability region of the
time stepping scheme defined by |¢(z)| < 1, where
¥ (2) is the amplification factor defined by

Wntl = o (2) W™

Assuming constant Pr and +, the four indepen-
dent parameters that govern the discrete Navier—
Stokes residual are the cell Reynolds number, Mach
number, cell aspect ratio and flow angle:

A _ VuZta? Ay
uAz M = uC v Ay v

Ren, = DR ) Az’ u

The cell Reynolds number is based on u and Az
because the flow angle does not play a particularly
interesting role in determining the form of the resid-
ual and is taken to be zero or asymptotically zero in
all of the cases examined.

Analysis of eigenvalue clustering will initially fo-
cus on modes that are high frequency in both mesh
directions (§ < 6,,60, < 7) since it is expected that
a point-implicit method is not suitable for clustering
eigenvalues corresponding to modes with a low fre-
quency component. Fourier footprints correspond-
ing to high frequency modes for aligned inviscid sub-
sonic flow in a stretched mesh cell and 4th difference
matrix dissipation are shown for both precondition-
ers in the top half of Fig. 1.
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Figure 1: Fourier footprint of high frequency modes and wave front envelopes for 4th difference matrix
dissipation. Rea, = 0o, M =0.5,22 =12 =0, <4,.0, <, CFL = 2.5.

The inner solid line represents the optimal clus-
tering envelope for high frequency modes based
on a scalar advection-diffusion model problem [1].
The outer solid line represents the stability region
for Martinelli’s 5-stage Runge-Kutta time stepping
scheme and is superimposed to assist in determining
appropriate choices for the hyperbolic and parabolic
CFL numbers [13]. For this case, Rea, = 00, so
that the preconditioners contain only the hyperbolic
CFL number. For Navier—Stokes calculations, the
fact that the maximum extent along the negative
real axis is roughly twice the extent in either direc-
tion along the imaginary axis suggests the definition
CFLp = 2CFLy, so that only the hyperbolic CFL
number need be determined and the subscript may

be dropped.

In 2D there are four characteristic families repre-
senting convective entropy and vorticity modes and
two acoustic pressure modes. The scalar precondi-
tioner is unable to cluster the residual eigenvalues
of the convective modes away from the origin but
nearly succeeds in clustering the two acoustic foot-
prints inside the optimal envelope. The block-Jaocbi
preconditioner provides optimal clustering for all
four modes. The entropy footprint forms an arc on
the optimal clustering envelope. The two acoustic
footprints have nearly the same radius as the entropy
mode, falling one each above and below the real
axis, with the vorticity footprint forming a tongue
between them.



Case 1| Reap, =00 | M — 0 %—)0 %:%
Case 2 || Reap, =00 | M — 0 %—)0 L=
Case 3 || Rear, =0 | M =0 %—)oo L=
Case 4 || Reay =00 | M =0.5 %—)oo L=
Case 5 | Reap — 00 | M =0 | &L =Re,)/” | L=
Case 6 || Reay — 00 | M =0.5 %:Rezf L=0

Table 1: Asymptotic limits for which analytic expressions for the Fourier footprint of 4th difference matrix

dissipation are obtained.

3.2 Wave Front Envelopes

For the Euler equations, another interesting perspec-
tive on the role of preconditioning is provided by ex-
amining the effect on the shape of the wave front
envelopes of the four characteristic families [20, 12].
The propagative speed for a wave traveling at an an-
gle § = tan—! 4 is given for each of the characteristic
families by an eigenvalue of the matrix

P(Acosf + Bsin®b).

The wave front for each eigenvalue is the line per-
pendicular to the direction of propagation. The wave
front envelope for a family of waves is formed by the
intersection of all the wave fronts in that family.
The preconditioned wave front envelopes for all
four families are shown in the bottom half of Fig. 1.
With the scalar preconditioner, the two convective
envelopes collapse to a point and their evolution is
severely limited by the circular acoustic envelopes.
The matrix preconditioner moves the entropy enve-
lope out to the maximum stability limit on the real
axis and elongates the oval acoustic envelopes and
the triangular vorticity envelope in the direction of
cell stretching. This behavior is very appealing in a
qualitative sense because it approximates the opti-
mal condition for a stretched mesh, in which distur-
bances cross the same number of cells per unit time
regardless of the direction of propagation.

