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Edge-based Multigrid andPreconditioning for Hybrid GridsPierre Moinier�Jens-Dominik M�ulleryMichael B. GileszOxford University Computing LaboratoryOxford, United Kingdom OX1 3QDA multigrid method has been developed for the Euler and Navier-Stokes equations onunstructured hybrid grids in two and three dimensions. The coarse grids are automaticallygenerated from the �nest grid through element collapsing. This has been used in pref-erence to a previous edge-collapsing technique to preserve as much structure as possiblewithin semi-structured grids. The performance of the multigrid is signi�cantly improvedthrough the use of Jacobi preconditioning within a Runge-Kutta iterative smoother. Re-sults are presented for a variety of two-dimensional and three-dimensional problems, bothinviscid and viscous with the Spalart-Allmaras turbulence model.IntroductionCFD has to respond to the need for accurate, e�-cient and robust algorithms for solving complete de-scriptions of 
uid motion over complex geometries.When using the Reynolds-averaged Navier-Stokesequations with an appropriate turbulence model, thecomputational mesh has to be highly resolved in thedirection normal to the wall to accurately represent thesteep gradients in a high Reynolds number boundarylayer. This results in highly stretched computationalcells which limit the e�ectiveness of the numerical algo-rithms, and increase considerably the size of the prob-lem to solve, both in term of memory requirements andcomputational cost. With the continuing rapid devel-opment of computers, the size of the problems beingaddressed is becoming ever larger. Therefore, the chal-lenge is to obtain an iterative convergence rate whichis grid-independent. Multigrid is the most popularapproach to achieve this, and it has been very suc-cessful for the Euler equations as well as most ellipticequations. It is also the most attractive approach forsolving the Navier-Stokes equations, despite the prob-lems caused by the presence of highly stretched cellsin the boundary layer.The central idea of multigrid is to transfer the lowfrequency solution errors onto a sequence of coarsermeshes where they become high frequency errors thatare more e�ectively smoothed by traditional iterativemethods. The choice of the iterative smoother is veryimportant, and a popular explicit multigrid smootheris the semi-discrete scheme proposed by Jameson etal8 which uses multi-stage Runge-Kutta time-stepping�Graduate Student, email: moinier@comlab.ox.ac.ukyPostdoctoral Research Fellow, email: jdm@comlab.ox.ac.ukzProfessor, email: giles@comlab.ox.ac.ukCopyright c
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with coe�cients chosen to promote rapid damping andpropagation of error modes. However, for Navier-Stokes computations of high Reynolds number 
ows,the convective error modes in the boundary layer arenot e�ciently eliminated because of the high aspectratio cells inside the boundary layer. The resultingnumerical sti�ness in conjunction with the sti�nessassociated with the turbulence model, results in muchpoorer convergence than obtained with the Euler equa-tions.To overcome this, one approach is to use a matrixtime step, or preconditioner, to cluster the eigenvaluesof the residual operator away from the origin into aregion of the complex plane for which the multi-stagescheme provides rapid damping and propagation of thecorresponding error modes.1 Pierce and Giles haveshown that for turbulent Navier-Stokes calculations onstructured grids, the combination of a block-Jacobipreconditioner and a multigrid method with semi-coarsening across the boundary layer provides verye�ective damping of all modes inside the boundarylayer, both in theory and in practice. The precon-ditioner damps all of the convective modes, while themultigrid strategy, in which the grids are coarsenedonly in the direction across the boundary layer, en-sures that all acoustic modes disappear.19, 20However, the task of automatically generatingblock-structured grids for complex geometries is verychallenging. An alternative is to use unstructuredgrids which are much more easily generated, but usingpurely tetrahedral grids in 3D leads to reduced accu-racy and greater computational cost per grid point.The compromise, which to some extent o�ers the bestof both approaches, is to use hybrid grids in which thegrid is treated as an unstructured collection of di�erentcell types (tetrahedra, pyramids, prisms and hexahe-dra). This gives maximum geometric 
exibility, and at1 of 8American Institute of Aeronautics and Astronautics Paper 99{3339



