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Abstract. We present an adaptive multilevel Monte Carlo (MLMC) method

for weak approximations of solutions to Itô stochastic differential equations
(SDE). The work [11] proposed and analyzed a MLMC method based on a hier-

archy of uniform time discretizations and control variates to reduce the compu-

tational effort required by a standard, single level, forward Euler Monte Carlo
method from O

(
TOL−3

)
to O

(
(TOL−1 log(TOL−1))2

)
for a mean square

error of O
(
TOL2

)
. Later, the work [17] presented a MLMC method using

a hierarchy of adaptively refined, non uniform time discretizations that are

generated by the adaptive algorithm introduced in [26, 25, 8], and, as such,
it may be considered a generalization of Giles’ work [11]. This work improves

the algorithms presented in [17] and furthermore, it provides mathematical

analysis of these new adaptive MLMC algorithms. In particular, we show that
under some assumptions our adaptive MLMC algorithms are asymptotically

accurate and essentially have the correct complexity but with improved control

of the complexity constant factor in the asymptotic analysis. Numerical tests
include one case with singular drift and one with stopped diffusion, where the

complexity of a uniform single level method is O
(
TOL−4

)
. For both these

cases the results confirm the theory, exhibiting savings in the computational
cost for achieving the accuracy O (TOL) from O

(
TOL−3

)
for the adaptive sin-

gle level algorithm to essentially O
(

TOL−2 log
(
TOL−1

)2)
for the adaptive

MLMC.

Key words: computational finance, Monte Carlo, multi-level, adaptivity,

weak approximation, error control, Euler–Maruyama method, a posteriori er-

ror estimates, backward dual functions, adjoints

AMS subject classification: 65C30, 65Y20, 65L50, 65H35, 60H35, 60H10

Contents

1. Introduction 2
1.1. A single level posteriori error expansion 5
2. Adaptive algorithms and multilevel variance reduction 9
2.1. Path independent time stepping 10
2.2. Stochastic time stepping 13
2.3. Algorithm listings 15
3. Numerical experiments 19
3.1. A Linear SDE 20

∗CSC, Royal Institute of Technology (KTH),Stockholm, Sweden.

†Applied Mathematics and Computational Sciences, KAUST, Thuwal, Saudi Arabia.
‡Mathematics, Royal Institute of Technology (KTH), Stockholm, Sweden.
§Applied Mathematics and Computational Sciences, KAUST, Thuwal, Saudi Arabia

(raul.tempone@kaust.edu.sa).

1



2 H. HOEL, E. VON SCHWERIN, A. SZEPESSY, AND R. TEMPONE

3.2. Drift singularity, linear SDE 21
3.3. Stopped diffusion 25
4. Theoretical results 29
4.1. Single level results 33
4.2. Multilevel results 38
Proof of Theorem 2 41
Proof of Theorem 3. 46
5. Conclusions 49
Appendix A. Theorems 50
References 50

1. Introduction

This work develops multilevel adaptive algorithms for weak approximation of Itô
stochastic differential equations (SDEs)

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), 0 < t < T, (1.1)

where X(t;ω) is a stochastic process in Rd, with randomness generated by a k-
dimensional Wiener process with independent components W (t;ω), cf. [20, 28],
and a(t, x) ∈ Rd and b(t, x) ∈ Rd×k are the drift and diffusion fluxes. For any
given sufficiently well behaved function g : Rd → R our goal is to approximate the
expected value E[g(X(T ))] by adaptive multilevel Monte Carlo (MLMC) methods.
A typical application is to compute option prices in mathematical finance, cf. [19,
13], and other related models based on stochastic dynamics are used for example in
molecular dynamics simulations at constant temperature [5], for stochastic climate
prediction [23], and for wave propagation in random media [1].

The computational complexity of a Monte Carlo method is determined by the
number of sample realizations approximating g(X(T )) and their average cost. When
a standard Monte Carlo method based on a uniform time stepping scheme of weak
order one is used to compute E[g(X(T ))] to an accuracy TOL with high probability,
the cost is asymptotically proportional to TOL−3, provided that the functions a,
b, and g are sufficiently regular. A Monte Carlo method can not do better than a
cost proportional to TOL−2, since this is the total cost when each realization of
g(X(T )) is generated exactly at a unit cost. The goal of this work is to combine
two techniques for improving the standard Monte Carlo method: the first is to use
adaptive time stepping which retains the single level complexity O(TOL−3) for a
wider set of problems than a uniform time stepping does, and can reduce the pro-
portionality constant for other problems with widely varying scales. The second is
the MLMC method, which in many cases can reduce the complexity to nearly the
optimal O(TOL−2) when based on the Euler–Maruyama scheme, and which can
achieve the optimal rate using the Milstein scheme.

In the context of weak approximation of SDEs, the MLMC method based on
uniform time stepping was introduced by Giles in [11], and around ten years prior
to Giles’ method, a similar MLMC idea was presented for applications in the context
of parametric integration, cf. [15, 16]. Giles’ MLMC method, which is an extension
of a two-level control variate technique, cf. [21], reduces the complexity of weak
approximations of SDEs by a control variate type variance reduction. The variance



IMPLEMENTATION AND ANALYSIS OF AN ADAPTIVE MLMC ALGORITHM 3

reduction is obtained using subtly correlated numerical realizations of the SDE (1.1)
on hierarchies of uniform time meshes of size

∆t` = C−`∆t0, C ∈ {2, 3, . . .} and ` ∈ {0, 1, . . . , L}. (1.2)

That is, the MLMC method approximates E[g(X(T ))] by the multilevel estimator

AML
(
g
(
X (T )

)
;M0

)
=

M0∑
i=1

g(X0(T ;ωi,0))

M0

+

L∑
`=1

M∑̀
i=1

g(X`(T ;ωi,`))− g(X`−1(T ;ωi,`))

M`
, (1.3)

with X`(T ;ω) denoting a numerical solution realization generated on a mesh with
uniform step size ∆t`. The multilevel estimator is a sum of L+ 1 sample averages
computed from mutually independent sample sets on the given mesh levels with
M` respective, independent realizations. Furthermore, the number of realizations
on the higher leveles, {M`}L`=1, have a fixed relation to the number of realizations
on the coarsest mesh, M0, which is the only free parameter in (1.3), when the
number of levels L is fixed. To reduce the variance in the estimator (1.3), the
realization pairs X`(T ;ωi,`) and X`−1(T ;ωi,`) of the summands g(X`(T ;ωi,`)) −
g(X`−1(T ;ωi,`)) for each level ` > 0 are generated from the same Brownian path,
W (t;ωi,`), but realized on different temporal grids with uniform time steps, ∆t`
and ∆t`−1, respectively. The efficiency of the multilevel estimator stems from an
a priori known order of strong convergence for the numerical method employed on
each level of the hierarchy.

Supposing TOL > 0 is the desired accuracy in the approximation of E[g(X(T ))],
the main result of Giles’ work [11] is that the computational cost needed to achieve
the Mean Square Error (MSE)

E
[(
AML

(
g
(
X (T )

)
;M0

)
− E[g(X(T ))]

)2]
= O

(
TOL2

)
, (1.4)

when generating numerical realizations X`(T ;ω) using the first order accurate For-
ward Euler method, can be reduced from O

(
TOL−3

)
with the standard Monte

Carlo method to O
(
(TOL−1 log(TOL−1))2

)
using the MLMC method. Further-

more, whenever the function g is Lipschitz and for scalar Itô SDE, the compu-
tational cost can be further reduced to O

(
TOL−2

)
using the first order strong

convergence Milstein method. In addition, the work [10] shows how to apply the
Milstein method for several scalar SDE cases where the Lipschitz condition is not
fulfilled and still obtain the cost O

(
TOL−2

)
.

Building on the work on adaptive methods for weak approximation of SDE pre-
sented in [25, 29] and Giles’ work on uniform time stepping MLMC methods [11],
the contribution of the present paper is the development and analysis of two novel
MLMC algorithms with adaptive, non uniform time stepping: one algorithm that
uses adaptive mesh refinements to construct a path dependent mesh for each re-
alization and another algorithm that constructs the meshes adaptively based on
sample averaged error densities and then uses the same mesh for all realizations
on a given mesh level in the hierarchy. The former algorithm is referred to as the
stochastic time stepping algorithm and the latter as the deterministic time stepping
algorithm. Adaptivity is useful for problems lacking regularity since adaptive mesh
refinement algorithms resolve singular points better than uniform mesh algorithms
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by construction, and may consequently also have considerably lower computational
complexity, cf. [26]. The idea of extending the MLMC method [11] to hierarchies
of adaptively refined, non uniform time discretizations that are generated by the
adaptive algorithm introduced in [26, 25, 8] was first introduced and tested com-
putationally by the authors in [17].

The numerical method for SDE considered in this paper is the Euler–Maruyama
method with non uniform time stepping which we now recall for the reader’s conve-
nience. Let 0 = t0 < t1 < · · · < tN = T denote a given time discretization, without
reference to its place in the hierarchies, and {0 = W (t0;ω),W (t1;ω), . . . ,W (tN ;ω)}
denote a realization of the Wiener process on that discretization. Then the Euler–
Maruyama approximation to the true solution of (1.1) is given by the scheme

X(t0;ω) = X(0),

X(tn+1;ω) = a(X(tn;ω), tn)(tn+1 − tn) + b(X(tn;ω), tn)(W (tn+1;ω)−W (tn;ω)),

(1.5)

iterated for n = 1, 2, . . . In the setting of adaptive mesh refinement there is no given
notion of mesh size, so the hierarchy of meshes for the multilevel estimator (1.3)
can not be described as for the uniform time stepping (1.2). Instead, we generate
a hierarchy of meshes by successively increasing the accuracy in our computations,
introducing the time discretization error tolerance levels1

TOLT,` = 2`−LTOLT, for ` ∈ {0, 1, . . . , L}, (1.6)

and (by adaptive refinements based on error indicators) determining the corre-
sponding meshes so that for each level ` ∈ {0, 1, . . . , L},∣∣E[g(X(T ))]− E

[
g(X`(T ))

]∣∣ . TOLT,`.

In Section 4, we prove that this procedure results in an adaptive MLMC algorithm
fulfilling ∣∣AML(g(X (T )

)
;M0

)
− E[g(X(T ))]

∣∣ ≤ TOL, (1.7)

with probability close to one, and that the computational cost for obtaining this
error estimate (1.4) is essentially O

(
TOL−2 log(TOL−1)2

)
, cf. Theorem 2 and 3,

respectively. Analogous theoretical results also hold for the adaptive algorithm
with deterministic stepping, but, for the sake of brevity, they are not included here,
see [25] for more information on this setting.

This work also includes three numerical examples, the most relevant ones being
one with a drift singularity and one with a stopped diffusion. For both of these
examples the observed computational work of multilevel Monte Carlo based on
adaptive time stepping is approximately O

(
TOL−2 log(TOL−1)2

)
, that is close

to the optimal complexity and more efficient than the single level version of the
adaptive algorithm.

The rest of this paper is organized as follows. Section 1.1 introduces the notion of
error density and error indicators, and recalls useful results for single level adaptive
forward Euler Monte Carlo methods. Section 2 describes the adaptive multilevel
Monte Carlo algorithms. Section 3 presents numerical examples and Section 4
proves accuracy and complexity results for the adaptive MLMC algorithm.

1For error control, the tolerance is split into a statistical error tolerance and a time discretiza-
tion error tolerance; TOL = TOLS + TOLT, cf. Section 2.
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1.1. A single level posteriori error expansion. In this section we give a short
description the adaptive numerical method we will use for SDE, recalling theoretical
results and stating required regularity condition for the method.

