
Preconditioning Compressible Flow Calculationson Stretched MeshesNiles A. Pierce� and Michael B. GilesyOxford University Computing LaboratoryNumerical Analysis GroupOxford OX1 3QD, UKAbstractHigh aspect ratio cells in a computational mesh com-pound the inherent sti�ness in the Euler and Navier{Stokes equations which arises from a disparity inthe propagative speeds of convective and acousticmodes. A mesh-aligned preconditioning strategyis examined which improves full coarsening multi-grid performance by clustering high frequency com-ponents of the spatial Fourier footprint away fromthe origin for e�ective damping by a Runge-Kuttatime stepping scheme. For viscous computations onhighly stretched meshes, a J-coarsening multigrid al-gorithm is adopted that provides adequate clusteringof all modes inside the boundary layer. In contrast toprevious approaches, the methods presented are ro-bust when used in conjunction with high resolutionschemes on �ne meshes and with multigrid. Sub-stantial speed-ups are demonstrated for a variety ofEuler and laminar and turbulent Navier-Stokes testcases.1 IntroductionExplicit Euler and Navier{Stokes solvers based onmultigrid remain popular due to ease of program-ming and suitability for parallelization despite thefact that convergence is signi�cantly hampered bythe use of a scalar time step limit which is ap-propriate only for the fastest propagating mode.This de�ciency is most apparent in the stretchedboundary layer cells of a viscous mesh, wherethe the CFL condition produces an explicit scalartime step based on the transverse acoustic mode�t = O(�y=c). This time step is typically several* Doctoral Candidate, Student Member AIAAy Rolls Royce Reader in CFD, Member AIAACopyright c
1996 by the American Institute of Aeronauticsand Astronautics, Inc. All rights reserved.

orders of magnitude more restrictive than neces-sary for the streamwise and transverse convectivemodes, for which a more appropriate constraint is�t = O(�x=u) = O(�y=v). Motivated by the re-sulting breakdown of multigrid convergence in highlystretched boundary layer cells, Allmaras proposedthe use of an implicit ADI preconditioner for fullcoarsening multigrid and preconditioners based onpoint-implicit block-Jacobi and semi-implicit line-Jacobi for the semi-coarsening multigrid algorithmof Mulder [1, 2, 14, 15].These suggestions are motivated by the realiza-tion that for e�cient multigrid performance, the re-laxation scheme on each mesh must damp all modeswhich cannot be resolved without aliasing on thenext coarser mesh in the cycle. Preconditioning isintended to cluster the residual eigenvalues of theseunresolvable modes away from the origin in Fourierspace so that they can be rapidly damped by amulti-stage time stepping scheme. Using full coars-ening multigrid in 2D, only modes which are lowfrequency in both mesh directions can be resolvedon the coarser grids, so the relaxation scheme mustdamp all high frequency modes and also those modesthat are high frequency in one mesh direction andlow frequency in the other. Allmaras recommendsan implicit preconditioner because explicit methodsare notoriously poor at damping modes with a lowfrequency component [2].Alternatively, the semi-coarsening algorithm pro-posed by Mulder [14, 15] coarsens separately in eachmesh direction and therefore reduces the region ofFourier space for which the relaxation scheme oneach mesh must successfully damp modes for the al-gorithm to function e�ciently. To obtain an O(N)method for a 3Dmesh withN points, Mulder de�neda restriction and prolongation structure in which notall grids are coarsened in every direction. For 2Dgrids that are coarsened separately in both direc-1



