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Edge-based Multigrid and
Preconditioning for Hybrid Grids

Pierre Moinier*
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A multigrid method has been developed for the Euler and Navier-Stokes equations on
unstructured hybrid grids in two and three dimensions. The coarse grids are automatically
generated from the finest grid through element collapsing. This has been used in pref-
erence to a previous edge-collapsing technique to preserve as much structure as possible
within semi-structured grids. The performance of the multigrid is significantly improved
through the use of Jacobi preconditioning within a Runge-Kutta iterative smoother. Re-
sults are presented for a variety of two-dimensional and three-dimensional problems, both
inviscid and viscous with the Spalart-Allmaras turbulence model.

Introduction

CFD has to respond to the need for accurate, effi-
cient and robust algorithms for solving complete de-
scriptions of fluid motion over complex geometries.
When using the Reynolds-averaged Navier-Stokes
equations with an appropriate turbulence model, the
computational mesh has to be highly resolved in the
direction normal to the wall to accurately represent the
steep gradients in a high Reynolds number boundary
layer. This results in highly stretched computational
cells which limit the effectiveness of the numerical algo-
rithms, and increase considerably the size of the prob-
lem to solve, both in term of memory requirements and
computational cost. With the continuing rapid devel-
opment of computers, the size of the problems being
addressed is becoming ever larger. Therefore, the chal-
lenge is to obtain an iterative convergence rate which
is grid-independent. Multigrid is the most popular
approach to achieve this, and it has been very suc-
cessful for the Euler equations as well as most elliptic
equations. It is also the most attractive approach for
solving the Navier-Stokes equations, despite the prob-
lems caused by the presence of highly stretched cells
in the boundary layer.

The central idea of multigrid is to transfer the low
frequency solution errors onto a sequence of coarser
meshes where they become high frequency errors that
are more effectively smoothed by traditional iterative
methods. The choice of the iterative smoother is very
important, and a popular explicit multigrid smoother
is the semi-discrete scheme proposed by Jameson et
al® which uses multi-stage Runge-Kutta time-stepping
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with coefficients chosen to promote rapid damping and
propagation of error modes. However, for Navier-
Stokes computations of high Reynolds number flows,
the convective error modes in the boundary layer are
not efficiently eliminated because of the high aspect
ratio cells inside the boundary layer. The resulting
numerical stiffness in conjunction with the stiffness
associated with the turbulence model, results in much
poorer convergence than obtained with the Euler equa-
tions.

To overcome this, one approach is to use a matrix
time step, or preconditioner, to cluster the eigenvalues
of the residual operator away from the origin into a
region of the complex plane for which the multi-stage
scheme provides rapid damping and propagation of the
corresponding error modes.! Pierce and Giles have
shown that for turbulent Navier-Stokes calculations on
structured grids, the combination of a block-Jacobi
preconditioner and a multigrid method with semi-
coarsening across the boundary layer provides very
effective damping of all modes inside the boundary
layer, both in theory and in practice. The precon-
ditioner damps all of the convective modes, while the
multigrid strategy, in which the grids are coarsened
only in the direction across the boundary layer, en-
sures that all acoustic modes disappear.'®> 20

However, the task of automatically generating
block-structured grids for complex geometries is very
challenging. An alternative is to use unstructured
grids which are much more easily generated, but using
purely tetrahedral grids in 3D leads to reduced accu-
racy and greater computational cost per grid point.
The compromise, which to some extent offers the best
of both approaches, is to use hybrid grids in which the
grid is treated as an unstructured collection of different
cell types (tetrahedra, pyramids, prisms and hexahe-
dra). This gives maximum geometric flexibility, and at
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the same time allows one to use grids which in certain
regions are structured or semi-structured, giving im-
proved accuracy and cost per grid point. For example,
Kallinderis et al have developed viscous grid genera-
tion methods which start with a surface triangulation
and then use advancing normals to produce a bound-
ary layer grid composed of prismatic elements.® These
very thin prismatic elements are very suitable for the
accurate evaluation of the normal shear stress in the
high Reynolds number boundary layer. Outside the
boundary layer, the grid reverts to tetrahedra to fill
the rest of the domain in which the flow is essentially
inviscid.