Assume that the process X satisfies (1.1) and its corresponding numerical solu-
tion X is given by (1.5), then the error expansions in Theorem 1.2 and 2.2 of [29]
have the form

E
[
g(X(T ))− g(X(T ))

]
= E

[
N−1∑
n=0

ρn∆t2n

]
+ higher order terms, (1.8)

where ρn∆t2n are computable error indicators and ρn measures the density of the
global error in (1.8). Typically, an adaptive algorithm does the two following things
iteratively:

(1) if the error indicators satisfy an accuracy condition, then stop; otherwise
(2) the algorithm chooses where to refine the mesh based on the error indicators

and return to step 1.

In addition to estimating the global error E
[
g(X(T ))− g(X(T ))

]
in the sense of

equation (1.8), the error indicators ρn∆t2n indicate which mesh intervals that should
be refined to reach the optimal mesh; a result that follows from the almost sure
convergence of the density ρn as TOLT ↓ 0, cf. Section 4 in [26].

Given an initial time discretization ∆t[0](t), the stochastic time stepping algo-
rithm refines the initial mesh until2

|ρ(t, ω)|
(
∆t(t)

)2
< constant. (1.9)

The final mesh refinment ∆t(t) is obtained by repeated halving of mesh intervals
and thus takes the form

∆t(t) = ∆t[0](t)/2n for some natural number n = n(t, ω).

The criterion (1.9) uses an approximate error density function ρ, satisfying for
t ∈ [0, T ] and all outcomes ω the uniform upper and lower bounds

ρlow(TOLT) ≤ |ρ(t, ω)| ≤ ρup(TOLT). (1.10)

In this construction the positive functions ρlow and ρup are chosen so that the
limits ρup(TOLT)→ +∞, ρlow(TOLT)→ 0, and TOLT/ρlow(TOLT)→ 0, hold as
TOLT ↓ 0.

For each realization, successive subdivisions of the time steps will asymptotically
yield the smallest mesh, in terms of grid points, satisfying (1.9). Furthermore, the
Wiener increments ∆W generated on the refined mesh by Brownian bridge interpo-
lation, cf. [20], will have the correct distribution with the necessary independence.
At this point we note that adaptive time stepping for SDE is a subtle construction
that may lead to wrong results if implemented incorrectly, cf. [9].

Remark 1. Although the time and Wiener increments adaptively generated to
satisfy (1.9)–(1.10) are not adapted to the natural Wiener filtration, it is verified
in [29] that the adaptive method indeed converges to the correct limit, equaling the
limit of the Euler–Maruyama method with adapted time steps.

2The precise expressions including the constants are given in (2.7) and (2.20) below.
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Remark 2. The work [29] includes an additional assumption, namely that the
sensitivity of the error density to values of the Wiener process can be bounded by
a deterministic function of TOLT. This assumption can be removed by estimating
the sensitivity of the error density to values of the Wiener process directly in terms
of polynomials of the Wiener increments and then following essentially the same
steps of the analysis given in Section 3 from [29], taking into account that an ac-
cepted sequence of refinements remains the same under perturbations of the Wiener
increments if all the signs of the refinement inequalities (1.9) remain unchanged for
all time steps during the finite sequence of refinements. This line of analysis yields
the same estimates for strong and weak convergence as stated in [29].

The regularity conditions presented in the following lemma is a subset of the
conditions required in the work [27] for developing an adaptive weak approximation
method in the more general setting of jump diffusions.

Lemma 1 ( Regularity [27, Lemma 2.1]). (a) Assume that the following regularity
conditions hold:

(1) The functions a(t, x) and b(t, x) are continuous in (t, x) and are twice con-
tinuously differentiable with respect to x.

(2) The partial derivatives of first and second order with respect to x of the
functions a and b are uniformly bounded.

(3) The function g is twice continuously differentiable, and together with its
partial derivatives of first and second order it is uniformly bounded.

Then the cost to go function, defined by

u(t, x) = E
[
g(X(T )) | X(t) = x

]
, (1.11)

satisfies the Kolmogorov equation

∂tu(t, x) + ak∂ku(t, x) + dkn∂knu(t, x) = 0, u(T, ·) = g, (1.12)

where we use the Einstein summation convention3 and dkn := blkb
l
n/2.

(b) Assume further that the following extra regularity conditions are satisfied:

(1) The functions ∂βa(t, ·) and ∂βb(t, ·) are bounded uniformly in t for multi-
indices β with 1 ≤ |β| ≤ 8.

(2) The functions a(·, x), b(·, x) have continuous and uniformly bounded first
order time derivatives.

(3) The function g has spatial derivatives ∂βg, with polynomial growth for |β| ≤
8.

Then the function u has continuous partial derivatives with respect to x up to the
order 8, satisfying the following polynomial growth condition: for all i ∈ {0, 1, 2}
and α ∈ Nd with i+ |α| ≤ 8 there exists pα,i ∈ N and Cα,i > 0 such that

max
0≤t≤T

∣∣ ∂it∂αu(t, x)
∣∣ ≤ Cα,i

(
1 + |x|pα,i

)
∀x ∈ Rd.

3When an index variable appears twice in a single term this means that a summation over all

possible values of the index takes place. For example, ak∂ku(t, x) =
∑d

k=1 ak∂ku(t, x), where d

is the space dimension of the SDE (a, x ∈ Rd).
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The strong convergence result we present next was stated and proved in [29,
Lemma 3.1]. The convergence result is helpful for proving the existence of a sto-
chastic time error expansion and for bounding the statistical error of the weak
approximation.

Lemma 2 (Strong Convergence). For X, the solution of (1.1), suppose that a, b,
and g satisfy the assumptions in Lemma 1, that X is constructed by the forward
Euler method based on the stochastic time stepping algorithm described in Section 2
with step size ∆tn satisfying ((1.9))–((1.10)), and that the corresponding ∆Wn are
generated by Brownian bridges. Then

sup
0≤t≤T

E
[∣∣X(t)−X(t)

∣∣2] = O (∆tsup) = O
(

TOLT

ρlow(TOLT)

)
→ 0 (1.13)

as TOLT ↓ 0, where ∆tsup ≡ supn,ω ∆tn(ω).

A theorem proving the existence of an error expansion for the more general
setting of jump diffusions was given in the work [27]. We recall that theorem here,
in a form adapted to our setting.

Theorem 1 (Single level stochastic time stepping error expansion [27, Theorem
3.1] ). Given the assumptions in Lemma 2 and a deterministic initial value X(0),
the time discretization error in (1.8) may be expressed by an expansion based on
the drift and diffusion fluxes and the discrete dual functions ϕ, ϕ′, and ϕ′′ given in
(1.16)–(1.21). The expansion has the following computable leading order terms.

∣∣E[g(X(T ))]−E
[
g(X(T ))

]∣∣ = E

[
N−1∑
n=0

ρ̃(tn, ω)(∆tn)2

]

+O
(( TOLT

ρlow(TOLT)

)1/2( ρup(TOLT)

ρlow(TOLT)

)ε)
E

[
N−1∑
n=0

(∆tn)2

]
,

(1.14)

for any ε > 0 and where

ρ̃(tn, ω) ≡ 1

2

((
∂tak + ∂jakaj + ∂ijakdij

)
ϕk(tn+1)

+
(
∂tdkm + ∂jdkmaj + ∂ijdkmdij + 2∂jakdjm

)
ϕ′km(tn+1)

+
(
2∂jdkmdjr

)
ϕ′′kmr(tn+1)

) (1.15)

and the terms in the sum of (1.15) are evaluated at the a posteriori known points
(tn, X(tn)), i.e.,

∂αa ≡ ∂αa(tn, X(tn)), ∂αb ≡ ∂αb(tn, X(tn)), ∂αd ≡ ∂αd(tn, X(tn)).

Here ϕ ∈ Rd is the solution of the discrete dual backward problem

ϕi(tn) = ∂icj(tn, X(tn))ϕj(tn+1), tn < T,
ϕi(T ) = ∂ig(X(T )),

(1.16)

with

ci(tn, x) ≡ xi + ∆tnai(tn, x) + ∆W `
nb
`
i(tn, x) (1.17)
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and its respective first and second variation

ϕ′ij ≡ ∂xj(tn)ϕi(tn) ≡ ∂ϕi(tn;X(tn) = x)

∂xj
, (1.18)

ϕ′′ikm(tn) ≡ ∂xm(tn)ϕ
′
ik(tn) ≡ ∂ϕ′ik(tn;X(tn) = x)

∂xm
, (1.19)

respectively satisfying

ϕ′ik(tn) = ∂icj(tn, X(tn))∂kcp(tn, X(tn))ϕ′jp(tn+1)

+∂ikcj(tn, X(tn))ϕj(tn+1), tn < T,
ϕ′ik(T ) = ∂ikg(X(T )),

(1.20)

and

ϕ′′ikm(tn) = ∂icj(tn, X(tn))∂kcp(tn, X(tn))∂mcr(tn, X(tn))ϕ′′jpr(tn+1)

+∂imcj(tn, X(tn))∂kcp(tn, X(tn))ϕ′jp(tn+1)

+∂icj(tn, X(tn))∂kmcp(tn, X(tn))ϕ′jp(tn+1)

+∂ikcj(tn, X(tn))∂mcp(tn, X(tn))ϕ′jp(tn+1)

+∂ikmcj(tn, X(tn))ϕj(tn+1), tn < T,
ϕ′′ikm(T ) = ∂ikmg(X(T )).

(1.21)

Observe that the constant in O that appears in (1.14) may not be uniform with
respect to the value ε. Thus, in practice one chooses ε = ε(TOL) to minimise the
contribution of the remainder term to the error expansion (1.14).

At the end of this section, we describe how the error density ρ̃(tn, ω) in (1.15)
is modified so that the bounds (1.10) hold and ∆tsup → 0 as TOLT ↓ 0. The
latter criterion is needed to ensure that the adaptive method converges strongly,
cf. Lemma 2. For t ∈ [tn, tn+1) and n = 1, . . . , N , consider the piecewise constant
function

ρ(t) ≡ sign(ρ̃(tn)) min
(

max(|ρ̃(tn)|, ρlow(TOLT)), ρup(TOLT)
)
, (1.22)

where
ρlow(TOLT) = TOL γ̄T, 0 < γ̄ < α

α+2 , 0 < α < 1
2 ,

ρup(TOLT) = TOL−rT , r > 0,
(1.23)

and sign(x) := 1 for x ≥ 0 and −1 for x < 0. The error density ρ defined by
(1.22) is used in mesh refinement, cf. (2.19) and (2.20) for the stochastic time
stepping algorithm, and (2.6) and (2.7) for the deterministic (path independent)
time stepping algorithm. From now on, with a slight abuse of notation, let ρ(tn) =
ρn denote the modified density (1.22).

Following the error expansion in Theorem 1, the time discretization error is
approximated by

|ET | = |E
[
g(X(T ))− g(X(T ))

]
| . E

[
N−1∑
n=0

r(n)

]
(1.24)

using the error indicator, r(n), defined by

r(n) ≡ |ρ(tn)|∆t2n (1.25)

with the modified error density defined by (1.22). According to Corollary 4.3 and
Theorem 4.5 in [25], the error density converges almost surely to a limit density we
denote ρ̂. i.e., ρ→ ρ̂ as TOLT ↓ 0.



IMPLEMENTATION AND ANALYSIS OF AN ADAPTIVE MLMC ALGORITHM 9

Remark 3 (More general expected values.). Suppose that h : [0, T ] × Rd → R is
sufficiently smooth. Then the error estimates in Theorem 1 includes estimates of
expected values of the form

E

[∫ T

0

h(t,X(t))dt+ g(X(T ))

]
.