the same time allows one to use grids which in certainregions are structured or semi-structured, giving im-proved accuracy and cost per grid point. For example,Kallinderis et al have developed viscous grid genera-tion methods which start with a surface triangulationand then use advancing normals to produce a bound-ary layer grid composed of prismatic elements.9 Thesevery thin prismatic elements are very suitable for theaccurate evaluation of the normal shear stress in thehigh Reynolds number boundary layer. Outside theboundary layer, the grid reverts to tetrahedra to �llthe rest of the domain in which the 
ow is essentiallyinviscid.The drawback of using hybrid grids is that it cancomplicate the multigrid procedure, depending on thedetails of the multigrid strategy. If one follows theapproach of Mavriplis in using an edge-based discreti-sation and an agglomeration multigrid which is closelyrelated to algebraic multigrid, the discrete equationson coarser grid levels are assembled automaticallywithout the explicit creation of a coarse grid. For thismethod, the use of a hybrid grid does not introduceany signi�cant additional di�culties. Agglomerationmultigrid is a very powerful approach o�ering sim-plicity and robustness, but with the Navier-Stokesequations there is the problem that the sum of theorder of accuracy of multigrid restriction and prolonga-tion violates the condition established by Hackbusch7(see section Scheme Description) as being necessaryfor grid-independent convergence. Using an ad hoc�x, Mavriplis has nevertheless obtained impressive re-sults,11{13 but in our research we have preferred thealternative approach of explicitly constructing coarsegrids from the �nest grid, so that we can achieve �rstorder restriction and second order prolongation in themultigrid.Our research started from the edge-collapsing multi-grid approach introduced by Crumpton and Giles,which has been shown to be highly successful for invis-cid 
ows on tetrahedral meshes.3, 4 For high Reynoldsnumber viscous 
ows, modi�cations had to be in-troduced to prevent the grid in the boundary layerbecoming over-coarsened in the direction across theboundary layer. The result is essentially equivalent toa semi-coarsening strategy as used on highly stretchedstructured grids,19, 23 and it gives a multigrid algo-rithm which is e�cient, robust and applicable to com-plex geometries in two and three dimensions.5, 14The subject of this paper is the extension of theedge-collapsing idea to hybrid grids. This proved tobe more di�cult than initially expected. Ideally, whatone would like is a collapsing technique which preservesas much as possible of the structure within the grid.For example, if the �ne grid consists of prisms in theboundary layer, then one would ideally like the �rstcoarse grid to consist of semi-coarsened prisms in theboundary layer. However, Crumpton's edge-collapsing

algorithm works by collapsing an edge, combining itstwo nodes into one, and connecting the new node tothe faces of the cavity formed by the removal of theedge and all associated cells. When starting from aprismatic grid, this quickly results in a grid consistingsolely of tetrahedra. Even worse, with a hexahedralgrid it can result in a coarse grid which has fewernodes, but an increased number of cells, many of whichare tetrahedra.16We will show that these problems are avoided bymodifying the algorithm to collapse cells rather thanedges, ensuring that the number of cells and edges isalways reduced, as well as the number of nodes. Theuse of heap-based dynamic sorting to select the nextcell for collapse, and limits to prevent excess collaps-ing, lead to patterns of collapse which result in thecoarsened grid retaining most of the inherent struc-ture of the original grid in highly stretched regions.The multigrid CFD algorithm is also described andresults are presented for a range of test cases to showthe multigrid convergence rates which are achieved.Edge-collapsing MultigridThe coarser meshes used in the calculations havebeen generated using an element-collapsing algo-rithm16 that primarily considers the graph of edges ofthe mesh. In this graph, any set of edges can be col-lapsed if the geometry is still valid after the collapseand none of the neighboring edges exceeds a certainmultiple of its original length. The �rst criterion isobvious, we cannot tolerate negative volumes due tofolded grids. The second criterion expresses the designprinciple of multigrid: the coarsening approximatelydoubles the length of the edges in a mesh.In a triangular or tetrahedral mesh, collapsing a sin-gle edge removes all elements that are formed with thatedge. In a hybrid mesh this is not the case; in orderto make an element disappear we may have to col-lapse several edges. In our current implementation wechoose to collapse the shortest edge of an element andthe other edges which are topologically \parallel" thatis they connect the same two faces. An element col-lapse then happens by two faces of an element fallingonto each other.The implementation of this algorithm for isotropicmeshes is straightforward. Given a �ne mesh, we tageach edge with its length times a growth factor, say2, as maximum length. The elements are sorted ina heap list for smallest volume and we try to collapsethe shortest edge and its parallel siblings. Fixing a cer-tain maximum angle for the elements in the collapsedgeometry, in the 2D examples 135�, guarantees a min-imum quality of the coarser mesh as well as positivevolumes. This test is done by looping over all elementsthat are formed with any of the collapsed vertices andconsidering the \remaining" element of each. Otheredges on these elements may have been collapsed in2 of 8American Institute of Aeronautics and Astronautics Paper 99{3339