tions, only those modes which are high frequency inboth mesh directions need by damped by the relax-ation scheme. For this purpose, Allmaras suggests apoint-implicit block-Jacobi preconditioner that haspreviously been demonstrated to be e�ective in clus-tering high frequency eigenvalues away from the ori-gin [1]. For grids that are not coarsened in one ofthe mesh directions, Allmaras proposes using a semi-implicit line-Jacobi preconditioner in that direction[2].These strategies for preconditioning in the con-text of both full and semi-coarsening multigrid arewell-conceived. The drawback to implicit precondi-tioning for full coarsening multigrid is the increasedcomplexity in developing parallel implementations.The drawback to a semi-coarsening approach is thatfor a 3D computation, the cost of a full coarseningW-cycle is bounded by 43N , while a semi-coarseningW-cycle is no longer O(N) and the bounds for V andF-cycles are 8N and 32N , respectively [9, 14].The present work explores the possibility of de-veloping an e�ective strategy for stretched meshcomputations that combines the simplicity of point-implicit block-Jacobi preconditioning with the lowcost of full coarsening multigrid or a reduced semi-coarsening algorithm. Analytic expressions for thepreconditioned Fourier footprints are obtained forsix important asymptotic limits of 
ow and cellvariables, including two cases for the full Navier{Stokes equations. Clustering behavior is examinedfor high frequency modes and the implications formodes with a low frequency component in one meshdirection are also considered. Emphasis is placedon demonstrating viability for practical aerodynamiccomputations including turbulent 
ows.2 ApproachA preconditioned semi-discrete �nite volume schemeappears as dWj;kdt + PR(W ) = 0; (1)where R(W ) is the residual vector of the spatial dis-cretization and P is a local preconditioner designedto reduce sti�ness arising from variation in the 
owand mesh parameters. The form of the precondi-tioner is based on the linearized 2D Navier{Stokesequations in Cartesian coordinates@W@t +A@W@x +B @W@y = C @2W@x2 +D @2W@y2 +E @2W@x@y ;from which the Euler equations may be obtained byeliminating the viscous terms on the right hand side.A Cartesian mesh is assumed to simplify notation,

but the theory extends naturally to a (�; �) mesh-aligned coordinate system for real applications.2.1 Scalar PreconditionerA conservative time step estimate for the Navier{Stokes equations is based on the purely hyperbolicand parabolic time steps formed using the spectralradii of the 
ux Jacobians [13],�t�1NS = �t�1H +�t�1P ;where the hyperbolic time step is given by�t�1H = 1CFLH ��(A)�x + �(B)�y �and the parabolic time step is�t�1P = 1CFLP � 4�(C)�x2 + 4�(D)�y2 + �(E)�x�y� :The factor of 4 in the parabolic time step arises fromconsidering the worst-case scenario of a checker-board mode, Wj;k = cW (t)ei(�j+�k), for which thecoe�cients of the 2nd di�erence stencil reinforceeach other in both directions. The hyperbolic andparabolic CFL numbers, CFLH and CFLP, re
ectthe extent of the multi-stage time stepping schemestability region along the imaginary and negativereal axes, respectively. On a real computationalmesh in which �x and �y vary, this time steplimit de�nes a suitable scalar preconditioner for theNavier{Stokes equations, P�1SNS = �t�1NS , that re-duces sti�ness resulting from variation in spectralradius and minimum cell dimension throughout themesh.For the Euler equations, the corresponding scalarpreconditioner is de�ned by the purely hyperbolictime step, P�1SE = �t�1H , assuming that the numer-ical dissipation introduced to prevent decoupling issu�ciently small so as not to limit the stability. Theimplications of this assumption for the scaling of thenumerical dissipation are examined more thoroughlyin reference [16].2.2 Block-Jacobi PreconditionerThe block-Jacobi preconditioner is based on the spe-ci�c structure of the discrete residual vector. For apreconditioned semi-discrete scheme of the form (1),the residual for a standard spatial discretization in-corporating a 2nd/4th di�erence switch of the typeintroduced by Jameson et al. [11] applied to Roe-2