This follows from introducing the additional variable X(d+1)(t) and the equation
dX(d+1)(t) = h(t,X(t))dt to the SDE (1.1) and eliminating the additional variables
in X and ϕ, so that equation (1.16) is extended to

ϕi(tn) = ∂icj(tn, X(tn))ϕj(tn+1) + ∂ih(tn, X(tn))∆tn, tn < T,
ϕi(T ) = ∂ig(X(T )),

equation (1.20) is extended to

ϕ′ik(tn) = ∂icj(tn, X(tn))∂kcp(tn, X(tn))ϕ′jp(tn+1)

+∂ikcj(tn, X(tn))ϕj(tn+1) + ∂ikh(tn, X(tn))∆tn, tn < T,
ϕ′ik(T ) = ∂ikg(X(T )),

and equation (1.21) is extended in a similar fashion.

2. Adaptive algorithms and multilevel variance reduction

In this section we describe two versions of the adaptive MLMC algorithm. In
Section 2.1, we present the deterministic (path independent) time stepping adaptive
MLMC algorithm. This algorithm is designed for SDEs with singularities which
occur essentially at deterministic times. For this class of problems the same refined
mesh may be used to efficiently improve the accuracy of all realizations at a given
accuracy threshold. An example from this class of problems, which we present in
more detail in Section 3.2, is the drift singularity

dX(t) =

{
X(t) dW (t), t ∈ [0, α],
X(t)

2
√
t−α dt+X(t) dW (t), α ∈ (0, T ) t ∈ (α, T ].

The deterministic time stepping adaptive MLMC algorithm constructs a mesh hier-
archy by adaptive refinements based on comparatively small sample sets and then
performs a greater number of realizations on the constructed mesh hierarchy to
control the statistical error.

The second algorithm, which we present in Section 2.2, is the stochastic (path
dependent) time stepping adaptive MLMC algorithm. This algorithm is designed
for SDE problems where the optimal mesh refinement depends strongly on the
realization, or path, considered. The stopped diffusion SDE

dX(t) = 1X(t)<2

(
11

36
X(t) dt+

1

6
X(t) dW (t)

)
, and X(0) = 1.6,

is an example of such a problem where the mesh refinement of a numerical realiza-
tion X(t;ω) is most important when the realization is close to the stopping barrier
x = 2. See Section 3.3 for more on this stopped diffusion problem. For the sto-
chastic time stepping adaptive MLMC algorithm, meshes are adaptively refined for
each individual realization of the underlying Wiener process.
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2.1. Path independent time stepping. We recall that for a given SDE (1.1),
function g : Rd → R, and tolerance TOL > 0, our goal is to construct an adaptive
MLMC algorithm for which the event∣∣AML(g(X (T )

)
;M0

)
− E[g(X(T ))]

∣∣ ≤ TOL,

holds with probability close to one for the multilevel estimator AML
(
g
(
X (T )

)
;M0

)
that is defined by (1.3). We approach this goal by splitting the above approximation
error as follows∣∣AML(g(X (T )

)
;M0

)
− E[g(XT )]

∣∣
≤
∣∣E[g(XL(T ))− g(X(T ))

]∣∣︸ ︷︷ ︸
=:ET

+
∣∣AML(g(X (T )

)
;M0

)
− E

[
g(XL(T ))

]∣∣︸ ︷︷ ︸
=:ES

,

and controlling the total error by requiring that the time discretization error fulfills
ET ≤ TOLT, asymptotically, and that the statistical error fulfills ES ≤ TOLS, with
high probability. Here, the tolerance also has been split into a time discretization
error tolerance and a statistical error tolerance,

TOL = TOLT + TOLS.

The computations then naturally divides into two phases. The first phase, consist-
ing of Algorithm 1 and Algorithm 2, constructs a hierarchy of meshes to control the
time discretization error ET . The second phase, consisting of Algorithm 3, Algo-
rithm 4 and Algorithm 5, computes a sufficiently large number of Euler–Maruyama
realizations (1.5) on the constructed hierarchy of grids to ensure that ES ≤ TOLS,
with probability close to one.

2.1.1. Generating the mesh hierarchy. We start by generating a hierarchy of meshes
{∆t{`}}L`=0 for numerical approximation of the SDE (1.1), with the `th mesh given
by

∆t{`} =
(

0 = t
{`}
0 , t

{`}
1 , . . . , t

{`}
N`

= T
)
, and ∆t{`}n := t

{`}
n+1 − t{`}n .

The meshes are adaptively refined from a given initial, usually but not necessarily,
uniform mesh ∆t{−1} in a sequential manner such that ∆t{`−1} ⊂ ∆t{`} for all
` ∈ {0, 1, . . . , L}. On level ` the mesh is constructed with the aim that the time
discretization error in the approximation of E

[
g(X`(T ))

]
fulfills∣∣∣E[g(X`(T ))− g(X(T ))

]∣∣∣ < 2L−`TOLT =: TOLT,`, (2.1)

where X`(T ) denotes an Euler–Maruyama approximation of the SDE (1.1) on the
mesh ∆t{`}. The number of mesh levels L is chosen so that the largest tolerance

TOLT,0 = 2LTOLT, (2.2)

is much larger than TOLT and results in a quite coarse mesh on level 0. To be
more precise, with a rough estimate of the magnitude of E[g(X(T ))] taken into
account we prescribe an upper bound4 TOLT,Max for TOLT,0 and determine L by
the equation

L = blog2(TOLT,Max/TOLT)c. (2.3)

4For example take TOLT,Max as half the estimated value of E[g(X(T ))].



IMPLEMENTATION AND ANALYSIS OF AN ADAPTIVE MLMC ALGORITHM 11

For the construction of a time step refinement criterion we introduce the following
notation for the mean number of time steps of the accepted mesh on level `:

N` := E

[∫ T

0

1

∆t{`}(τ)
dτ

]
, (2.4)

and ∆t{`}(·) : [0, T ]→ R+ denotes the step function

∆t{`}(τ) := ∆t
{`}
n(τ), where n(τ) :=

{
m ∈ {0, 1, . . . , N` − 1}

∣∣ t{`}m ≤ τ < t
{`}
m+1

}
.

Furthermore, for a set of M independent samples, we let

A(f ;M) :=
1

M

M∑
i=1

f(ωi) and V(f ;M) :=
1

M − 1

M∑
i=1

(
f(ωi)−A(f ;M)

)2

(2.5)

denote the sample average operator and the sample variance operator, respectively.
The inputs in Algorithm 1 are: initial mesh ∆t{−1}, initial number of sample

realizations M−1, time discretization error tolerance TOLT, grid levels L, initial
estimate of the number of time steps on the accepted coarse mesh N 0 (i.e., N 0 ≈
N0), and the three parameters CR, CS, and R which are all used in the refinement
and stopping conditions (2.7), (2.6), and (2.10), respectively. We choose the initial
estimated number of time steps N 0 as a small integer not smaller than the number
of steps in ∆t{−1}.

On a given level `, the output mesh ∆t{`} is computed by first setting ∆t{`} =
∆t{`−1}, M` = M`−1, andN ` = 2N `−1 (N ` is an estimate of the generally unknown
value N` defined in (2.4)). Thereafter, M` realizations of g

(
X`(T )

)
are generated on

the mesh ∆t{`} and the sampled error indicators r`(n), as defined in equation (1.25),
are computed for all the time steps of the mesh on each of the M` generated
realizations. With N` denoting the the number of timesteps in the present mesh
∆t{`}, the mesh is accepted if the stopping condition

max
1≤n≤N`

A(r`(n);M`) < CS
TOL`

N `

, (2.6)

is fulfilled. Otherwise, the n-th time step is refined by splitting it into two equal
parts if

A(r`(n);M`) ≥ CR
TOL`

N `

. (2.7)

Normally, the value for CR would be around 2, and one must take CS > CR following
the theory developed in [26, 25]. If the mesh is refined, the Wiener increments of
each of the M` realizations of g

(
X`(T )

)
is correspondingly refined by Brownian

bridge interpolation, N` is set to the number of time steps in the refined mesh, the
estimated mean number of time steps is updated to N ` = max{N `, N`}, and the
realizations of g

(
X`(T )

)
are recomputed on the refined mesh. This proecdure is

repeated until the stopping condition (2.6) is fulfilled.
The adaptive refinements of the computational grid are based on the sample aver-

aged error indicators A(r`(n);M`). To estimate the mean error indicators E[r`(n)]
with sufficient accuracy, we need a mechanism for determining how many samples
to use in the sample averages, i.e., M`. With E∆t{`} denoting the computed estimate
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of the time discretization error, i.e.,

E∆t{`} =

N∑̀
n=1

A(r`(n);M`) , (2.8)

a reasonable reliability requirement is√
Var(E∆t{`}) < RE[E∆t{`} ], (2.9)

for some suitably chosen 0 < R < 1. In our numerical examples, for instance, we
use R = 0.2. The variance of E∆t{`} is however unknown, but the i.i.d. distribution
of the sampled error indicators motivates the approximation

Var(E∆t{`}) ≈
V
(∑N`

n=1 r`(n);M`

)
M`

for ` = 0, 1, . . . , L.

We consequently approximate the reliability requirement (2.9) by√√√√V(∑N`
n=1 r`(n);M`

)
M`

< R E∆t{`} , for ` = 0, 1, . . . , L, (2.10)

where the number of sample realizations M` used on level ` in the grid construction
phase is increased by repeated doubling, i.e., M` = 2M`, until inequality (2.10) is
satisfied. As described earlier, the initial batch size at each level is set by M` =
M`−1, where M`−1 denotes the stopped number of samples at level ` − 1, and for
level ` = 0 it turns out to be sufficient to use initial batch size M0 = M−1 with

M−1 = const · TOL−1
T . (2.11)

The adaptive algorithm that generates the above described mesh hierarchy for
the deterministic time stepping adaptive MLMC algorithm is presented in Algo-
rithm 1–2 in Section 2.3.

2.1.2. Multilevel simulations on a given hierarchy. In the second phase we will de-
scribe the algorithms which ensure that our adaptive MLMC estimate of E

[
g(XL(T ))

]
fulfills the statistical error bound

ES =
∣∣AML(g(X (T )

)
;M0

)
− E

[
g(XL(T ))

]∣∣ ≤ TOLS, (2.12)

with probability close to one. We recall from (1.3) that the multilevel estimator is
defined by

AML
(
g
(
X (T )

)
;M0

)
= A

(
g(X0(T ));M0

)
+

L∑
`=1

A
(
g(X`(T ))− g(X`−1(T ));M`

)
,

(2.13)
where the realization pairs X`(T ;ωi,`) and X`−1(T ;ωi,`) that are used in the sum-

mands g(X`(T ;ωi,`)) − g(X`−1(T ;ωi,`)) for each level ` > 0 are generated by the
Euler–Maruyama method (1.5) using the same Brownian path W (t;ωi,`) on the

respective different temporal meshes ∆t{`} and ∆t{`−1} that were computed by
Algorithm 1, which is presented in Section 2.3. Furthermore, all Brownian paths
{W (t;ωi,`)}i,` are independent, and the number of samples at the coarsest level is
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set to M0 = 2L+dCMLLe+1 for a suitable constant CML ∈ (0, 1), cf. Remark 7, and
the number of samples on higher levels is expressed in terms of M0 by the ratio

M` =
M0

2L

⌈
2L
ρlow(TOLT,0)TOLT,`

ρlow(TOLT,`)TOLT,0

⌉
, ` = 1, . . . , L, (2.14)

where ρlow is the lower bound for the error density introduced in (1.23) and d·e
denotes rounding upwards to the nearest integer. The enforced lower bound for the
sample sets {M`}L`=0 implies that ML → ∞ as TOL ↓ 0, and this motivates the
approximation of

AML
(
g
(
X (T )

)
;M0

)
− E

[
g(XL(T ))

]√
Var
(
AML

(
g
(
X (T )

)
;M0

))
by a normal distributed random variable; see Lemma 8 in Section 4 for a justifica-
tion of this approximation for the stochastic time stepping algorithm. Relying on
this approximation, the statistical error (2.12) will be controlled by bounding the

multilevel estimator variance
√

Var
(
AML

(
g
(
X (T )

)
;M0

))
≤ CCTOLS, for a given

positive confidence parameter CC . The variance Var
(
AML

(
g
(
X (T )

)
;M0

))
is how-

ever unknown, so we introduce the following approximation

Var
(
AML

(
g
(
X (T )

)
;M0

))
≈
V
(
g(X0(T ));M0

)
M0

+

L∑
`=1

V
(
g(X`(T ))− g(X`−1(T ));M`

)
M`︸ ︷︷ ︸

=:σ2

.