3.3 Analytic Asymptotic Footprints

Having gained an intuitive feel for the effect of pre-
conditioning, it is now worthwhile examining the be-
havior of the preconditioned system in more extreme
conditions typical of a viscous boundary layer. Ana-
lytic expressions for the preconditioned Fourier foot-
prints are obtained for the important set of asymp-
totic limits summarized in Table 1. Cases 1-4 as-
sume Rea, = 0o, so that the viscous terms are ne-
glected, though the effect of an “inviscid” boundary

layer is simulated for the first three cases by letting
M — 0. Cases 1 and 2 correspond to a stretched
cell with either diagonal cross flow or aligned flow.
In Case 3, the cell stretching is perpendicular to the
flow, as at the leading edge of an airfoil. Case 4 ex-
amines a moderate subsonic flow perpendicular to a
highly stretched cell as often occurs in the far field
due to exponential stretching of the transverse mesh
coordinates. Cases 5 and 6 consider the asymptotic
footprint behavior for stretched cells in a viscous
boundary layer. The scaling for the cell aspect ra-
tio is found by balancing streamwise convection and
normal diffusion, so that

(T 7
Az Ay?’

which leads to the relation

To simplify the analysis for Cases 5 and 6, the
Prandt]l number is assumed to be unity. All of the
cases are analyzed for 4th difference matrix dissipa-
tion, since this is the type that is active over most
of the fine mesh. For simplicity, the dissipative co-
efficient is taken to be () = 1 with CFL = 1.0.

Analytic expressions for the asymptotic residual
eigenvalue distributions are shown for all six cases in
Table 2, where the notation s, =sin#,, s, = sinf,,
Cy =1—-cosb,, C, =1 —cosb, is adopted for
brevity. The Fourier footprints corresponding to the
high frequency modes are plotted in Figs 2 and 3 us-
ing a separate symbol for each family, as defined in
Table 3. This table describes the asymptotic depen-
dences of the different families on the two Fourier
angles, corresponding to the directions of effective
smoothing.

Using the scalar preconditioner, the footprints of
both convective modes fall on the origin for ev-
ery case except the subsonic cross flow of Case 4.
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Table 2: Analytic expressions for the Fourier foot-
print of 4th difference matrix dissipation with Scalar
and Block-Jacobi preconditioning.

Therefore, the system will not converge using full
coarsening multigrid and a standard scalar precon-
ditioner. On the other hand, the block-Jacobi pre-
conditioner provides optimal clustering of residual
eigenvalues corresponding to high frequency modes
in all cases. Recall, however, that an efficient full
coarsening multigrid algorithm is also dependent on
rapid damping of modes that are high frequency in
one mesh direction and low frequency in the other.

The performance of the preconditioners on these
modes is evident from Table 3. Asymptotic depen-
dence on a Fourier angle amounts to effective damp-
ing of modes in that direction, since the correspond-
ing eigenvalues will not be clustered at the origin.
For the viscous conditions of Cases 5 and 6, neither
preconditioner is able to cope with a sawtooth pres-
sure mode in the streamwise direction, but the ma-
trix preconditioner is able to damp sawtooth entropy
modes in either direction, even for perfectly aligned
flow. The same is true of convective vorticity modes
as long as the Mach number does not vanish. Notice
that this is not the situation for the inviscid aligned
flow of Case 2, where a normal sawtooth entropy
mode will not be damped in a highly stretched cell.

Inside a viscous boundary layer, the point-implicit
block-Jacobi preconditioner provides adequate clus-
tering for all convective modes that are high/low
or low/high as long as the Mach number is not
asymptotically zero. The only modes which are not
treated effectively are acoustic pressure modes with
a high frequency streamwise component and a low
frequency normal component. Rather than adopting
the complete semi-coarsening algorithm of Mulder,
it seems likely that some less expensive enhancement
of the full coarsening strategy can be devised which
will overcome this shortcoming.