averaged characteristic variables [17], takes the formR = A2�x�2x � (Sx) jAj2�x�xx + (1� Sx)"(4) jAj�x�xxxx+ B2�y�2y � (Sy) jBj2�y �yy + (1� Sy)"(4) jBj�y �yyyy� C�x2 �xx � D�y2 �yy � E4�x�y�2x2y; (2)where S is a switch taking values between zero andone.The block-Jacobi preconditioner is obtained by ex-tracting the elements of the residual operator whichcorrespond to the central nodeP�1JNS = 1CFLH n[Sx + 6"(4)(1� Sx)] jAj�x+[Sy + 6"(4)(1� Sy)] jBj�y+ 2C�x2 + 2D�y2o :From this expression it is apparent that for a 4th dif-ference dissipation coe�cient of "(4) = 16 , the block-Jacobi preconditioner is identical for both 2nd and4th di�erences. This value is adopted to simplifyanalysis and is found in practice to be a very suit-able coe�cient for matrix characteristic-based dis-sipation, though it would be far too dissipative fora scalar scheme. The simpli�ed block-Jacobi pre-conditioner for the 2D Navier{Stokes equations maytherefore be writtenP�1JNS = 1CFLH � jAj�x + jBj�y + 2C�x2 + 2D�y2� :In this form it is equally suitable for both smoothand shocked regions of the 
ow, where the two dif-ferent types of numerical dissipation are active. Theblock-Jacobi preconditioner for the 2D Euler equa-tions is obtained by eliminating the viscous termsP�1JE = 1CFLH � jAj�x + jBj�y� :From these de�nitions, it is evident that block-Jacobi preconditioners must be used in conjunctionwith matrix dissipation, since they reduce to scalarpreconditioners by identity using standard scalardissipation based on the spectral radii of the 
uxJacobians.3 Analysis3.1 Fourier FootprintsIn the context of a semi-discrete scheme (1), theFourier footprint of the spatial discretization is crit-ical in determining the e�ectiveness of a multi-stage

time stepping scheme in damping error modes. Thefootprint is found by substituting a semi-discreteFourier mode of the formWj;k = cW (t)ei(j�x+k�y)into the discrete residual operator (2). The Fourieramplitude cW (t) satis�es the evolution equationdŴdt + PZcW = 0;where Z is the Fourier symbol of the residual oper-atorZ(�x; �y) = i A�x sin �x + (Sx) jAj�x(1� cos �x)+ (1� Sx)4"(4) jAj�x(1� cos �x)2+ i B�y sin �y + (Sy) jBj�y (1� cos �y)+ (1� Sy)4"(4) jBj�y (1� cos �y)2+ 2C�x2 (1� cos �x) + 2D�y2 (1� cos �y)+ E�x�y sin �x sin �y :The Fourier footprint is obtained numerically bycomputing the eigenvalues of PZ for the desiredrange of the Fourier angles (�x; �y). For stability, thefootprint must lie within the stability region of thetime stepping scheme de�ned by j (z)j � 1, where (z) is the ampli�cation factor de�ned bycWn+1 =  (z)cWn:Assuming constant Pr and 
, the four indepen-dent parameters that govern the discrete Navier{Stokes residual are the cell Reynolds number, Machnumber, cell aspect ratio and 
ow angle:Re�x = u�x� ; M = pu2+v2c ; �y�x ; vu :The cell Reynolds number is based on u and �xbecause the 
ow angle does not play a particularlyinteresting role in determining the form of the resid-ual and is taken to be zero or asymptotically zero inall of the cases examined.Analysis of eigenvalue clustering will initially fo-cus on modes that are high frequency in both meshdirections (�2 � �x; �y � �) since it is expected thata point-implicit method is not suitable for clusteringeigenvalues corresponding to modes with a low fre-quency component. Fourier footprints correspond-ing to high frequency modes for aligned inviscid sub-sonic 
ow in a stretched mesh cell and 4th di�erencematrix dissipation are shown for both precondition-ers in the top half of Fig. 1.3
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1a: Scalar Preconditioner.
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1b: Block-Jacobi Preconditioner.Figure 1: Fourier footprint of high frequency modes and wave front envelopes for 4th di�erence matrixdissipation. Re�x =1;M = 0:5; �y�x = 15 ; vu = 0; �2 � �x; �y � �;CFL = 2:5.The inner solid line represents the optimal clus-tering envelope for high frequency modes basedon a scalar advection-di�usion model problem [1].The outer solid line represents the stability regionfor Martinelli's 5-stage Runge-Kutta time steppingscheme and is superimposed to assist in determiningappropriate choices for the hyperbolic and parabolicCFL numbers [13]. For this case, Re�x = 1, sothat the preconditioners contain only the hyperbolicCFL number. For Navier{Stokes calculations, thefact that the maximum extent along the negativereal axis is roughly twice the extent in either direc-tion along the imaginary axis suggests the de�nitionCFLP = 2CFLH, so that only the hyperbolic CFLnumber need be determined and the subscript may