(2.15)
Our stopping criterion for the Monte Carlo simulations then becomes

σ <
TOLS

CC
. (2.16)

Until this condition is fulfilled, the number of samples is iteratively doubled (M0 =
2M0) and the number of samples at the levels {M`}L`=1 are updated according the

ratio (2.14), and a new sample estimate AML
(
g
(
X (T )

)
;M0

)
is generated using the

multilevel estimator (2.13). Having determined M0, we lastly generate and return
the output estimate AML

(
g
(
X (T )

)
;M0

)
.

The probability of controlling the statistical error, i.e., fulfilling the event (2.12)
depends on the chosen value for the confidence parameter CC. For example, with
CC = 1.65 the event∣∣AML(g(X (T )

)
;M0

)
− E

[
g(XL(T ))

]∣∣ < CC σ,

occurs with probability greater than 0.9, asymptotically as TOL ↓ 0. See Algo-
rithm 3–5 in Section 2.3 for more details on the MLMC algorithms approximating
E
[
g(XL(T ))

]
with the deterministic time stepping algorithm. We refer to [2] for a

performance study of this type of Monte Carlo sequential stopping rules.

2.2. Stochastic time stepping. In this section we describe the stochastic time
stepping MLMC algorithm for approximating E[g(X(T ))]. Quite similar to the
setting of path independent time steps, the error control of the MLMC estimate∣∣AML(g(X (T )

)
;M0

)
− E[g(X(T ))]

∣∣ is in this setting based on constructing numer-

ical realizations X`(t) on stochastic adaptively refined meshes ∆t{`} so that the



14 H. HOEL, E. VON SCHWERIN, A. SZEPESSY, AND R. TEMPONE

time discretization errors∣∣∣E[g(X`(T ))− g(X(T ))
]∣∣∣ ≤ TOLT,`, for ` = 0, 1, . . . , L, (2.17)

are asymptotically fulfilled, and by determining the number of samples M0 to ensure
that the statistical error∣∣AML(g(X (T )

)
;M0

)
− E

[
g(XL(T ))

]∣∣ ≤ TOLS, (2.18)

is fulfilled with a given confidence.
The control of the statistical error (2.18) is very similar to that in the setting of

path independent time steps:

(1) Set the initial number of samples used in the MLMC estimator (2.13) to
M0 = 2L+dCMLLe+1 with CML ∈ (0, 1), cf. Remark 7;

(2) Configure the number of samples M` on higher levels in terms of M0 by the
ratio (2.14);

(3) Generate realizations {X`(T )} for the multilevel estimatorAML
(
g
(
X (T )

)
;M0

)
and compute the sample variance σ2 as defined in (2.15);

(4) If the stopping condition (2.16) is fulfilled, generate a last output estimate
AML

(
g
(
X (T )

)
;M0

)
and break. Otherwise, set M0 = 2M0, update the al-

gorithm parameter estimating the mean number of time steps on each grid
level5, and return to step 2.

For the `-th sample average summand of AML
(
g
(
X (T )

)
;M0

)
, i.e., A

(
g(X0(T );M0

)
if ` = 0 and A

(
g(X`(T )− g(X`−1(T ));M`

)
if ` > 0, the algorithm generates

M` Euler–Maruyama realization pairs6, (X`−1(T ), X`(T )) according to (1.5) with
the time discretization errors respectively bounded by TOLT,`−1 and TOLT,` in
the sense (2.17). The realization pairs are constructed by stochastic adaptive re-
finements of a given initial mesh ∆t{−1}. The realizations in a realization pair
(X`−1(T ), X`(T )) are respectively generated on the adaptively refined meshes ∆t{`−1}

and ∆t{`}. These meshes are determined by iteratively refining an initial mesh
∆t{−1}. First, ∆t{−1} is adaptively refined to a mesh ∆t{0} on which

∣∣E[g(X0(T ))− g(X(T ))
]∣∣ .

TOLT,0 is fulfilled. Thereafter, ∆t{0} is adaptively refined to a mesh ∆t{1} on

which
∣∣E[g(X1(T ))− g(X(T ))

]∣∣ . TOLT,1 is fulfilled. This iterative refinement

procedure continues until the mesh ∆t{`−2} is adaptively refined to generate the
first output mesh ∆t{`−1} and, lastly, ∆t{`−1} is adaptively refined to generate the
second output mesh ∆t{`}.

The iterative adaptive mesh refinement procedure in Algorithm 7, Section 2.3,
ensures that a mesh ∆t{`} for the fine realization in a pair (X`−1(T ), X`(T )) is
determined in the same way as a mesh ∆t{`} for the coarse realization in pair
(X`(T ), X`+1(T )), and consequently that E

[
g(X`(T ))

]
when computed from the

finer realization in a pair (X`−1(T ), X`(T )) is equal to E
[
g(X`(T ))

]
when computed

from the coarse realization in a pair (X`(T ), X`+1(T )). This construction is one
way to guarantee that the consistency condition

E
[
AML

(
g
(
X (T )

)
;M0

)]
= E

[
g(XL(T ))

]
for the multilevel estimator is fulfilled.

5See Algorithm 8 for details on the parameter update.
6Observe that for the level ` = 0 only the realizations of X0(T ) are generated.
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Let us next take a closer look at the mesh refinement. Due to the stochastic
nature of SDEs, each realization pair (X`−1(T ), X`(T )) may refine the initial mesh
∆t−1 differently. In particular, meshes corresponding to different realizations on a
given level ` may differ. To describe the mesh refinement, taking this feature into
account, we introduce some notation. Since statistics on the number time steps in
a mesh is important for the mesh refinement algorithm, we introduce the following
notation the number of time steps in a mesh realization ∆t{`}(ω):

N`(ω) :=

∫ T

0

1

∆t{`}(τ ;ω)
dτ.

Furthermore, write N` := E[N`] for the mean number of time steps on mesh level `
and let N ` represent the algorithm parameter approximating N`. See Algorithm 8
in Section 2.3 for details on the approximation technique and the update of N `

through the iterations.
The mesh refinement condition (1.25) is based on the error indicator r` and

works in a similar fashion as for the single level method: Refinement of a mesh
∆t{`} is stopped when

max
1≤n≤N`

r`(n) < CS
TOLT,`

N `

, (2.19)

but as long as inequality (2.19) is violated, the nth time step of ∆t{`} is refined if

r`(n) ≥ CR
TOLT,`

N `

. (2.20)

Normally, the value for CR would be around 2, and CS > CR following the theory
developed in [26, 25].

A detailed description of the adaptive MLMC algorithm is given in Algorithm 6
with subroutines Algorithm 7–9 in Section 2.3.

The inputs in Algorithm 6 are: TOLS, TOLT, an initial number of sample real-
izationsM0, L, ∆t{−1}, initial guesses for the mean number of time steps {N `}L`=0 in
the hierarchy of accepted adaptively refined meshes, and the three parameters CR,
CC, and CS used in the refinement condition (2.20) and stopping conditions (2.16)
and (2.19), respectively. In this algorithm the initial estimate of the mean number
of time steps are chosen as N ` = cTOLT,`

−1, for ` = 0, . . . , L and a constant c such

that N 0 is a small integer; in the numerical examples in Section 3, the constant
was chosen so that N 0 ≈ 10 as input.

2.3. Algorithm listings.
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Algorithm 1: Adaptive Generation of a Mesh Hierarchy

Input : TOLT, M−1, ∆t{−1}, L, N 0, CR, CS, R
Output: {∆t{`}}L`=0, ML

for ` = 0, 1, . . . , L do
Set keep sampling = TRUE, keep refining = TRUE,
∆t{`} = ∆t{`−1}, M` = M`−1, and TOLT,` = 2L−`TOLT.
while keep sampling or keep refining do

Set keep sampling = FALSE, keep refining = FALSE

Compute r`, E∆t{`} , and V
(∑N`

n=1 r`(n);M`

)
by calling

Algorithm 2: Euler(M`, ∆t{`})

if V
(∑N`

n=1 r`(n);M`

)
and E∆t{} violate (2.10) then

Set keep sampling = TRUE
Update the number of samples by
M` = 2M`

else
if r` violates (2.6) then

Set keep refining = TRUE
Refine ∆t{`} by
forall intervals n = 1, 2, . . . , N` do

if r`(n) satisfies (2.7) then
divide the interval n into two equal parts

end
end
Update N` and set N ` = max {N `, N`}.

end
end

end
Set N `+1 = 2 N `

end

Algorithm 2: Euler

Input : M`, ∆t{`}

Output: r`, E∆t{`} , V
(∑N`

n=1 r`(n);M`

)
Compute M` new realizations of X` on ∆t{`} by Euler–Maruyama
method (1.5) and use them to compute the error indicators r`(n) on ∆t{`} by

equation (1.25), E∆t{`} by equation (2.8), and V
(∑N`

n=1 r`(n);M`

)
by

equation (2.5).
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Algorithm 3: Multilevel Monte Carlo on a Mesh Hierarchy

Input : TOLS, M0, L, {∆t{`}}L`=0, CC

Output: µ = AML
(
g
(
X (T )

)
;M0

)
Compute σ2 by Algorithm 4: MLMC Estimator(M0, L, {∆t{`}}L`=0).
while σ2 violates (2.16) do

Update the number of samples by M0 = 2M0

Update σ2 by Algorithm 4: MLMC Estimator(M0, L, {∆t{`}}L`=0).
end
Generate the output µ = AML

(
g
(
X (T )

)
;M0

)
by calling

Algorithm 4: MLMC Estimator(M0, L, {∆t{`}}L`=0).