The drawback of using hybrid grids is that it can
complicate the multigrid procedure, depending on the
details of the multigrid strategy. If one follows the
approach of Mavriplis in using an edge-based discreti-
sation and an agglomeration multigrid which is closely
related to algebraic multigrid, the discrete equations
on coarser grid levels are assembled automatically
without the explicit creation of a coarse grid. For this
method, the use of a hybrid grid does not introduce
any significant additional difficulties. Agglomeration
multigrid is a very powerful approach offering sim-
plicity and robustness, but with the Navier-Stokes
equations there is the problem that the sum of the
order of accuracy of multigrid restriction and prolonga-
tion violates the condition established by Hackbusch”
(see section Scheme Description) as being necessary
for grid-independent convergence. Using an ad hoc
fix, Mavriplis has nevertheless obtained impressive re-
sults,'’ "% but in our research we have preferred the
alternative approach of explicitly constructing coarse
grids from the finest grid, so that we can achieve first
order restriction and second order prolongation in the
multigrid.

Our research started from the edge-collapsing multi-
grid approach introduced by Crumpton and Giles,
which has been shown to be highly successful for invis-
cid flows on tetrahedral meshes.>>* For high Reynolds
number viscous flows, modifications had to be in-
troduced to prevent the grid in the boundary layer
becoming over-coarsened in the direction across the
boundary layer. The result is essentially equivalent to
a semi-coarsening strategy as used on highly stretched
structured grids,'® 23 and it gives a multigrid algo-
rithm which is efficient, robust and applicable to com-
plex geometries in two and three dimensions.”

The subject of this paper is the extension of the
edge-collapsing idea to hybrid grids. This proved to
be more difficult than initially expected. Ideally, what
one would like is a collapsing technique which preserves
as much as possible of the structure within the grid.
For example, if the fine grid consists of prisms in the
boundary layer, then one would ideally like the first
coarse grid to consist of semi-coarsened prisms in the
boundary layer. However, Crumpton’s edge-collapsing

algorithm works by collapsing an edge, combining its
two nodes into one, and connecting the new node to
the faces of the cavity formed by the removal of the
edge and all associated cells. When starting from a
prismatic grid, this quickly results in a grid consisting
solely of tetrahedra. Even worse, with a hexahedral
grid it can result in a coarse grid which has fewer
nodes, but an increased number of cells, many of which
are tetrahedra.'8

We will show that these problems are avoided by
modifying the algorithm to collapse cells rather than
edges, ensuring that the number of cells and edges is
always reduced, as well as the number of nodes. The
use of heap-based dynamic sorting to select the next
cell for collapse, and limits to prevent excess collaps-
ing, lead to patterns of collapse which result in the
coarsened grid retaining most of the inherent struc-
ture of the original grid in highly stretched regions.
The multigrid CFD algorithm is also described and
results are presented for a range of test cases to show
the multigrid convergence rates which are achieved.

Edge-collapsing Multigrid

The coarser meshes used in the calculations have
been generated using an element-collapsing algo-
rithm'® that primarily considers the graph of edges of
the mesh. In this graph, any set of edges can be col-
lapsed if the geometry is still valid after the collapse
and none of the neighboring edges exceeds a certain
multiple of its original length. The first criterion is
obvious, we cannot tolerate negative volumes due to
folded grids. The second criterion expresses the design
principle of multigrid: the coarsening approximately
doubles the length of the edges in a mesh.

In a triangular or tetrahedral mesh, collapsing a sin-
gle edge removes all elements that are formed with that
edge. In a hybrid mesh this is not the case; in order
to make an element disappear we may have to col-
lapse several edges. In our current implementation we
choose to collapse the shortest edge of an element and
the other edges which are topologically “parallel” that
is they connect the same two faces. An element col-
lapse then happens by two faces of an element falling
onto each other.