be dropped.In 2D there are four characteristic families repre-senting convective entropy and vorticity modes andtwo acoustic pressure modes. The scalar precondi-tioner is unable to cluster the residual eigenvaluesof the convective modes away from the origin butnearly succeeds in clustering the two acoustic foot-prints inside the optimal envelope. The block-Jaocbipreconditioner provides optimal clustering for allfour modes. The entropy footprint forms an arc onthe optimal clustering envelope. The two acousticfootprints have nearly the same radius as the entropymode, falling one each above and below the realaxis, with the vorticity footprint forming a tonguebetween them.4



Case 1 Re�x =1 M ! 0 �y�x ! 0 vu = �y�xCase 2 Re�x =1 M ! 0 �y�x ! 0 vu = 0Case 3 Re�x =1 M ! 0 �y�x !1 vu = 0Case 4 Re�x =1 M = 0:5 �y�x !1 vu = 0Case 5 Re�x !1 M ! 0 �y�x = Re�1=2�x vu = 0Case 6 Re�x !1 M = 0:5 �y�x = Re�1=2�x vu = 0Table 1: Asymptotic limits for which analytic expressions for the Fourier footprint of 4th di�erence matrixdissipation are obtained.3.2 Wave Front EnvelopesFor the Euler equations, another interesting perspec-tive on the role of preconditioning is provided by ex-amining the e�ect on the shape of the wave frontenvelopes of the four characteristic families [20, 12].The propagative speed for a wave traveling at an an-gle � = tan�1 yx is given for each of the characteristicfamilies by an eigenvalue of the matrixP (A cos � +B sin �):The wave front for each eigenvalue is the line per-pendicular to the direction of propagation. The wavefront envelope for a family of waves is formed by theintersection of all the wave fronts in that family.The preconditioned wave front envelopes for allfour families are shown in the bottom half of Fig. 1.With the scalar preconditioner, the two convectiveenvelopes collapse to a point and their evolution isseverely limited by the circular acoustic envelopes.The matrix preconditioner moves the entropy enve-lope out to the maximum stability limit on the realaxis and elongates the oval acoustic envelopes andthe triangular vorticity envelope in the direction ofcell stretching. This behavior is very appealing in aqualitative sense because it approximates the opti-mal condition for a stretched mesh, in which distur-bances cross the same number of cells per unit timeregardless of the direction of propagation.3.3 Analytic Asymptotic FootprintsHaving gained an intuitive feel for the e�ect of pre-conditioning, it is now worthwhile examining the be-havior of the preconditioned system in more extremeconditions typical of a viscous boundary layer. Ana-lytic expressions for the preconditioned Fourier foot-prints are obtained for the important set of asymp-totic limits summarized in Table 1. Cases 1-4 as-sume Re�x = 1, so that the viscous terms are ne-glected, though the e�ect of an \inviscid" boundary

layer is simulated for the �rst three cases by lettingM ! 0. Cases 1 and 2 correspond to a stretchedcell with either diagonal cross 
ow or aligned 
ow.In Case 3, the cell stretching is perpendicular to the
ow, as at the leading edge of an airfoil. Case 4 ex-amines a moderate subsonic 
ow perpendicular to ahighly stretched cell as often occurs in the far �elddue to exponential stretching of the transverse meshcoordinates. Cases 5 and 6 consider the asymptoticfootprint behavior for stretched cells in a viscousboundary layer. The scaling for the cell aspect ra-tio is found by balancing streamwise convection andnormal di�usion, so thatu�x = ��y2 ;which leads to the relation�y�x = Re�1=2�x :To simplify the analysis for Cases 5 and 6, thePrandtl number is assumed to be unity. All of thecases are analyzed for 4th di�erence matrix dissipa-tion, since this is the type that is active over mostof the �ne mesh. For simplicity, the dissipative co-e�cient is taken to be "(4) = 16 with CFL = 1.0.Analytic expressions for the asymptotic residualeigenvalue distributions are shown for all six cases inTable 2, where the notation sx � sin �x, sy � sin �y,Cx � 1 � cos �x, Cy � 1 � cos �y is adopted forbrevity. The Fourier footprints corresponding to thehigh frequency modes are plotted in Figs 2 and 3 us-ing a separate symbol for each family, as de�ned inTable 3. This table describes the asymptotic depen-dences of the di�erent families on the two Fourierangles, corresponding to the directions of e�ectivesmoothing.Using the scalar preconditioner, the footprints ofboth convective modes fall on the origin for ev-ery case except the subsonic cross 
ow of Case 4.5