Algorithm 4: MLMC Estimator

Input : M0, L, {∆t{`}}L`=0

Output: µ = AML
(
g
(
X (T )

)
;M0

)
, σ2 ≈ Var

(
AML

(
g
(
X (T )

)
;M0

))
for ` = 0, 1, . . . , L do

Set M` as in (2.14)
if ` = 0 then

Call Algorithm 5: Euler(M0, {∆t{0}}).
Set µ = A

(
g
(
X0(T )

)
;M`

)
and σ2 =

V(g(X0(T ));M0)
M0

.

else
Call Algorithm 5: Euler(M`, {∆t{`},∆t{`−1}}).
Set µ = µ+A

(
g
(
X`(T )

)
− g

(
X`−1(T )

)
;M`

)
and σ2 = σ2 +

V(g(X`(T ))−g(X`−1(T ));M`)
M`

.

end
end

Algorithm 5: Euler

Input : M, {∆t{`}}`=l0,l1
Output: V

(
g
(
X0(T )

)
;M
)
, A
(
g
(
X0(T )

)
;M
)

if l0 = l1 = 0 or

V
(
g
(
X`1(T )

)
− g

(
X`0(T )

)
;M
)
, A
(
g
(
X`1(T )

)
− g

(
X`0(T )

)
;M
)

if l0 6= l1

Simulate M new outcomes of the Wiener process W on ∆t{`1} ⊇ ∆t{`0}.
if l0 = l1 = 0 then

Compute the corresponding realizations of X0 on ∆t{0} and use them to
compute A

(
g
(
X0(T )

)
;M
)

and V
(
g
(
X0(T )

)
;M
)

by (2.5).
else

Compute the corresponding realizations of X`1 and X`0 on ∆t{`1} and
∆t{`0} and use them to compute A

(
g
(
X`1(T )

)
− g

(
X`0(T )

)
;M
)

and

V
(
g
(
X`1(T )

)
− g

(
X`0(T )

)
;M
)

by (2.5).
end
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Algorithm 6: Multilevel Monte Carlo with stochastic time stepping

Input : TOLS, TOLT, M0, ∆t{−1}, L, {N `}L`=0, CR, CS, CC

Output: µ = AML
(
g
(
X (T )

)
;M0

)
Compute σ2 and {N `}L`=0 by calling

Algorithm 7: PMLMC (TOLT,M0,∆t
{−1}, L, {N `}L`=0, CR, CS).

while σ2 violates (2.16) do
Update the number of samples by M0 = 2M0.
Update σ2 and {N `}L`=0 by

Algorithm 7: PMLMC(TOLT,M0,∆t
{−1}, L, {N `}L`=0, CR, CS).

end
Generate the output µ = AML

(
g
(
X (T )

)
;M0

)
by calling

Algorithm 7: PMLMC(TOLT,M0,∆t
{−1}, L, {N `}L`=0, CR, CS).

Algorithm 7: Pathwise Multilevel Monte Carlo Estimator (PMLMC)

Input : TOLT, M0, ∆t{−1}, L, {N `}L`=0, CR, CS

Output: µ = AML
(
g
(
X (T )

)
;M0

)
, σ2 ≈ Var

(
AML

(
g
(
X (T )

)
;M0

))
, {N `}L`=0

Compute M0 samples of g
(
X0(T )

)
and the number of time steps used,

{N0,m}M0
m=1, by generating Wiener increments {∆W−1,m}M0

m=1 on the mesh

∆t{−1} (independently for each realization m) and calling
Algorithm 9:ATSSE(∆t{−1},∆W−1,m,TOLT2L,N 0, CR, CS).

Set µ = A
(
g
(
X0(T )

)
;M0

)
and σ2 =

V(g(X0(T ));M0)
M0

.

Compute the average number of time steps A(N0;M0).
for ` = 1, . . . , L do

Set M` as in (2.14) and compute M` new realizations of g
(
X`−1(T )

)
,

their corresponding number of time steps, {N`−1,m}M`
m=1, and Wiener

increments, {∆W`−1,m}M`
m=1, by generating Wiener steps {∆W−1,m}M0

m=1

on the mesh ∆t{−1} (independently for each realization m) and using the
loop

for ˆ̀= 0, . . . , `− 1 do

compute ∆t{
ˆ̀,m} and ∆Wˆ̀,m by calling Algorithm 9:

ATSSE(∆t{
ˆ̀−1,m},∆Wˆ̀−1,m,TOLT2L−

ˆ̀
,N ˆ̀, CR, CS).

end
Compute the corresponding M` realizations of g

(
X`(T )

)
and

their number of time steps, {N`,m}M`
m=1, by calling Algorithm 9:

ATSSE(∆t{`−1,m},∆W`−1,m,TOLT2L−`,N `, CR, CS).

Set µ = µ+A
(
g
(
X`(T )

)
− g

(
X`−1(T )

)
;M`

)
and

σ2 = σ2 +
V(g(X`(T ))−g(X`−1(T ));M`)

M`
.

Compute average number of time steps A(N`−1;M`) and A(N`;M`).
end
Update the values of {N`}L`=0 by calling Algorithm 8:
UMNT ({M`}L`=0, {A(N`;M`)}L`=0, {A(N`−1;M`)}L`=1).
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Algorithm 8: Update for the mean number of time steps, (UMNT)

Input : {M`}L`=0, {A(N`;M`)}L`=0, {A(N`−1;M`)}L`=1

Output: {N`}L`=0

for ` = 0, 1, . . . , L do
if ` < L then

Set N ` = M`A(N`;M`)+M`+1A(N`;M`+1)
M`+M`+1

.

else
Set NL = A(NL;ML).

end
end

Algorithm 9: Adaptive Time Step Stochastic Euler (ATSSE)

Input : ∆t{in},∆Win, TOL, N in, CR, CS

Output: ∆t{out},∆Wout, Nout, gout
Set k = 0, ∆t{[0]} = ∆t{in}, ∆W[0] = ∆Win, N[0] = number of steps in ∆t{in}

while k < 1 or (r[k−1]; TOL,N in, CS) violates (2.19) do

Compute the Euler approximation X [k] and the error indicators r[k] on

∆t{[k]} with the known Wiener increments ∆W[k].

if (r[k]; TOL,N in, CS) violates (2.19) then

Refine the grid ∆t{[k]} by
forall intervals n = 1, 2, . . . , N[k] do

if (r[k](n); TOL,N in, CR) satisfies (2.20) then
divide the interval n into two equal parts

end
end
and store the refined grid in ∆t{[k+1]}.
Compute ∆W[k+1] from ∆W[k] using Brownian bridges on ∆t{[k+1]}.

Set N[k+1] = number of steps in ∆t{[k+1]}.

end
Increase k by 1.

end
Set ∆t{out} = ∆t{[k−1]}, ∆Wout = ∆W[k−1], Nout = N[k−1], gout = g(X [k−1]).

3. Numerical experiments

This section presents numerical results from implementations7 of the algorithms
introduced in Section 2. We have selected problems to indicate the use of the
adaptive methods. Specifically, uniform time steps are suitable for problem 3.1,
adaptively refined deterministic time steps are suitable for problem 3.2, and fully
stochastic time steps are suitable problem 3.3. In both problems 3.2 and 3.3 the
use of the multilevel adaptive algorithms is much more efficient than the use of

7The implementations differ from the listed algorithms and the theoretical analysis in that
the computed answer µ = AML

(
g
(
X (T )

)
;M0

)
was taken from the same batch that satified the

stopping criterion (2.16) without generating a final batch of independent samples after accepting

M0. Note that while the extra batch simplifies the theoretical analysis the experimental errors
in Figure 2 still satisfy the accuracy requirements, and the repetition of the final batch would

increase the total work with a factor approximately between 3/2 and 2.
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the corresponding single level versions of the algorithms, which is in turn much
more efficient than using a single level uniform time stepping method. For those
problems the complexity is close to that of uniform MLMC, since the observed
order of strong convergence remains close to 1/2 even though the order of weak
convergence is reduced using uniform time steps. As it is described in this work,
the adaptive algorithm is optimized with respect to the weak error, but an extension
of the adaptive algorithm which is instead optimized with respect to the strong error
is the subject of ongoing research.

The main complexity results in Theorem 3 and Remark 5 of Section 4 are asym-
totic results for TOL approaching 0, excluding asymptotically negligible terms. The
approximate upper bound

cost ≤ C(TOL−1(1 + log2 (TOLT,0/TOLT))2 (3.1)

for the computational complexity captures the essence of Remark 5 while keeping
the logarithmic factor in a form that is also consistent with large tolerances where
L = 0. For the numerical tests in this section we fit the parameters c1 and c2 in
the model

log2 (cost) = c1 + log2

(
TOL−c2(1 + log2 (TOLT,0/TOLT))2

)
(3.2)

to the observed computational costs, where by (3.1) we expect c2 ≈ 2.
The computations were performed in Matlab 7 using the built in pseudo random

number generator randn for simulating sampling from the normal distribution. In
all examples the error tolerance was split equally, TOLS = TOLT = TOL/2 even
though the proof of Theorem 3 indicates that this is not optimal; see Remark 8.

The bounds on the computed error density in (1.10) were ρlow = TOL1/9 and
ρup = TOL−4. The confidence parameter was CC = 1.65 corresponding to a 90%
confidence interval of the standard normal random variable. For the parameter in
the stopping criteria (2.6) and (2.19) we used CS = 5 in problems 3.2 and 3.3, and
CS = 3 in problem 3.1 where we expect uniform refinements and all error indicators
of the same size. The values of the other parameters are listed in Table 1. The
particular values of are not necessarily optimized for the problems at hand, but we
include them for the purpose of reproducibility.

3.1. A Linear SDE. Consider first the standard geometric Brownian Motion,

dX(t) = rX(t)dt+ σX(t) dW (t), t ∈ (0, T ),

X(0) = 1,

using r = 1 and σ = 0.5 with a final time T = 1 and g(x) = x.
In this simple example adaptive time stepping is not expected to improve the

time discretization error. In fact, the path independent adaptive algorithm produces
a hierarchy of uniform grids, and when the fully stochastic adaptive algorithm is
applied to this problem all generated meshes are uniform but different realizations
of the driving Wiener process may result in different step sizes. The computational
cost, measured as the total number of time steps, in all stages in the adaptive
refinements, for all realizations of the Euler approximation X , is shown in Figure 1.
For both versions of the algorithm, the computational cost is consistent with the
approximate upper bound (3.1) derived from the analyis in Section 4. The work
measured this way is very similar in the two versions of the algorithm. However,
the version in Section 2.1 is more efficient in this case since it only computes dual
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Algorithm 1 and 3
GBM, Section 3.1 Singularity, Section 3.2

∆t{−1} 1/2 1/4

N 0

⌈
6

TOLT,0

⌉ ⌈
2

TOLT,0

⌉
TOLT,Max 0.6 0.32
M−1

⌈
5 · 0.25

TOL

⌉
, TOL ≤ 0.25

⌈
5 · 0.16

TOL

⌉
, TOL ≤ 0.16

CR 2 2
CS 3 5
R 0.2 0.2
CC 1.65 1.65

Algorithm 6
GBM, Section 3.1 Barrier, Section 3.3

∆t{−1} 1/2 1/5

N 0

⌈
6

TOLT,0

⌉ ⌈
10

TOLT,0

⌉
TOLT,Max 0.6 2

M0

⌈
5 · 0.25

TOL2L(1−γ)
⌉
, TOL ≤ 0.25

⌈
5 · 0.2

TOL2L(1−γ)
⌉
, TOL ≤ 0.8

CR 2 2
CS 3 5
CC 1.65 1.65
Table 1. List of parameter values used in the computations in
Section 3.1–3.3. Here L and TOLT,0 are functions of TOLT,Max

and TOLT by (2.2) and (2.3). Further, γ = 1/9 is the parameter
in ρlow = TOLγ .

solutions in the construction of the mesh hierarchy which is of negligible cost8, while
the version in Section 2.2 computes both primal and dual for every realization.
Since the cost of constructing the mesh hierarchies is asymptotically negligible, and
the constructed hierarchies are uniform with geometrically decreasing mesh sizes,
the complexity of the adaptive algorithm in Section 2.1 applied to this problem is
essentially the same as that of a uniform MLMC algorithm using the same control
of the statistical error. The accuracy of both versions of the algorithm is shown in
Figure 2.

The work we measure in Figure 1 is greater than the work (4.2) analyzed in
Section 4, which is approximately the number of sampled random variables. The
comparison made in Table 2 shows the same growth rate as TOL ↓ 0 when the fully
stochastic adaptive algorithm is applied to problem 3.1.