One possibility is to implement only a subset of
the complete semi-coarsening stencil, such as in-
cluding only those meshes which provide coarsen-
ing across the boundary layer. An even less expen-
sive alternative is a normal or J-coarsened strategy
in which no coarsening is performed in the stream-
wise direction. With this approach, high-z/low-y
pressure modes become high-z/high-y modes on
the coarse mesh, which can then be effectively
damped. At first glance, the apparent weakness of
this approach is the treatment of low-z/low-y modes,
which would have become high-z/high-y modes on
the coarse mesh with a full coarsening algorithm.
However, closer inspection reveals that low-z /low-y
modes become low-z/high-y modes on the coarse
mesh, which can then be effectively damped in any
characteristic field. Therefore, inside the boundary
layer, block-Jacobi preconditioning provides effec-
tive damping of all eigenvalues that cannot be re-
solved on the coarse mesh using a J-coarsened multi-
grid algorithm. This is possible because of the bal-
ance of streamwise convection and normal diffusion
inside the boundary layer. For Euler computations,
some sawtooth modes will not be clustered effec-
tively, but the impact on convergence when using
a typical inviscid mesh is probably not sufficient to
warrant switching from a full coarsening multigrid



Mode || Entropy (-) || Vorticity (x) || Acoustic (o) || Acoustic (+) |

Speed q q q+c q—-c

Precon | Ps | Py Ps| P Ps| Py Ps| Py
Case 1 0 | 6,0, 0 0, 6y 6y 0y 0y
Case2 || O 0, 0 0. 6y 6y 0y 0y
Case 3 0 0. 0 6,0y 0. 0. 0, 0,
Case 4 || 6, 0. 0, 0, 0. 0. 0, 0,
Case 5 0 | 6,6y 0 0, 6y 6y 0, 0,
Case 6 0 | 6,0, 0 6,0y 6y 6y 0y 0y

Table 3: Definition of mode symbols and representative propagative speeds for Figs 2 and 3, and the asymp-
totic dependence of each mode on 6, and 6, corresponding to the directions of effective smoothing.

strategy.

The context in which point-implicit block-Jacobi
preconditioning can probably be used to greatest ad-
vantage is in unstructured codes that employ either
agglomeration or edge collapsing multigrid strate-
gies to provide local semi-coarsening. In this sce-
nario, the preconditioner provides adequate cluster-
ing of all residual eigenvalues and should facilitate
rapid convergence for explicit solvers even on highly
stretched meshes.

4 Results

Results for a number of standard test cases are
generated using a conservative cell-centered semi-
discrete finite volume scheme. Characteristic-based
matrix dissipation based on Roe’s linearization [17]
provides a basis for the construction of high res-
olution switched, symmetric limited and upstream
limited schemes following the work of Jameson
[11, 7, 8, 10]. Updates are performed using a 5-stage
Runge-Kutta time stepping scheme to drive a full
coarsening multigrid algorithm [11, 5, 13].

For Euler and laminar Navier—Stokes calculations,
the solution is computed on a sequence of fine meshes
using a W-cycle on each mesh. A single time step
is performed at each level when moving down the
multigrid cycle. The stability limit on both fine and
coarse meshes is CFL = 2.5.

For turbulent calculations on highly stretched
meshes, a J-coarsening strategy in which meshes
are coarsened only across the boundary layer is also
tested. Since the cost of a W-cycle becomes very
large when using a semi-coarsening approach, all
turbulent calculations are performed using a V-cycle
with time steps computed moving both up and down
the cycle. The one-equation Spalart-Allmaras tur-

bulence model is solved using a first order spatial
discretization and 5-stage Runge-Kutta time inte-
gration with implicit treatment of the source terms
to drive the same multigrid algorithm as that used
for the flow equations [18]. This solution procedure
is very convenient because the turbulent viscosity
can be treated in nearly all subroutines as an extra
variable in the state vector.

The plotted residuals represent the rms change in
density during one application of the time stepping
scheme on the finest mesh in the multigrid cycle.
Descriptions of the geometry, flow parameters, mesh
properties and observed speed-ups for each test case
are provided in Table 4. The speed-ups are calcu-
lated at a residual level of 10~% relative to the initial
residual. The additional cost of block-Jacobi precon-
ditioning is 20-25% if the preconditioner is updated
once per time step.

4.1 Euler

In Fig. 4, solutions to a standard NACAO0012 test
case with a weak shock on the lower surface are
shown after 12 and 100 W-cycles using a matrix
switched scheme and block-Jacobi preconditioning.
After 12 cycles, the lift changes by only four counts
and the drag is fully converged. This rate of conver-
gence is achieved without using other acceleration
techniques such as implicit residual smoothing and
enthalpy damping [6].