Case �eig(PSZ) �eig(PJZ)1 0023C2y + isy23C2y � isy 12 [ 23 (C2x + C2y) + i(sx + sy)]23C2x23C2y + isy23C2y � isy2 0023C2y + isy23C2y � isy 23C2x + isx23C2x23C2y + isy23C2y � isy3 0023C2x + isx23C2x � isx 23C2x + isx12 [ 23 (C2x + C2y ) + isx]23C2x + isx23C2x � isx4 13 ( 23C2x + isx)13 ( 23C2x + isx)23C2x + isx13 ( 23C2x � isx) 23C2x + isx23C2x + isx23C2x + isx23C2x � isx5 0023C2y + isy23C2y � isy 13 ( 23C2x + 2Cy + isx)23C2x23C2y + isy23C2y � isy6 0023C2y + isy23C2y � isy 13 ( 23C2x + 2Cy + isx)14 ( 43C2x + 2Cy + isx)23C2y + isy23C2y � isyTable 2: Analytic expressions for the Fourier foot-print of 4th di�erence matrix dissipation with Scalarand Block-Jacobi preconditioning.Therefore, the system will not converge using fullcoarsening multigrid and a standard scalar precon-ditioner. On the other hand, the block-Jacobi pre-conditioner provides optimal clustering of residualeigenvalues corresponding to high frequency modesin all cases. Recall, however, that an e�cient fullcoarsening multigrid algorithm is also dependent onrapid damping of modes that are high frequency inone mesh direction and low frequency in the other.

The performance of the preconditioners on thesemodes is evident from Table 3. Asymptotic depen-dence on a Fourier angle amounts to e�ective damp-ing of modes in that direction, since the correspond-ing eigenvalues will not be clustered at the origin.For the viscous conditions of Cases 5 and 6, neitherpreconditioner is able to cope with a sawtooth pres-sure mode in the streamwise direction, but the ma-trix preconditioner is able to damp sawtooth entropymodes in either direction, even for perfectly aligned
ow. The same is true of convective vorticity modesas long as the Mach number does not vanish. Noticethat this is not the situation for the inviscid aligned
ow of Case 2, where a normal sawtooth entropymode will not be damped in a highly stretched cell.Inside a viscous boundary layer, the point-implicitblock-Jacobi preconditioner provides adequate clus-tering for all convective modes that are high/lowor low/high as long as the Mach number is notasymptotically zero. The only modes which are nottreated e�ectively are acoustic pressure modes witha high frequency streamwise component and a lowfrequency normal component. Rather than adoptingthe complete semi-coarsening algorithm of Mulder,it seems likely that some less expensive enhancementof the full coarsening strategy can be devised whichwill overcome this shortcoming.One possibility is to implement only a subset ofthe complete semi-coarsening stencil, such as in-cluding only those meshes which provide coarsen-ing across the boundary layer. An even less expen-sive alternative is a normal or J-coarsened strategyin which no coarsening is performed in the stream-wise direction. With this approach, high-x/low-ypressure modes become high-x/high-y modes onthe coarse mesh, which can then be e�ectivelydamped. At �rst glance, the apparent weakness ofthis approach is the treatment of low-x/low-ymodes,which would have become high-x/high-y modes onthe coarse mesh with a full coarsening algorithm.However, closer inspection reveals that low-x/low-ymodes become low-x/high-y modes on the coarsemesh, which can then be e�ectively damped in anycharacteristic �eld. Therefore, inside the boundarylayer, block-Jacobi preconditioning provides e�ec-tive damping of all eigenvalues that cannot be re-solved on the coarse mesh using a J-coarsened multi-grid algorithm. This is possible because of the bal-ance of streamwise convection and normal di�usioninside the boundary layer. For Euler computations,some sawtooth modes will not be clustered e�ec-tively, but the impact on convergence when usinga typical inviscid mesh is probably not su�cient towarrant switching from a full coarsening multigrid6