3.2. Drift singularity, linear SDE. Consider for a real constant α ∈ (0, T ) the
linear stochastic differential equation

dX(t) =

{
X(t) dW (t), t ∈ [0, α],
X(t)

2
√
t−α dt+X(t) dW (t), t ∈ (α, T ],

(3.3)

X(0) = 1,

8See Figure 3 for problem 3.2.
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Figure 1. Experimental complexity for both versions of the al-
gorithm applied to the geometrical Brownian motion example of
Section 3.1; to the left the version of mesh creation followed by
sampling on fixed meshes, in Section 2.1, and to the right the
path dependent sampling version in Section 2.2. The computa-
tional cost is measured as the total number of Euler time steps
taken in all refinement iterations on all levels for all realizations.
The graphs show three independent realizations of the underlying
Wiener processes for each prescribed tolerance. A least squares fit
of the model (3.2) gives c2 = 1.8 and c2 = 1.9 in the two cases re-
spectively; this is slightly better than the prediction of Theorem 3
of Section 4.
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Figure 2. These accuracy tests show the error versus the pre-
scribed tolerance when the adaptive MLMC algorithm is applied
to the test examples of Section 3; to the left the version of Sec-
tion 2.1 applied to the geometric Brownian motion in Section 3.1
(top) and the singularity problem in Section 3.2 (bottom), and to
the right the version of Section 2.2 applied to the geometric Brow-
nian motion in Section 3.1 (top) and the stopped diffusion problem
in Section 3.3 (bottom).
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sampled randn’s all Euler steps
Problem Version c1 c2 c1 c2
GBM, Sec. 2.1 5.7 1.8 5.8 1.8
GBM, Sec. 2.2 4.9 1.9 5.8 1.9
Sing., Sec. 2.1 10.4 1.9 10.6 1.9
Barrier, Sec. 2.2 7.3 2.0 8.5 2.2

Table 2. Complexity estimates for the three different problems:
the geometric Brownian motion of Section 3.1, the deterministic
singularity problem of Section 3.2, and the stopped diffusion prob-
lem of Section 3.3. The tabulated values are least square fits of
the parameters c1 and c2 in the model (3.2) when the cost is
measured in two different ways: by counting the total number of
sampled random variables, which is approximated by the work es-
timate defined in (4.2), and by counting the total number of Euler
steps performed when solving the primal problem in all refinement
stages for all levels in the multilevel algorithms.

with the unique solution

X(t) =

{
exp
(
W (t)− t/2

)
, t ∈ [0, α],

exp
(
W (t)− t/2

)
exp(
√
t− α), t ∈ (α, T ].

The goal is to approximate the expected value E[X(T )] = exp(
√
T − α). Here we

choose T = 1 and α = T/3. To avoid evaluating arbitrarily large values of the drift
in (3.3) we modify the drift to be

a(t, x) =

{
0, t ∈ [0, α],

x

2
√
t−α+TOL4

, t ∈ (α, T ],
(3.4)

yielding a higher order perturbation O
(
TOL2

)
in the computed result and in the

size of the optimal time steps. This regularization was applied to maintain con-
sistency with the numerical tests in [25], but it is not strictly necessary given the
upper bound, ρ ≤ ρup(TOL), on the error density in (1.23). Due to the time dis-
continuity of the drift function and to ensure optimal convergence of the adaptive
algorithms, we modify the Euler method to

Xn+1 −Xn = a(t̂, Xn) ∆tn +Xn ∆Wn, n = 0, 1, 2, . . . , (3.5)

where we choose the stochastic evaluation time t̂ ∈ {tn, tn+1} so that∣∣a(t̂, Xn)
∣∣ = max

(∣∣a(tn, Xn)
∣∣ , ∣∣a(tn+1, Xn)

∣∣).
Observe that the use of t̂ does not change the adapted nature of the Euler method.

Since we now have a singularity in the drift at a deterministic time, the path
independent adaptive algorithm described in Section 2.1 is the most suitable, and
it is used in this example. The goal here is to verify that the adaptive multilevel
algorithms of Section 2 give the same improvement from the single level adaptive
algorithm as multilevel Monte Carlo does in the uniform case for regular problems.

The accuracy test in Figure 2 shows good agreement between observed error and
prescribed tolerance. As shown in the complexity study in Table 2 and Figure 3
the computational costs grow like TOL−1.9(1+log (TOLT,0/TOLT))2 which is very
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close to the predicted complexity. The cost of the mesh construction phase of the
algorithm is seen to be negligible compared to the total work.

In this example the weak rate of convergence for the Euler–Maruyama method
with uniform time steps is only 1/2, so the total cost for a single level uniform
time stepping algorithm is proportional to TOL−4. The left part of Figure 4 shows
that the single level version of the adaptive algorithm improves that complexity
to approximately TOL−3, while the multilevel version improves the complexity
by nearly one order more. With the regularization (3.4) the observed order of
strong convergence of the Euler–Maruyama method with uniform time steps is
still 1/2, so the complexity estimate in Theorem 1 of [11] for uniform multilevel
simulations applies, and we should get the ideal complexity (TOL−1 log (TOL−1))2

for a mean square error of size TOL2. The right part of Figure 4 shows that this
is approximately true for the cost as a function of the maximal observed error over
11 independent realizations of the adaptive runs.

Remark 4. In case the location, α, of the singularity in the drift is stochastic,
the stochastic time stepping version of the adaptive algorithm in Section 2.2 is
the appropriate choice. If we for example consider α ∼ U(0, T ), independent of
the underlying Wiener process, then the stochastic adaptive multilevel Monte Carlo
algorithm is applicable even without the a priori TOL-regularization of the drift
in (3.4). In this case the uniform multilevel Monte Carlo algorithm can not be
applied without regularization of the drift, since the expected value that is computed
by the discrete algorithm is not well defined due to the small probability events of
the singularity being arbitrarily close to a grid point from below. In practice when
computing with the uniform meshes we may fail to notice that the computation is
unreliable since the failures are low probability events.

3.3. Stopped diffusion. Here we compute the solution to a more challenging
problem that motivates the use of stochastic time steps that are adaptively refined
for each sample path.

The additional difficulty of the problem is that we now wish to compute approx-
imations of an expected value

E[g(X(τ), τ)], (3.6)

where X(t) solves the SDE (1.1) as before, but where the function g : D×[0, T ]→ R
is evaluated at the first exit time

τ := inf{t > 0 : (X(t), t) 6∈ D × (0, T )}

from a given open domain D × (0, T ) ⊂ Rd × (0, T ). This kind of stopped (or
killed) diffusion problems arises for example from barrier option pricing problems
in mathematical finance and from boundary value problems in physics.

The main difficulty in the approximation of the stopped diffusion on the bound-
ary ∂D is that a continuous sample path may exit the given domain D even though
a discrete approximate solution does not cross the boundary of D. Due to this
hitting of the boundary the order of weak convergence of the Euler–Maruyama
method is reduced from 1 to 1/2, in terms of the step size of uniform meshes;
see [14]. The problem of simulating stopped diffusion has also been studied in
e.g. [3, 4, 24]. In this subsection we combine the adaptive multilevel algorithm of
Section 2.2 with an error estimate derived in [8] that also takes into account the
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sampling on existing meshes

Figure 3. Experimental complexity when the algorithm in Sec-
tion 2.1 is applied to the drift singularity problem in Section 3.2.
To the left is shown the cost of both phases of the algorithm, and to
the right the contribution from the generation of the mesh hierar-
chy and the subsequent sampling to reduce the statistical error; it
is clear that the cost of the first phase is negligible compared to the
second for small tolerances. The computational cost is measured
as the total number of Euler time steps taken in all refinement
iterations on all levels for all realizations. The graphs show three
independent realizations of the underlying Wiener processes for
each prescribed tolerance. A least squares fit of the model (3.2)
gives c2 = 1.9.

hitting error. This error estimate, and the adaptive algorithm, can be used also
when D is multi dimensional even if the boundary ∂D has corners for example.

The hitting error is accounted for by an extra contribution to the error density
in (1.22); this contribution can be expressed in terms of exit probabilities for in-
dividual time steps, conditioned on the computed path at the beginning and the
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Figure 4. The computational cost of the path independent adap-
tive algorithm of Section 2.1, applied to the deterministic singu-
larity problem 3.2, is compared to several alternatives. Left: the
multilevel version improves the computational complexity of the
single level version of the same adaptive algorithm from approx-
imately proportional to TOL−3 to approximately proportional to
TOL−2(1 + log (TOLT,0/TOLT))

2
. The cost of a standard, uni-

form time step, Monte Carlo method would be proportional to
TOL−4; here the work was estimated from a Central Limit The-
orem type confidence interval based on the time discretization er-
rors and sample variances. Right: The cost of the uniform MLMC
method is shown as a function of the maximal error, ε, over 11 re-
alizations. The observed cost oscillates around a complexity curve
that is possibly slightly worse than, but close to, (ε−1 log (ε−1))2,
which is expected since the observed strong order of convergence
is still 1/2.
For the adaptive algorithm the cost is estimated by the total num-
ber of Euler steps taken on all levels in all stages of the adaptive
refinement process.
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end of the time steps, and of the change in the goal function, g, when evaluated
at a possible exit point within the time step instead of the actually computed exit
(X(τ̄), τ̄). The full expression of the resulting error indicators is given in equa-
tion (50) of [8]. Since the differential ∂ig(X(T ), T ) in the discrete dual backward
problem (1.16) does not exist if T is replaced by τ̄ < T this initial value must
be alternatively defined; this can be done using difference quotients with restarted
computed trajectories as described, both for the discrete dual and for its first and
second variations, in equations (20-25) of [8]. Note that for this modified error
density the proof in [26] of almost sure convergence to a limit density does not
apply.

In addition to the modification of the error density a lower bound is introduced
on the step size to avoid excessive refinements near the barrier,

∆tn ≥ min

{
TOLT,`

1.5,
distndistn+1/b(X(tn;ω), tn)2

−3 log (TOLT,`)

}
, (3.7)

where distj denotes the distance from X(tj ;ω) to the barrier.
For the numerical example we consider the stopped diffusion problem

dX(t) =
11

36
X(t) dt+

1

6
X(t) dW (t), for t ∈ [0, 2] and X(t) ∈ (−∞, 2), (3.8)

X(0) = 1.6.

For g(x, t) = x3e−t with x ∈ R, this problem has the exact solution E[g(Xτ , τ)] =
u(X(0), 0) = X(0)3, where the solution, u, of the Kolmogorov backward equation
is u(x, t) = x3e−t. We chose an example in one space dimension for simplicity,
although it is only in high dimension that Monte Carlo methods are more efficient
than deterministic finite difference or finite element methods to solve stopped dif-
fusion problems. The comparison here between the standard Monte Carlo and the
Multilevel Monte Carlo methods in the simple one dimensional example indicates
that the Multilevel Monte Carlo method will also be more efficient in high dimen-
sional stopped diffusion problems, where a Monte Carlo method is a good choice.
In the case of a scalar SDE, where D is an interval on the real line, the strong order
of convergence of the Euler–Maruyama scheme for barrier problems can be close to
1/2. In fact, it is shown in [12] that Var

(
g(X`)− g(X`−1)

)
= O(∆t1−δ), for any

δ > 0, using the Euler–Maruyama method with uniform step size ∆t on a class of
options including some barrier options. In this case Theorem 3.1 of [11] tells us
that, for any choice of δ > 0, uniform MLMC simulations can be performed at a

cost O(TOL−2(1+δ)), where the constant may depend on δ, for a mean square error
of order TOL2.