The implementation of this algorithm for isotropic
meshes is straightforward. Given a fine mesh, we tag
each edge with its length times a growth factor, say
2, as maximum length. The elements are sorted in
a heap list for smallest volume and we try to collapse
the shortest edge and its parallel siblings. Fixing a cer-
tain maximum angle for the elements in the collapsed
geometry, in the 2D examples 135°, guarantees a min-
imum quality of the coarser mesh as well as positive
volumes. This test is done by looping over all elements
that are formed with any of the collapsed vertices and
considering the “remaining” element of each. Other
edges on these elements may have been collapsed in
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Fig. 1 Collapsing edges on a hexahedron.

earlier steps. E.g. a quadrilateral with one collapsed
edge becomes a triangle, a doubly collapsed quadrilat-
eral vanishes. Various collapsed shapes derived from a
hexahedron are shown in figure 1. The algorithm ter-
minates once there are no edges left to be collapsed.
All remaining elements and nodes are then identified
and a coarsened grid is created.

The algorithm has to be modified to achieve direc-
tional coarsening in stretched layers. All long edges in
stretched regions have to be prevented from collapsing.
For this we need to identify short edges in stretched
regions. A first criterion is that these edges are shorter
by a given factor, say 3, compared to the largest neigh-
boring edge. Additionally we require that there is
at least one other neighboring edge that is short and
points in the same direction, to within some tolerance.
This criterion ensures that single short edges in very
irregular unstructured grids do not define a stretched
region.

If an element is in a stretched region, all neighboring
long edges of the ones to be collapsed are prevented
from any collapse. Once the stretched regions have
been directionally coarsened in this way, the isotropic
process collapses the rest of the domain. Figures 9 and
10 show the results of the grid coarsening for a hybrid
grid around a RAE 2822 airfoil. It can be seen that the
stretched part of the grid close to the airfoil remains
regular and is coarsened exactly 1:2. The outer part of
the structured region which is not stretched loses some
regularity and the quadrilaterals collapse into larger
quadrilaterals and triangles.

Scheme Description

The pre-conditioned semi-discrete equation appears
as

d
-1
pP=— - +R(@Q) =0,
where () denotes the set of conservative variables,
R(Q) the residual vector of the spatial discretisation
and P~! the local preconditioner which is a point-
implicit block-Jacobi preconditioner.!>1?

Using a finite volume approach, the discrete approx-
imation of the residual for an interior grid point is

1 )
Rj = VJ leZE Fij A Sij V],

where V; is the measure of the control volume (the
median-dual) associated with index j, E; the set of

all nodes connected to node j via an edge, As;; a dis-
tance (2D) or area (3D) associated with the edge, and
F;; is the numerical flux. In a previous paper,’” we
argued that a desirable feature of discretisations on
hybrid grids was that all spatial operators should be
‘linear preserving’, giving the exact integral for any lin-
ear function. However, to obtain this for grids which
are not tetrahedral requires the addition of many new
edges, and so here we have assumed that in structured
or semi-structured regions there is sufficient smooth-
ness in the grid to use the simple median-dual edge
weights with negligible loss of accuracy.

At a solid wall, an extra term from the boundary
faces associated with the node is added. Tangency
and no-slip wall conditions are enforced by zeroing
out the momentum components associated with the
corresponding wall condition, whereas the far field
boundary is treated by adding an extra upwinded flux
difference. The inviscid flux discretization is based on
the flux-differencing ideas of Roe,?! combining cen-
tral differencing of the non-linear inviscid fluxes with
a smoothing term based on one-dimensional character-
istic variables. This numerical dissipation is a blend of
second and fourth characteristic differences with a lim-
iter.> The viscous flux is approximated half-way along
each edge and uses the usual integration rule around
each volume, giving a consistent finite volume treat-
ment of the inviscid and viscous terms. To account
for the effect of turbulence, the one equation turbu-
lence model of Spalart and Allmaras?? is used with a
first order spatial discretisation. Other than an im-
plicit treatment of the source term, it is solved using
the same 5-stage Runge-Kutta method'® as used for
the flow equations.

The preconditioner P is based on a local lineari-
sation of the 3D Navier-Stokes equations about a
uniform flow, and built by extracting the terms cor-
responding to the central node. As the flux can be
split into inviscid and viscous parts, the matrix pre-
conditioner has contributions coming from both, and
is written as

_ —1 1
le:(PjI) +(Pjv) )

where the superscripts I and V stand for Inviscid
and Viscous, respectively. Even though a high-order
method with limiters is used to define the residual,
the preconditioner is based on a first order charac-
teristic smoothing. This approximation is acceptable
since the resulting matrix timestep will be only un-
derestimated. This is slightly different from the struc-
tured approach, where the block-Jacobi preconditioner
remains the same for both schemes.!® The viscous
contribution is only calculated for interior grid points
since there is no viscous contribution for a node which
lies on a adiabatic solid wall. Following a lineariz-
ing procedure, a key factor for the implementation is
that all cross derivatives are neglected in the precon-
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ditioner.