Mode Entropy (�) Vorticity (�) Acoustic (�) Acoustic (+)Speed q q q + c q � cPrecon PS PJ PS PJ PS PJ PS PJCase 1 0 �x; �y 0 �x �y �y �y �yCase 2 0 �x 0 �x �y �y �y �yCase 3 0 �x 0 �x; �y �x �x �x �xCase 4 �x �x �x �x �x �x �x �xCase 5 0 �x; �y 0 �x �y �y �y �yCase 6 0 �x; �y 0 �x; �y �y �y �y �yTable 3: De�nition of mode symbols and representative propagative speeds for Figs 2 and 3, and the asymp-totic dependence of each mode on �x and �y, corresponding to the directions of e�ective smoothing.strategy.The context in which point-implicit block-Jacobipreconditioning can probably be used to greatest ad-vantage is in unstructured codes that employ eitheragglomeration or edge collapsing multigrid strate-gies to provide local semi-coarsening. In this sce-nario, the preconditioner provides adequate cluster-ing of all residual eigenvalues and should facilitaterapid convergence for explicit solvers even on highlystretched meshes.4 ResultsResults for a number of standard test cases aregenerated using a conservative cell-centered semi-discrete �nite volume scheme. Characteristic-basedmatrix dissipation based on Roe's linearization [17]provides a basis for the construction of high res-olution switched, symmetric limited and upstreamlimited schemes following the work of Jameson[11, 7, 8, 10]. Updates are performed using a 5-stageRunge-Kutta time stepping scheme to drive a fullcoarsening multigrid algorithm [11, 5, 13].For Euler and laminar Navier{Stokes calculations,the solution is computed on a sequence of �ne meshesusing a W-cycle on each mesh. A single time stepis performed at each level when moving down themultigrid cycle. The stability limit on both �ne andcoarse meshes is CFL = 2.5.For turbulent calculations on highly stretchedmeshes, a J-coarsening strategy in which meshesare coarsened only across the boundary layer is alsotested. Since the cost of a W-cycle becomes verylarge when using a semi-coarsening approach, allturbulent calculations are performed using a V-cyclewith time steps computed moving both up and downthe cycle. The one-equation Spalart-Allmaras tur-

bulence model is solved using a �rst order spatialdiscretization and 5-stage Runge-Kutta time inte-gration with implicit treatment of the source termsto drive the same multigrid algorithm as that usedfor the 
ow equations [18]. This solution procedureis very convenient because the turbulent viscositycan be treated in nearly all subroutines as an extravariable in the state vector.The plotted residuals represent the rms change indensity during one application of the time steppingscheme on the �nest mesh in the multigrid cycle.Descriptions of the geometry, 
ow parameters, meshproperties and observed speed-ups for each test caseare provided in Table 4. The speed-ups are calcu-lated at a residual level of 10�4 relative to the initialresidual. The additional cost of block-Jacobi precon-ditioning is 20-25% if the preconditioner is updatedonce per time step.4.1 EulerIn Fig. 4, solutions to a standard NACA0012 testcase with a weak shock on the lower surface areshown after 12 and 100 W-cycles using a matrixswitched scheme and block-Jacobi preconditioning.After 12 cycles, the lift changes by only four countsand the drag is fully converged. This rate of conver-gence is achieved without using other accelerationtechniques such as implicit residual smoothing andenthalpy damping [6].Fig. 5 displays the Mach contours for 
ow pasta cylinder at M1 = 0:38 using matrix symmetriclimited dissipation. The cell aspect ratio at the wallis 110 and the �rst cells are 0.003 chords in height.The accuracy of the scheme is demonstrated by thesymmetry of the solution upstream and downstreamof the cylinder. The maximum entropy deviation in7