In the remainder of this section we present numerical results on the accuracy
and cost of the adaptive multilevel algorithm of Section 2.2, applied to (3.8), with
the error estimate modified for the barrier problem, and with the lower bound (3.7)
on the step size. The algorithm was applied with a sequence of tolerances with
three simulations for each tolerance using different initial states in the pseudo ran-
dom number generator. The observed errors are scattered below the corresponding
tolerances in Figure 2, showing that the algorithm achieves the prescribed accuracy.

The experimental complexity is illustrated in Figure 5 and Table 2. A least
squares fit of the model (3.2) using equal weights on all data points gives c2 = 2.0
when the work is measured by the total number of sampled random variables; this
is the measure of work that is estimated by (4.2) in Section 4. When all Euler steps
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in all refinement stages are included, the least squares fit gives c2 = 2.2. However,
the corresponding cost using the single level adaptive algorithm with just one data
point per tolerance used grows faster than TOL−3 in this example; see Figure 6.

In conclusion, the barrier problem (3.8) is not within the scope of Theorem 3
since almost sure convergence of the modified error density to a limit density has
not been proven yet. Still, the observed convergence of the adaptive MLMC method
applied to this problem agrees with the rate in Theorem 3. This shows an improved
convergence compared to the single level version of the adaptive Monte Carlo algo-
rithm where the cost grows approximately like TOL−3, which in itself is a better
order of weak convergence than the one obtained using a single level Monte Carlo
method with constant time steps where the cost grows like TOL−4.

4. Theoretical results

In this section we study the asymptotic accuracy and complexity of the stochastic
time stepping adaptive MLMC algorithm introduced in Section 2.2. We recall that
for a sought accuracy TOL > 0, the goal of the adaptive MLMC algorithm is to
construct a Monte Carlo approximation of E[g(X(T ))] that with probability close
to one fulfills ∣∣E[g(X(T ))]−AML

(
g
(
X (T )

)
;M0

)∣∣ ≤ TOL.

Our main result on asymptotic accuracy for the adaptive MLMC algorithm, which
is proved in Subsection 4.2, is

Theorem 2 (Multilevel accuracy). Suppose the assumptions of Lemma 1 and (4.4)–
(4.6) hold and that TOLT ≤ TOLS. Then the adaptive MLMC algorithm with
confidence parameter CC > 0 and stochastic time steps (2.19) and (2.20) satisfies

lim inf
TOL↓0

P
(∣∣E[g(X(T ))]−AML

(
g
(
X (T )

)
;M0

)∣∣ ≤ TOL
)
≥
∫ CC

−CC

e−x
2/2

√
2π

dx. (4.1)

The motivation for introducing multiple levels in the MC algorithm is to reduce
the computational complexity. To study the asymptotic complexity of the adaptive
MLMC algorithm we define its work by

WORK(TOL) =

L∑
`=0

E[M`]E[N`], (4.2)

recalling that M` denotes the number of realization samples g(X`(T ;ω)) at level
` required to control the statistical error, and N` denotes the number of adap-
tive time steps required in the construction of a numerical realization g(X`(T ;ω))
to control the time discretization error at level `. The function WORK(TOL) is
an approximation of the average number of arithmetic operations required in the
generation and sampling of {g(X`(T ))}L`=0 to approximate E[g(X(T ))] for the pre-
scribed confidence CC and accuracy TOL. The adaptive MLMC algorithm’s real
work, however, is a very complicated expression where products of expectations
E[M`]E[N`] should be replaced by expectations of products E[M`N`] and the full
cost of the refinement process for each realization should be included. To simplify
the analysis here, we have decided to study the asymptotics of the work defined
in (4.2), instead of the algorithm’s real work. Our main complexity theorem follows,
but first we recall from [25] that the error density ρ has an almost sure asymptotic
limit which we here denote by ρ̂, i.e., ρ→ ρ̂ as TOLT ↓ 0.
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Figure 5. Experimental complexity for the barrier example in
Section 3.3. The computational cost of the multilevel adaptive
algorithm is shown for varying tolerances using three different ini-
tial states in the pseudo random number algorithm. To the left
is shown the work estimate based on the number of sampled ran-
dom variables, which is the work measure closest to (4.2) used in
Section 4; to the right is shown the estimate based on all Euler
steps taken in all stages in the adaptive mesh refinement process.
A least squares fit of the model (3.2) with equal weight on all
observations results in c2 = 2.0 and c2 = 2.2 in the two cases.

Theorem 3 (Multilevel computational complexity). Suppose the assumptions of
Lemma 1 and (4.4)–(4.6) hold and that the lower bound for the error density is on
the form ρlow(TOLT) = TOL γ̄T, cf. (1.23), with γ̄ → 0 and Lγ̄ → ∞ as TOL ↓
0. Then the work for the adaptive MLMC algorithm defined in (4.2) fulfills the
following bound:

lim sup
TOL↓0

WORK(TOL)TOL2 γ̄

L 2γ̄L
≤ 8C2

C CG
log(2) TOLT,Max CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

. (4.3)
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Figure 6. Left: The multilevel version of the path dependent
adaptive algorithm of Section 2.2 applied to the barrier problem 3.3
improves the computational complexity of the single level version
of the same adaptive algorithm; a single level method based on
uniform time steps has even worse complexity with the computa-
tional cost growing like ε−4. Right: The cost of the uniform MLMC
method is shown as a function of the maximal error, ε, over 16 re-
alizations. The observed cost is close to that of adaptive multilevel
Monte Carlo, which is expected since the observed observed strong
order of convergence is 1/2, but oscillates around a slightly worse
fitted complexity ε−2.5(1 + log (ε−1))2.
The cost is estimated by the total number of Euler steps taken on
all levels in all stages of the adaptive refinement process.
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Here, the number of levels L = O
(
log(TOL−1)

)
, CC is the confidence parameter,

CR and CS are refinement parameters described by (2.19) and (2.20), CG is the
constant in the second moment bound (4.39), where TOLT,Max is the upper bound
of the time discretization tolerance at level ` = 0, and γ̄ is the lower bound error
density exponent; ρlow(TOLT) = TOL γ̄T, cf. (1.23).

Remark 5 (Complexity example). Theorem 3 implies that if the exponent of the
lower error density ρlow is given by γ̄(TOL) = log2(log2(L))/L, then the following
complexity bound, notably close to the standard complexity of the uniform time
stepping MLMC method, is achieved:

lim sup
TOL↓0

WORK(TOL) TOL2 log2(log2(L))

L2 log2(L)

≤ 8C2
C CG

log(2) TOLT,Max CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

.

To present the proofs of theorems 2 and 3 in a gentle fashion, we first prove anal-
ogous results for the adaptive SLMC algorithm in Section 4.1. With single level
proofs fresh in mind, we move on to the more daunting task of proving Theorems 2
and 3 in Section 4.2. As already noted, we restrict ourselves here to proving Theo-
rems 2 and 3 for the stochastic time stepping setting. Stochastic time stepping is
however the most general setting, so one can easily prove corresponding results for
the deterministic time stepping setting as well.

In addition to Lemma 1, the analysis in this section will be derived relying on
the following three assumptions.

• Strong approximation convergence rate9

For p = 2 and 4, we have that

E
[∣∣g(X(T ))− g

(
X (T )

)∣∣p] = O
(

TOLT

ρlow(TOLT)

)p/2
E
[∣∣g(X (T )

)∣∣p] = O (1) .

(4.4)

• That adaptivity is relevant for the weak approximation problem considered
in the sense that the asymptotic error density is nontrivial and we have
that

E

[∫ T

0

√
|ρ̂(τ)|dτ

]
> 0. (4.5)

• For all s, t ∈ [0, T ] the sensitivity of the error density to values of the Wiener
process can be bounded as follows

|∂W (t)ρ(s, ω)| ≤ Dρup(TOLT), (4.6)

for some positive function Dρup such that Dρup(TOLT)→ +∞ as TOLT ↓
0.

9The work [29] gives conditions under which (4.4) is fulfilled.
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4.1. Single level results. The adaptive SLMC algorithm considered in this sub-
section, was first described and analyzed in [29]. The purpose of giving a new
analysis here is to construct proofs for the asymptotic accuracy and complexity
of the adaptive SLMC algorithm that subsequently are easily extended to proofs
for the adaptive MLMC algorithm. In this section’s first lemma we show that the
adaptive refinement Algorithm 9 stops after a finite number of iterations. This
property allows us to later bound the amount of computational work in the single
level adaptive algorithm. It also has another important implication: the imposed
lower bound on the error density, ρlow(TOLT) in (1.10), ensures that the maxi-
mum mesh size of the mesh generated by Algorithm 9, ∆tsup(TOLT) introduced in
Lemma 2, tends to zero as TOLT tends to zero. This in turn implies the almost
sure convergence of the error density, which is crucial in the proofs of the main
results of this section. A similar result also holds for the multilevel case but will
not be stated here for the sake of brevity.

Lemma 3 (Stopping). Suppose the adaptive Algorithm 9 applies the mesh refine-
ment strategy (2.19) and (2.20) on a set of realizations having the same uniform
initial mesh with step size ∆t0. Assume further that the initial estimated average
number of time steps, N in, satisfies

N in < Nup :=
T 2ρup(TOLT)

CR TOLT

. (4.7)

and that a prescribed accuracy parameter TOLT > 0 is given. Then the adaptive
refinement in Algorithm 9 stops after a finite number of iterations.

Proof. First recall that by (1.10), the error density is bounded from above by ρ ≤
ρup(TOLT). So given an initial uniform mesh with size ∆t0 and containing N0

intervals, the uniform mesh size

∆̃t(TOLT) =
∆t0

max{1, 2k}
, with k =

⌈
log2

(
ρup(TOLT)T ∆t0

CR TOLT

)⌉
. (4.8)

satisfies both the stopping condition (2.19) and the non-refinement condition (2.20)

for Algorithm 9. When a time step reaches the mesh size ∆̃t(TOLT), it will
consequently not be further refined. The number of possible refinements from the
initial mesh size ∆t0 to a uniform mesh with step size ∆̃t(TOLT) is bounded by the
finite number N0 max{1, 2k}. The proof is concluded by observing that Algorithm 9
either stops or makes at least one refinement during each iteration. �

The work [26] also proves a similar stopping result, cf. Theorem 3.2 in [26],
based on the assumption that the initial mesh is sufficiently refined so that the
error density does not vary too much between refinement levels. Then, when the
single level adaptive algorithm stops, one can prove asymptotic accuracy and effi-
ciency estimates for the resulting weak approximation. In contrast, here we make
essentially no assumption on the initial mesh size ∆t0: although the quality of
the resulting approximation for the lower levels of the multilevel estimator may be
poor, they have no influence in the bias of the multilevel approximation, which is
only determined by the finest level, L. Since L→∞ as TOL ↓ 0 we can still prove
asymptotic accuracy and efficiency estimates. Finally, we observe that assumption
(4.7) is fulfilled in all practical cases since one should start the adaptive algorithm
with N in of the order of TOL−1

T , which is much smaller than Nup.
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The following proofs are inspired by the treatment by Chow and Robbins [6] on
the accuracy and complexity of sequential stopping rules for sampling i.i.d. random
variables.