Fig. 1 Collapsing edges on a hexahedron.earlier steps. E.g. a quadrilateral with one collapsededge becomes a triangle, a doubly collapsed quadrilat-eral vanishes. Various collapsed shapes derived from ahexahedron are shown in �gure 1. The algorithm ter-minates once there are no edges left to be collapsed.All remaining elements and nodes are then identi�edand a coarsened grid is created.The algorithm has to be modi�ed to achieve direc-tional coarsening in stretched layers. All long edges instretched regions have to be prevented from collapsing.For this we need to identify short edges in stretchedregions. A �rst criterion is that these edges are shorterby a given factor, say 3, compared to the largest neigh-boring edge. Additionally we require that there isat least one other neighboring edge that is short andpoints in the same direction, to within some tolerance.This criterion ensures that single short edges in veryirregular unstructured grids do not de�ne a stretchedregion.If an element is in a stretched region, all neighboringlong edges of the ones to be collapsed are preventedfrom any collapse. Once the stretched regions havebeen directionally coarsened in this way, the isotropicprocess collapses the rest of the domain. Figures 9 and10 show the results of the grid coarsening for a hybridgrid around a RAE 2822 airfoil. It can be seen that thestretched part of the grid close to the airfoil remainsregular and is coarsened exactly 1:2. The outer part ofthe structured region which is not stretched loses someregularity and the quadrilaterals collapse into largerquadrilaterals and triangles.Scheme DescriptionThe pre-conditioned semi-discrete equation appearsas P�1 dQdt +R(Q) = 0;where Q denotes the set of conservative variables,R(Q) the residual vector of the spatial discretisationand P�1 the local preconditioner which is a point-implicit block-Jacobi preconditioner.1, 15Using a �nite volume approach, the discrete approx-imation of the residual for an interior grid point isRj = 1Vj Xi2Ej Fij 4 sij 8j;where Vj is the measure of the control volume (themedian-dual) associated with index j, Ej the set of

all nodes connected to node j via an edge, 4sij a dis-tance (2D) or area (3D) associated with the edge, andFij is the numerical 
ux. In a previous paper,17 weargued that a desirable feature of discretisations onhybrid grids was that all spatial operators should be`linear preserving', giving the exact integral for any lin-ear function. However, to obtain this for grids whichare not tetrahedral requires the addition of many newedges, and so here we have assumed that in structuredor semi-structured regions there is su�cient smooth-ness in the grid to use the simple median-dual edgeweights with negligible loss of accuracy.At a solid wall, an extra term from the boundaryfaces associated with the node is added. Tangencyand no-slip wall conditions are enforced by zeroingout the momentum components associated with thecorresponding wall condition, whereas the far �eldboundary is treated by adding an extra upwinded 
uxdi�erence. The inviscid 
ux discretization is based onthe 
ux-di�erencing ideas of Roe,21 combining cen-tral di�erencing of the non-linear inviscid 
uxes witha smoothing term based on one-dimensional character-istic variables. This numerical dissipation is a blend ofsecond and fourth characteristic di�erences with a lim-iter.5 The viscous 
ux is approximated half-way alongeach edge and uses the usual integration rule aroundeach volume, giving a consistent �nite volume treat-ment of the inviscid and viscous terms. To accountfor the e�ect of turbulence, the one equation turbu-lence model of Spalart and Allmaras22 is used with a�rst order spatial discretisation. Other than an im-plicit treatment of the source term, it is solved usingthe same 5-stage Runge-Kutta method10 as used forthe 
ow equations.The preconditioner P is based on a local lineari-sation of the 3D Navier-Stokes equations about auniform 
ow, and built by extracting the terms cor-responding to the central node. As the 
ux can besplit into inviscid and viscous parts, the matrix pre-conditioner has contributions coming from both, andis written as P�1j = �P Ij ��1 + �P Vj ��1 ;where the superscripts I and V stand for Inviscidand Viscous, respectively. Even though a high-ordermethod with limiters is used to de�ne the residual,the preconditioner is based on a �rst order charac-teristic smoothing. This approximation is acceptablesince the resulting matrix timestep will be only un-derestimated. This is slightly di�erent from the struc-tured approach, where the block-Jacobi preconditionerremains the same for both schemes.19 The viscouscontribution is only calculated for interior grid pointssince there is no viscous contribution for a node whichlies on a adiabatic solid wall. Following a lineariz-ing procedure, a key factor for the implementation isthat all cross derivatives are neglected in the precon-3 of 8American Institute of Aeronautics and Astronautics Paper 99{3339