Geometry M1 � ReL Mesh ���� ��max ���� ��min ��L ��wall PJNACA0012 0.8 1:25� 1 160�32 2�10+1 5�10�1 7�10�4 3.7Cylinder 0.38 0:0� 1 128�48 3�10+0 1�10�1 3�10�3 6.2NACA0012 0.8 10:0� 5�102 320�64 2�10+1 5�10�1 2�10�4 3.9Flat Plate 0.15 0:0� 1�105 128�32 4�10+2 3�10�3 3�10�5 7.2RAE2822 0.725 2:4� 6.5�106 256�64 3�10+1 7�10�4 4�10�6 2.9RAE2822 0.73 2:79� 6.5�106 256�64 3�10+1 7�10�4 4�10�6 2.4Table 4: Test case de�nitions, mesh dimensions, maximum and minimum cell aspect ratios, minimum ratioof cell height to chord length at the wall and speed-ups for PJ compared to PS .the cells next to the wall is 5�10�4.Since the symmetric limited and switched formu-lations are fundamentally similar [10], it was ex-pected that the block-Jacobi preconditioner basedon the switched scheme would also be appropri-ate for symmetric limited dissipation. However,the speed-ups observed using an upstream limitedscheme that does not resemble the 2nd/4th di�er-ence switching mechanism were also comparable,which suggests that it may be su�cient to base theform of the block-Jacobi preconditioner on the �rstorder dissipative scheme. From this point of view,the principal advantage of reducing "(4) to 16 (fromthe more likely value of 14 ), is the corresponding in-crease in the allowable time step from CFL = 1.8 toCFL = 2.5, which more than compensates for thereduced damping of the scheme. The footprint ofthe symmetric and upstream limited schemes is ap-parently larger than that of the switched scheme us-ing either scalar or matrix preconditioning, since theCFL number could not be raised above 1.5 on the�ne meshes.4.2 Laminar Navier{StokesFig. 6 displays the results for a transonic laminarNACA0012 test case. The resolution of the meshappears to be adequate for ReL = 500 based ona comparison of the Mach number contours with re-sults in reference [13]. This viewpoint is further sup-ported by the budget plot at the lower mid-chord,which reveals that there are roughly 20 points in theboundary layer. Once again, the block-Jacobi pre-conditioner realizes a signi�cant speed-up over thestandard scalar time step.Results for nearly incompressible 
ow over a 
atplate at ReL = 1�105 are displayed in Fig. 7 fora 128�32 H-mesh. Three quarters of the stream-wise points are located on the plate and half thenormal points are equally spaced in the boundary

layer coordinate inside the boundary layer [19]. Ex-ponential stretching is used in all directions outsidethe boundary layer, and some extremely high aspectratio cells of O(10�5) are alleviated by skewing thestretching at the far �eld. It was necessary to reducethe CFL number to 2.0 on the �ne mesh as a resultof the extreme non-orthogonality in some cells. Themaximum and minimum cell aspect ratios are 400and 1330 and the minimum height of the �rst cell is0.00003 chords. The inlet is one chord ahead of theplate, the outlet is at the trailing edge and the up-per boundary is located two chords from the plate.A comparison of the velocity components at the mid-chord with the exact Blasius solution reveals a slightinaccuracy in the normal velocity component. Con-vergence plots demonstrating substantial accelera-tion are shown for both the density residual and thedrag coe�cient. An examination of the residuals atthe end of the computations revealed that the con-vergence was dominated by the near �eld when usinga scalar preconditioner and the far �eld mesh singu-larity above the leading edge when using the matrixpreconditioner.4.3 Turbulent Navier{StokesResults for RAE2822 AGARD Case 6 are shown inFig. 8. The computations are performed on a 256�64C-mesh with maximum and minimum cell aspectratios of 3�10+1 and 7�10�4 and a minimum �rstcell height of 4�10�6 chords [3]. Convergence plotscontain the residuals for density and the turbulentviscosity. Using full coarsening multigrid, the block-Jacobi preconditioner provides only a slight improve-ment over the scalar preconditioner, which suggeststhat streamwise acoustic pressure modes are domi-nating the convergence process. Using J-coarsenedmultigrid improves the performance of both precon-ditioners and allows the superior clustering proper-ties of the block-Jacobi preconditioner to take ef-8