To form the block-Jacobi preconditioner, the invis-
cid and viscous Jacobians need to be calculated at
each node of the grid. However, at the wall, as al-
ready mentioned, the viscous Jacobian does not have
to be evaluated. In fact, only a no-slip condition has
to be satisfied which is achieved by setting all momen-
tum components in the residual to zero. For Euler
calculations, the procedure is slightly different. In ad-
dition to the corrections made on the residual, the
preconditioner is modified at the wall in order that the
condition u.n = 0 is satisfied; u and n denote respec-
tively the velocity vector and the unit normal vector
to the wall. This is accomplished by re-evaluating the
matrix in the coordinate system (z,,, xt,, T, ), by using
a rotation matrix T from the original (z,y, z) coordi-
nate system to the new one. z, is the coordinate in
the direction normal to the surface and the other two
are mutually orthogonal tangential coordinates. Once
done, it is transformed back to the original coordinate
system. Thus, the original equation becomes

[Pt —T7'ST(P~" = 1)] % =MR(Q) ,
where M = (I —T~'ST) with S the matrix which sets
the normal momentum component to zero. T ST
only involves the unit normal vector, and so is easily
constructed.b

As explained in the previous section, the multigrid
uses a sequence of coarse grids generated from an
initial fine grid by an automatic element removal al-
gorithm. This algorithm produces a pointer from each
fine grid node to the coarse grid node into which it has
collapsed. The multigrid restriction uses this to com-
pute a volume-weighted average of the flow and a lim-
ited volume-weighted restriction of the residual. For
the prolongation, a linear interpolation is used through
the reconstruction of the gradient of the corrections.
The accuracy of the transfer operators thus defined is
sufficient to guarantee good convergence rates, since it
satisfies the necessary relation for ensuring multigrid
efficiency”

Op+ Or > 0Og R

where Op and Op are defined as the highest degree
plus one of the polynomials that are interpolated ex-
actly by the prolongation and restriction operator and
Opg is the order of the differential equation, which
equals 2 for the Navier-Stokes equations.

All of the results to be presented were obtained using
V-cycle multigrid, with Full Multigrid startup, and one
iteration of the Runge-Kutta smoother before restric-
tion and after prolongation, except where otherwise
stated. Thus, one multigrid cycle on the finest grid
level has a computational cost which is approximately

double that of a single 5-stage time-step on the finest
grid.

Results

In this section we present results for a set of inviscid
and viscous flows over geometries of varying complex-
ity. First, results are presented for a two-dimensional
problem. The performance of the collapsing multi-
grid algorithm with the hybrid approach is compared
with previous results obtained by Pierce using struc-
tured grids.'® The test case is a standard transonic
NACAOQ012 case with My, = 0.8 and o = 1.25°, giv-
ing a strong shock on the suction surface and a weak
shock on the pressure surface. The fine grid, shown
in Figure 2, contains 20480 quadrilaterals and is ex-
actly the same as used by Pierce. A sequence of 4
coarser hybrid meshes was generated following the el-
ement collapsing procedure; the first and last of these
is shown in Figures 3 and 4. It can been seen that the
coarsening procedure maintains the general topology
of the domain, with the coarse grids composed mainly
of quadrilaterals. The computed pressure distribution
and the convergence history using both methods are
presented in figures 5 and 6. Both methods converge
similarly to machine accuracy with very little differ-
ence in the asymptotic convergence rate.