Fig. 5 displays the Mach contours for flow past
a cylinder at M., = 0.38 using matrix symmetric
limited dissipation. The cell aspect ratio at the wall
is 7= and the first cells are 0.003 chords in height.
The accuracy of the scheme is demonstrated by the
symmetry of the solution upstream and downstream
of the cylinder. The maximum entropy deviation in



Geometry [ Mo | o [ Rer [ Mesh [R2] [ 22 [ $ ] P]
NACA0012 | 0.8 | 1.25° 00 160x32 | 2x107! | 5x107" | 7x107* || 3.7
Cylinder | 0.38 | 0.0° 00 128x48 | 3x1010 | 1x107' | 3x1073 || 6.2
NACA0012 | 0.8 | 10.0° | 5x10% || 320x64 | 2x107! | 5x1071 | 2x107* || 3.9
Flat Plate | 0.15 | 0.0° | 1x10% || 128x32 | 4x10%2 | 3x107% | 3x107% || 7.2
RAE2822 |0.725 | 2.4° | 6.5x10° || 256x64 | 3x10T" | 7x107* | 4x1076 || 2.9
RAE2822 |0.73 |2.79° | 6.5x10°% || 256x64 | 3x107! | 7x107* | 4x1075 || 2.4

Table 4: Test case definitions, mesh dimensions, maximum and minimum cell aspect ratios, minimum ratio
of cell height to chord length at the wall and speed-ups for Py compared to Ps.

the cells next to the wall is 5x10~%.

Since the symmetric limited and switched formu-
lations are fundamentally similar [10], it was ex-
pected that the block-Jacobi preconditioner based
on the switched scheme would also be appropri-
ate for symmetric limited dissipation. However,
the speed-ups observed using an upstream limited
scheme that does not resemble the 2nd/4th differ-
ence switching mechanism were also comparable,
which suggests that it may be sufficient to base the
form of the block-Jacobi preconditioner on the first
order dissipative scheme. From this point of view,
the principal advantage of reducing e to % (from
the more likely value of %), is the corresponding in-
crease in the allowable time step from CFL = 1.8 to
CFL = 2.5, which more than compensates for the
reduced damping of the scheme. The footprint of
the symmetric and upstream limited schemes is ap-
parently larger than that of the switched scheme us-
ing either scalar or matrix preconditioning, since the
CFL number could not be raised above 1.5 on the
fine meshes.

4.2 Laminar Navier—Stokes

Fig. 6 displays the results for a transonic laminar
NACAO0012 test case. The resolution of the mesh
appears to be adequate for Re;, = 500 based on
a comparison of the Mach number contours with re-
sults in reference [13]. This viewpoint is further sup-
ported by the budget plot at the lower mid-chord,
which reveals that there are roughly 20 points in the
boundary layer. Once again, the block-Jacobi pre-
conditioner realizes a significant speed-up over the
standard scalar time step.

Results for nearly incompressible flow over a flat
plate at Re; = 1x10° are displayed in Fig. 7 for
a 128x32 H-mesh. Three quarters of the stream-
wise points are located on the plate and half the
normal points are equally spaced in the boundary

layer coordinate inside the boundary layer [19]. Ex-
ponential stretching is used in all directions outside
the boundary layer, and some extremely high aspect
ratio cells of O(10%°) are alleviated by skewing the
stretching at the far field. It was necessary to reduce
the CFL number to 2.0 on the fine mesh as a result
of the extreme non-orthogonality in some cells. The
maximum and minimum cell aspect ratios are 400
and ﬁ and the minimum height of the first cell is
0.00003 chords. The inlet is one chord ahead of the
plate, the outlet is at the trailing edge and the up-
per boundary is located two chords from the plate.
A comparison of the velocity components at the mid-
chord with the exact Blasius solution reveals a slight
inaccuracy in the normal velocity component. Con-
vergence plots demonstrating substantial accelera-
tion are shown for both the density residual and the
drag coefficient. An examination of the residuals at
the end of the computations revealed that the con-
vergence was dominated by the near field when using
a scalar preconditioner and the far field mesh singu-
larity above the leading edge when using the matrix
preconditioner.