fect, so that all modes are e�ectively damped in-side the boundary layer. Furthermore, J-coarsenedmultigrid allows the turbulent viscosity to convergeat the same asymptotic rate as the density. A com-parison of density residuals for all permutations ofpreconditioning and multigrid strategies is shownto demonstrate the relative costs of these meth-ods. The combination of block-Jacobi precondition-ing and J-coarsened multigrid, which has the highestcost per cycle, is still the most e�cient method bya large margin. The pressure distribution compareswell with the experimental results [4]. The largestdiscrepencies occur at the leading edge and alongthe lower surface. The transition point is set usingthe trip term built into the Spalart{Allmaras model.Results for RAE2822 AGARD Case9 are shown inFig. 9. Once again, substantial savings are realizedusing block-Jacobi preconditioning and J-coarsenedmultigrid. The shock location is predicted quite welland the deviation at the leading edge is reduced forthis case.It is illuminating to compare the convergence ratesachieved for these turbulent calculations on highlystretched meshes with the results for inviscid cal-culations on more isotropic meshes. Using block-Jacobi preconditioning and J-coarsened multigridon a mesh with a minimum cell aspect ratio of7�10�4, convergence toO(10�4) is achieved in about220 V-cycles. By comparison, an Euler computationon the mesh of Fig. 4, which has a minimum cell as-pect ratio of 12 , takes 165 W-cycles to reach the samelevel of convergence with a standard scalar precondi-tioner and 40 W-cycles using block-Jacobi precondi-tioning. Therefore, using the strategies developed inthis paper, convergence of turbulent Navier{Stokescalculations on highly stretched meshes approachesthe rate of convergence achieved for Euler compu-tations using a standard scalar time step. It is ex-pected that the results for turbulent calculations canbe improved still further by adopting a multigridstrategy which combines aspects of both the full andJ-coarsened approaches.5 ConclusionsAnalysis of the asymptotic behavior of the Fourierfootprints for scalar and block-Jacobi precondition-ers reveals critical information about the successesand failures of these approaches. The scalar precon-ditioner is completely ine�ective at clustering highfrequency convective modes away from the origin forall cases involving vanishing Mach number.The block-Jacobi preconditioner succeeds in clus-
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2f: Case 6.Figure 2: Scalar Preconditioner.Fourier footprint of high frequency modes in various asymptotic limits.4th di�erence matrix dissipation. "(4) = 16 ; �=2 � �x; �y � �;CFL = 1:0.See Tables 1,2,3 for Case, Analytic and Wave descriptions.11
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3f: Case 6.Figure 3: Block-Jacobi Preconditioner.Fourier footprint of high frequency modes in various asymptotic limits.4th di�erence matrix dissipation. "(4) = 16 ; �=2 � �x; �y � �;CFL = 1:0.See Tables 1,2,3 for Case, Analytic and Wave descriptions.12
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4d: Convergence.Figure 4: NACA0012 Airfoil. M1 = 0:8; � = 1:25�, 160�32 O-mesh.Matrix Switched Scheme.13



                                                                                

                                                                                

5a: Mach Number Contours. 32 64 96 128
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5d: Convergence.Figure 5: Cylinder. M1 = 0:38; � = 0:0�, 128�48 O-mesh.Matrix Symmetric Limited Scheme.14
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6b: Pressure Contours.
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7c: Mesh at the Leading Edge.Magni�cation is 20% chord. 0 100 200 300 400 500 600 700 800
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8b: Convergence.J-Coarsened Multigrid.
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8d: Cp.Cl = :7757; Cd =.0142Figure 8: RAE2822 Airfoil. Case 6: M1 = 0:725; � = 2:4�; ReL = 6.5�106, 256�64 C-mesh.SA turbulence model with transition �xed at xL = 0:03.17
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9b: Convergence.
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9d: Cp.Cl = :8388; Cd =.0197Figure 9: RAE2822 Airfoil. Case 9: M1 = 0:73; � = 2:79�; ReL = 6.5�106, 256�64 C-mesh.SA turbulence model with transition �xed at xL = 0:03.18