ditioner.To form the block-Jacobi preconditioner, the invis-cid and viscous Jacobians need to be calculated ateach node of the grid. However, at the wall, as al-ready mentioned, the viscous Jacobian does not haveto be evaluated. In fact, only a no-slip condition hasto be satis�ed which is achieved by setting all momen-tum components in the residual to zero. For Eulercalculations, the procedure is slightly di�erent. In ad-dition to the corrections made on the residual, thepreconditioner is modi�ed at the wall in order that thecondition u:n = 0 is satis�ed; u and n denote respec-tively the velocity vector and the unit normal vectorto the wall. This is accomplished by re-evaluating thematrix in the coordinate system (xn; xt1 ; xt2), by usinga rotation matrix T from the original (x; y; z) coordi-nate system to the new one. xn is the coordinate inthe direction normal to the surface and the other twoare mutually orthogonal tangential coordinates. Oncedone, it is transformed back to the original coordinatesystem. Thus, the original equation becomes�P�1 � T�1ST (P�1 � I)� dQdt =MR(Q) ;whereM = (I�T�1ST ) with S the matrix which setsthe normal momentum component to zero. T�1STonly involves the unit normal vector, and so is easilyconstructed.6As explained in the previous section, the multigriduses a sequence of coarse grids generated from aninitial �ne grid by an automatic element removal al-gorithm. This algorithm produces a pointer from each�ne grid node to the coarse grid node into which it hascollapsed. The multigrid restriction uses this to com-pute a volume-weighted average of the 
ow and a lim-ited volume-weighted restriction of the residual. Forthe prolongation, a linear interpolation is used throughthe reconstruction of the gradient of the corrections.The accuracy of the transfer operators thus de�ned issu�cient to guarantee good convergence rates, since itsatis�es the necessary relation for ensuring multigride�ciency7 OP +OR > OE ;where OP and OR are de�ned as the highest degreeplus one of the polynomials that are interpolated ex-actly by the prolongation and restriction operator andOE is the order of the di�erential equation, whichequals 2 for the Navier-Stokes equations.All of the results to be presented were obtained usingV-cycle multigrid, with Full Multigrid startup, and oneiteration of the Runge-Kutta smoother before restric-tion and after prolongation, except where otherwisestated. Thus, one multigrid cycle on the �nest gridlevel has a computational cost which is approximately

double that of a single 5-stage time-step on the �nestgrid. ResultsIn this section we present results for a set of inviscidand viscous 
ows over geometries of varying complex-ity. First, results are presented for a two-dimensionalproblem. The performance of the collapsing multi-grid algorithm with the hybrid approach is comparedwith previous results obtained by Pierce using struc-tured grids.18 The test case is a standard transonicNACA0012 case with M1 = 0:8 and � = 1:25o, giv-ing a strong shock on the suction surface and a weakshock on the pressure surface. The �ne grid, shownin Figure 2, contains 20480 quadrilaterals and is ex-actly the same as used by Pierce. A sequence of 4coarser hybrid meshes was generated following the el-ement collapsing procedure; the �rst and last of theseis shown in Figures 3 and 4. It can been seen that thecoarsening procedure maintains the general topologyof the domain, with the coarse grids composed mainlyof quadrilaterals. The computed pressure distributionand the convergence history using both methods arepresented in �gures 5 and 6. Both methods convergesimilarly to machine accuracy with very little di�er-ence in the asymptotic convergence rate.We next present a calculation over a geometry of in-creased complexity. It involves the solution of inviscidtransonic 
ow over a business jet. The geometry con-sists of a half complete aircraft con�guration boundedby a symmetry plane. The �ne grid has 156000 verticesand 847000 tetrahedra. 2 coarser grids are derivedby the element collapsing algorithm and contain re-spectively, 58500 and 9800 grid points. The collapsingalgorithm is based on several criterion driving the col-lapsing procedure. In this case, the low coarseningratio between the �nest and the �rst coarser mesh isdue to the poor quality of the initial mesh which has el-ements with a dihedral angle of more than 180o. Thefreestream conditions are M1 = 0:85 and � = 2o.Figures 7 and 8 show the convergence history and theMach contour plot where the shock patterns are evi-dent. Convergence to machine accuracy is achieved in249 multigrid iterations.The �rst test case involving a turbulent 
ow is overa single airfoil. The geometry is an RAE2822 airfoil,with M1 = 0:73, Re = 6:5 million, and � = 2:8o.The mesh employed for this computation contains atotal of 19100 grid points, and is depicted in Fig-ure 9. This hybrid grid has a structured part, withelements stretched in the direction along the airfoil,the rest of the domain being �lled with triangles. Fourcoarser grids have been generated, the �rst one is de-picted in Figure 10. Figure 12 shows the computedpressure distribution which compares well with theexperimental data,2 although the turbulence modelproduces a shock location forward of the experimen-4 of 8American Institute of Aeronautics and Astronautics Paper 99{3339