We next present a calculation over a geometry of in-
creased complexity. It involves the solution of inviscid
transonic flow over a business jet. The geometry con-
sists of a half complete aircraft configuration bounded
by a symmetry plane. The fine grid has 156000 vertices
and 847000 tetrahedra. 2 coarser grids are derived
by the element collapsing algorithm and contain re-
spectively, 58500 and 9800 grid points. The collapsing
algorithm is based on several criterion driving the col-
lapsing procedure. In this case, the low coarsening
ratio between the finest and the first coarser mesh is
due to the poor quality of the initial mesh which has el-
ements with a dihedral angle of more than 180°. The
freestream conditions are My, = 0.85 and o = 2°.
Figures 7 and 8 show the convergence history and the
Mach contour plot where the shock patterns are evi-
dent. Convergence to machine accuracy is achieved in
249 multigrid iterations.

The first test case involving a turbulent flow is over
a single airfoil. The geometry is an RAE2822 airfoil,
with My, = 0.73, Re = 6.5 million, and o = 2.8°.
The mesh employed for this computation contains a
total of 19100 grid points, and is depicted in Fig-
ure 9. This hybrid grid has a structured part, with
elements stretched in the direction along the airfoil,
the rest of the domain being filled with triangles. Four
coarser grids have been generated, the first one is de-
picted in Figure 10. Figure 12 shows the computed
pressure distribution which compares well with the
experimental data,? although the turbulence model
produces a shock location forward of the experimen-
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tal location, behavior which has been previously ob-
served.'®22 The shock induces a separation bubble
measuring about 5% of chord. Convergence history is
shown, in Figure 11. Here we compare the convergence
when using the block-Jacobi preconditioner and when
using the standard approach of scalar preconditioning,
with semi-coarsened multigrid. Both methods con-
verge to machine accuracy, along with the turbulence
model. The Jacobi approach converges quite smoothly
and rapidly to engineering accuracy in approximately
90 multigrid iteration, but after 4 orders of magnitude,
a severe degradation in convergence occurs, making
this method only as efficient as the standard one. This
behavior is attributed to the turbulence model whose
convergence is asymptotically the limiting factor in
both calculations. However, for this case the precon-
ditioned calculation required two smoothing iterations
before restriction of the residual and after prolonga-
tion of the multigrid correction, whereas the standard
approach required three. Thus, the preconditioned cal-
culation is almost 50% faster.

The final example is the flow through the 3D bypass
duct of a turbofan engine. The geometry is composed
of ten struts and a pylon. The fine grid has 274000
grid points and is constructed by stacking a sequence
of 2D grids. Convergence history and Mach contours
can be seen in Figures 13 and 14. From the fine grid,
2 coarser grids are produced containing respectively
138000 and 79300 vertices. The coarsening ratio is
low because the multigrid semi-coarsening strategy is
essentially only removing points in one-dimension in
the areas of high stretching, which is both through the
boundary layer and radially. The radial stretching is
a consequence of the grid being composed of stacked
2D grids with a fixed radial step. This leaves a high
aspect ratio in the radial direction in all regions of
the 2D grid that have a much smaller mesh spacing
than the radial step. For an inflow Mach number of
0.55, with zero incidence and a Reynolds number of
6 million around the struts, convergence to 6 orders
of magnitude is reached in 250 multigrid cycles (the
pylon is here treated as inviscid, because the purpose
of studying this geometry did not require the pylon
boundary layer to be resolved).

Conclusions

In this paper we have presented a new multigrid
method for the solution of the Euler and Navier-Stokes
equations on unstructured hybrid grids. Unlike the
agglomeration multigrid method, it involves the con-
struction of a sequence of coarse hybrid grids on which
the same residual operator can be applied. The benefit
of this approach is that linear corrections can be pro-
longed exactly, thereby satisfying a key requirement
for grid independent convergence of the Navier-Stokes
equations.

The coarse grids are generated through an ele-

ment collapsing procedure which preserves much of the
structure in semi-structured grids, and in particular
gives semi-coarsening in boundary layer grids which
are created by the method of advancing normals.

Numerical results for a variety of two-dimensional
and three-dimensional problems show that the multi-
grid convergence rate is excellent. An important con-
tributing factor is the use of Jacobi preconditioning
for the Runge-Kutta iteration, which overcomes much
of the numerical stiffness associated with the Navier-
Stokes equations in the highly stretched cells in the
boundary layer.
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Fig. 3 NACAO0012; first coarsening
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Fig. 5 NACAO0012; coefficient of pressure
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Fig. 8 Business jet, Mach number contours
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