4.3 Turbulent Navier—Stokes

Results for RAE2822 AGARD Case 6 are shown in
Fig. 8. The computations are performed on a 256 x64
C-mesh with maximum and minimum cell aspect
ratios of 3x10%! and 7x10~* and a minimum first
cell height of 4x1075 chords [3]. Convergence plots
contain the residuals for density and the turbulent
viscosity. Using full coarsening multigrid, the block-
Jacobi preconditioner provides only a slight improve-
ment over the scalar preconditioner, which suggests
that streamwise acoustic pressure modes are domi-
nating the convergence process. Using J-coarsened
multigrid improves the performance of both precon-
ditioners and allows the superior clustering proper-
ties of the block-Jacobi preconditioner to take ef-



fect, so that all modes are effectively damped in-
side the boundary layer. Furthermore, J-coarsened
multigrid allows the turbulent viscosity to converge
at the same asymptotic rate as the density. A com-
parison of density residuals for all permutations of
preconditioning and multigrid strategies is shown
to demonstrate the relative costs of these meth-
ods. The combination of block-Jacobi precondition-
ing and J-coarsened multigrid, which has the highest
cost per cycle, is still the most efficient method by
a large margin. The pressure distribution compares
well with the experimental results [4]. The largest
discrepencies occur at the leading edge and along
the lower surface. The transition point is set using
the trip term built into the Spalart—Allmaras model.

Results for RAE2822 AGARD Case9 are shown in
Fig. 9. Once again, substantial savings are realized
using block-Jacobi preconditioning and J-coarsened
multigrid. The shock location is predicted quite well
and the deviation at the leading edge is reduced for
this case.

It is illuminating to compare the convergence rates
achieved for these turbulent calculations on highly
stretched meshes with the results for inviscid cal-
culations on more isotropic meshes. Using block-
Jacobi preconditioning and J-coarsened multigrid
on a mesh with a minimum cell aspect ratio of
7x10~*, convergence to O(10~*) is achieved in about
220 V-cycles. By comparison, an Euler computation
on the mesh of Fig. 4, which has a minimum cell as-
pect ratio of %, takes 165 W-cycles to reach the same
level of convergence with a standard scalar precondi-
tioner and 40 W-cycles using block-Jacobi precondi-
tioning. Therefore, using the strategies developed in
this paper, convergence of turbulent Navier—Stokes
calculations on highly stretched meshes approaches
the rate of convergence achieved for Euler compu-
tations using a standard scalar time step. It is ex-
pected that the results for turbulent calculations can
be improved still further by adopting a multigrid
strategy which combines aspects of both the full and
J-coarsened approaches.

5 Conclusions

Analysis of the asymptotic behavior of the Fourier
footprints for scalar and block-Jacobi precondition-
ers reveals critical information about the successes
and failures of these approaches. The scalar precon-
ditioner is completely ineffective at clustering high
frequency convective modes away from the origin for
all cases involving vanishing Mach number.

The block-Jacobi preconditioner succeeds in clus-

tering all high frequency modes inside the optimal
envelope based on a scalar advection-diffusion model
problem. Furthermore, in the stretched cells of a
viscous boundary layer, the block-Jacobi precondi-
tioner also provides adequate clustering of convec-
tive modes that are high frequency in one mesh di-
rection and low frequency in the other. However,
acoustic pressure modes that are high frequency in
the streamwise direction and low frequency across
the boundary layer are not clustered effectively.
Therefore, a J-coarsening strategy is adopted, which
alleviates this problem and allows adequate cluster-
ing of all modes inside the boundary layer.

Implementations based on this analysis have
yielded very encouraging results on a wide variety
of Euler, laminar and turbulent Navier—Stokes test
cases. Considerable speed-ups have been achieved
using both full and J-coarsened multigrid in conjunc-
tion with high resolution characteristic-based dissi-
pation on fine meshes.
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Figure 2: Scalar Preconditioner.

Fourier footprint of high frequency modes in various asymptotic limits.
4th difference matrix dissipation. e(*) = %,w/2 <6,,0, <7m,CFL = 1.0.

See Tables 1,2,3 for Case, Analytic and Wave descriptions.
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Figure 3: Block-Jacobi Preconditioner.
Fourier footprint of high frequency modes in various asymptotic limits.
4th difference matrix dissipation. e(*) = %,w/2 <6,,0, <7m,CFL = 1.0.
See Tables 1,2,3 for Case, Analytic and Wave descriptions.
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