tal location, behavior which has been previously ob-served.18, 22 The shock induces a separation bubblemeasuring about 5% of chord. Convergence history isshown, in Figure 11. Here we compare the convergencewhen using the block-Jacobi preconditioner and whenusing the standard approach of scalar preconditioning,with semi-coarsened multigrid. Both methods con-verge to machine accuracy, along with the turbulencemodel. The Jacobi approach converges quite smoothlyand rapidly to engineering accuracy in approximately90 multigrid iteration, but after 4 orders of magnitude,a severe degradation in convergence occurs, makingthis method only as e�cient as the standard one. Thisbehavior is attributed to the turbulence model whoseconvergence is asymptotically the limiting factor inboth calculations. However, for this case the precon-ditioned calculation required two smoothing iterationsbefore restriction of the residual and after prolonga-tion of the multigrid correction, whereas the standardapproach required three. Thus, the preconditioned cal-culation is almost 50% faster.The �nal example is the 
ow through the 3D bypassduct of a turbofan engine. The geometry is composedof ten struts and a pylon. The �ne grid has 274000grid points and is constructed by stacking a sequenceof 2D grids. Convergence history and Mach contourscan be seen in Figures 13 and 14. From the �ne grid,2 coarser grids are produced containing respectively138000 and 79300 vertices. The coarsening ratio islow because the multigrid semi-coarsening strategy isessentially only removing points in one-dimension inthe areas of high stretching, which is both through theboundary layer and radially. The radial stretching isa consequence of the grid being composed of stacked2D grids with a �xed radial step. This leaves a highaspect ratio in the radial direction in all regions ofthe 2D grid that have a much smaller mesh spacingthan the radial step. For an in
ow Mach number of0:55, with zero incidence and a Reynolds number of6 million around the struts, convergence to 6 ordersof magnitude is reached in 250 multigrid cycles (thepylon is here treated as inviscid, because the purposeof studying this geometry did not require the pylonboundary layer to be resolved).ConclusionsIn this paper we have presented a new multigridmethod for the solution of the Euler and Navier-Stokesequations on unstructured hybrid grids. Unlike theagglomeration multigrid method, it involves the con-struction of a sequence of coarse hybrid grids on whichthe same residual operator can be applied. The bene�tof this approach is that linear corrections can be pro-longed exactly, thereby satisfying a key requirementfor grid independent convergence of the Navier-Stokesequations.The coarse grids are generated through an ele-
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Fig. 2 NACA0012; �ne grid

                                                                                Fig. 3 NACA0012; �rst coarsening

                                                                                Fig. 4 NACA0012; fourth coarsening
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Fig. 6 NACA0012; convergence history
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Fig. 7 Business jet, convergence history

                                                                                Fig. 8 Business jet, Mach number contours

Fig. 9 RAE2822; �ne grid.

Fig. 10 RAE2822; �rst collapse
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Fig. 11 RAE2822; convergence history
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Fig. 12 RAE2822; coe�cient of pressure
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Fig. 13 3D Bypass duct; convergence history

                                                                                Fig. 14 3D Bypass duct; Mach number contours
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