We denote the SLMC sample average estimator of E[g(X(T ))] by

A
(
g(X(T ));M

)
=

M∑
i=1

g
(
X(T ;ωi)

)
M

,

where the realizations of X(T ) are generated on adaptive meshes and fulfill the
weak error bound

∣∣E[g(X (T )
)
− g(X(T ))

]∣∣ . TOLT. Here the total tolerance
TOL is split into a time discretization error tolerance and a statistical error toler-
ance, TOL = CSTOLT + TOLS. Remark 6 discusses the optimal splitting of TOL
further. Let 2N denote the set {2n|n ∈ N}. For the SLMC estimator, the num-
ber of samples used in the sample average estimator to control the statistical error∣∣A(g(X(T ));M

)
− E

[
g
(
X (T )

)]∣∣ ≤ TOLS is a stochastic process M : R+ → 2N

defined by

M(TOLS) := the smallest k ∈ 2N+dlog2(TOL−1)e

such that V
(
g
(
X (T )

)
; k
)
<
kTOLS

2

C2
C

,
(4.9)

where the sample variance is defined by

V
(
g
(
X (T )

)
; k
)

=

k∑
i=1

(
g(X(T ;ωi))−A

(
g(X(T )); k

))2
k − 1

. (4.10)

Restricting the initial value ofM to the set 2N+dlog2(TOL−1)e implies that limTOL↓0M =∞.
The asymptotic behavior of M as TOL ↓ 0 is crucial in our proofs of the asymp-
totic accuracy and complexity. When proving the asymptotically accuracy result of
Proposition 1, M should increase sufficiently fast to obtain the sought confidence.
For the complexity result of Proposition 2, it is on the other hand useful to bound
M from above and ensure that it does not grow too fast.

Lemma 4. Suppose the assumptions (4.4)–(4.6) hold. Then

lim inf
TOL↓0

MTOL2
S

Var
(
g
(
X (T )

))
C2
C

= 1 a.s. and lim sup
TOL↓0

MTOL2
S

Var
(
g
(
X (T )

))
C2
C

= 2 a.s.

(4.11)

Proof. The strong convergence (4.4) for p = 2, gives limTOL↓0 V ar(g
(
X (T )

)
) =

V ar(g(X(T ))), which in particular means that there exists a constant T̃OL > 0
such that

Var(g(X(T )))

2
< Var

(
g
(
X (T )

))
< 2Var(g(X(T ))), ∀TOL ∈ (0, T̃OL]. (4.12)

The strong law of large numbers then implies that

lim
k→∞

V
(
g
(
X (T )

)
; k
)

= Var
(
g
(
X (T )

))
a.s. ∀TOL ∈ (0, T̃OL]. (4.13)

In order to prove (4.11), introduce the sequence of stochastic processes yk : R+ →
R+ sub-indexed by k ∈ 2N+dlog2(TOL−1)e and defined by

yk(TOL) =
V
(
g
(
X (T )

)
; k
)

Var
(
g
(
X (T )

)) . (4.14)
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Using yk, definition (4.9) of M(TOLS) is equivalent to

M(TOLS) := the smallest k ∈ 2N+dlog2(TOL−1)e

such that yk(TOLS) <
kTOL2

S

Var
(
g
(
X (T )

))
C2
C

.

This stopping condition gives rise to the bounds

yM (TOLS) <
MTOL2

S

Var
(
g
(
X (T )

))
C2
C

≤ 2yM/2(TOLS). (4.15)

Combining (4.13) with definition (4.9), which ensures that M(TOLS) → ∞ as
TOL ↓ 0, we conclude that hat

lim
TOL↓0

V
(
g
(
X (T )

)
;M(TOLS)

)
= Var(g(X(T ))) > 0 a.s.

which implies that also limTOL↓0 yM (TOLS) = 1 a.s. Statement (4.11) then follows
by taking limits in (4.15). �

Having obtained asymptotic bounds for M , we are ready to prove the main
accuracy result for the adaptive SLMC algorithm.

Proposition 1 (Single level accuracy). Suppose the assumptions of Lemma 1
and (4.4)–(4.6) hold and that TOLT ≤ TOLS. Then, the adaptive SLMC algorithm
with confidence refinement parameter CC > 0, and time steps (2.19) and (2.20),
satisfies

lim inf
TOL↓0

P
(
|E [g(X(T ))]−A

(
g(X(T ));M

)
| ≤ TOL

)
≥
∫ CC

−CC

e−x
2/2

√
2π

dx. (4.16)

Proof. For a given δ > 0, we first bound the probability in (4.16) from below as
follows:

lim inf
TOL↓0

P
(∣∣E[g(X(T ))]−A

(
g(X(T ));M

)∣∣ ≤ TOL
)

≥ lim inf
TOL↓0

P
(∣∣E[g(X(T ))− g

(
X (T )

)]∣∣
+
∣∣E[g(X (T )

)]
−A

(
g(X(T ));M

)∣∣ ≤ CSTOLT + TOLS
)

≥ lim inf
TOL↓0

P
(∣∣E[g(X(T ))− g

(
X (T )

)]∣∣ ≤ (CS + δ)TOLT

and
∣∣E[g(X (T )

)]
−A

(
g(X(T ));M

)∣∣ ≤ (1− δ)TOLS
)

= lim inf
TOL↓0

P
(∣∣E[g(X(T ))− g

(
X (T )

)]∣∣ ≤ (CS + δ)TOLT
)

× P
(∣∣E[g(X (T )

)]
−A

(
g(X(T ));M

)∣∣ ≤ (1− δ)TOLS
)

(4.17)

The proof is continued by analyzing the two product terms of the last line of the
inequality above separately:

The time discretization error. The assumptions that Lemma 1 and (4.4) holds
implies that

lim sup
TOL↓0

∣∣E[g(X(T ))− g
(
X (T )

)]∣∣
TOLT

≤ CS ,

cf. the proof of Theorem 3.4 in [25]. Thereby,

lim inf
TOL↓0

P
(∣∣E[g(X(T ))− g

(
X (T )

)]∣∣ ≤ (CS + δ)TOLT
)

= 1.
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The statistical error. For the above introduced δ > 0, define the family of sets

Ωδ(TOLS) =

{
k ∈ 2N+dlog2(TOL−1)e

∣∣∣1− δ < kTOL2
S

Var
(
g
(
X (T )

))
C2
C

≤ 2 + δ

}
. (4.18)

By the convergence (4.11), we conclude that

lim
TOL↓0

P (M ∈ Ωδ) = 1.

Recall that for the adaptive SLMC algorithm, the number of samples M is de-
termined in the step prior to generating the output A

(
g(X(T ));M

)
, so that M

is independent from A
(
g(X(T ));M

)
. Using this independence property, Fatou’s

Lemma, and Lindeberg-Feller’s version of the Central Limit Theorem, cf. Theo-
rem 4, yields that

lim inf
TOL↓0

P
(∣∣E[g(X (T )

)]
−A

(
g(X(T ));M

)∣∣ ≤ (1− δ)TOLS
)

= lim inf
TOL↓0

∑
k∈2N+dlog2(TOL−1)e

P
(∣∣E[g(X (T )

)]
−A

(
g(X(T )); k

)∣∣ ≤ (1− δ)TOLS
)
P (M = k)

≥ lim inf
TOL↓0

∑
k∈Ωδ

P
(∣∣E[g(X (T )

)]
−A

(
g(X(T )); k

)∣∣ ≤ (1− δ)TOLS
)
P (M = k)

+
∑

k∈2N+dlog2(TOL−1)e\Ωδ

lim inf
TOL↓0

P
(∣∣E[g(X (T )

)]
−A

(
g(X(T )); k

)∣∣ ≤ (1− δ)TOLS
)
P (M = k)

≥ lim inf
TOL↓0

∑
k∈Ωδ

P

√k ∣∣E[g(X (T )
)]
−A

(
g(X(T )); k

)∣∣√
Var
(
g
(
X (T )

)) ≤ (1− δ)3/2CC

P (M = k)

≥
∫ (1−δ)3/2CC

−(1−δ)3/2CC

e−x
2/2

√
2π

dx.

(4.19)

The proof is finished by noting that the argument leading to inequality (4.19) is
valid for all δ > 0. �

We conclude this subsection with a complexity analysis of the adaptive SLMC
algorithm. Similar to the definition of the work for the MLMC algorithm given
in (4.2), we define the SLMC work by

WORK(TOL) = E[M ]E[N ], (4.20)

where we recall that M denotes the number of samples of g
(
X (T )

)
required to con-

trol the statistical error and N denotes the number of adaptive time steps required
in the construction of a numerical realization g(X(T ;ω)) to control the time dis-
cretization error

∣∣E[g(X (T )
)
− g(X(T ))

]∣∣ ≤ TOLT. We start by bounding E[M ].

Lemma 5. Suppose the assumptions (4.4)–(4.6) hold. Then the expected value of
the number of samples used in the approximation of E[g(X(T ))] is bounded by

lim sup
TOL↓0

E[M ]TOL2
S

Var
(
g
(
X (T )

))
C2
C

≤ 2. (4.21)
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Proof. For a given δ > 0, define the deterministic function

M̃(TOLS) = min

{
k ∈ 2N+dlog2(TOL−1)e

∣∣∣ kTOL2
S

Var
(
g
(
X (T )

))
C2
C

> 1 + δ

}
.

Assuming TOL is sufficiently small so that (4.12) holds, the relation (4.15), the
fourth moment bound (4.4) and k-Statistics bounds on the variance of the sample
variance, cf. [22], yield

P (M = 2M̃) ≤ P

V
(
g
(
X (T )

)
; M̃
)

Var
(
g
(
X (T )

)) > M̃
TOL2

S

Var
(
g
(
X (T )

))
C2
C


≤ P

V
(
g
(
X (T )

)
; M̃
)

Var
(
g
(
X (T )

)) > 1 + δ


≤ P

(
|V
(
g
(
X (T )

)
; M̃
)
−Var

(
g
(
X (T )

))
| > δVar

(
g
(
X (T )

)))
≤ 2E


∣∣∣V(g(X (T )

)
; M̃
)
−Var

(
g
(
X (T )

))∣∣∣2
δ2Var

(
g
(
X (T )

))2


<
C

δ2M̃
,

Furthermore, for ` = 1, 2, . . . we get that

P (M = 2`+1M̃) ≤ P
(∣∣∣V(g(X (T )

)
; 2`M̃

)
−Var

(
g
(
X (T )

))∣∣∣ > 2`−1Var
(
g
(
X (T )

)))
≤ 2E


∣∣∣V(g(X (T )

)
; 2`M̃

)
−Var

(
g
(
X (T )

))∣∣∣2
22(`−1)Var

(
g
(
X (T )

))2


<
C

22`M̃
.

Consequently,

E[M ]TOL2
S

Var
(
g
(
X (T )

))
C2
C

≤

[
P (M ≤ M̃) +

∑∞
`=1 2`P (M = 2`M̃)

]
M̃TOL2

S

Var
(
g
(
X (T )

))
C2
C

≤ 2(1 + δ)

[
P (M ≤ M̃) + P (M = 2M̃) +

∞∑
`=1

2`+1P (M = 2`+1M̃)

]

≤ 2(1 + δ)

[
P (M ≤ M̃) +

C

δ2M̃
+
C

M̃

∞∑
`=1

2−`

]
.

(4.22)

By taking limits in the above inequality, we obtain

lim sup
TOL↓0

E[M ]TOL2
S

Var
(
g
(
X (T )

))
C2
C

≤ 2(1 + δ).

Finally, noting that this result holds for any δ > 0, the proof is finished. �
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For an asymptotic bound on E[N ], we recall Theorem 3.5 of [25]. The bound
given in this theorem is derived by studying the asymptotic form of the error indi-
cators obtained by the stopping condition (2.19). The theorem further shows that
up to a multiplicative constant, the mesh refinement scheme (2.19)-(2.20) yields
stochastic meshes which are optimal in mean sense. The theorem is here stated as
a lemma.

Lemma 6 (Single level asymptotic average number of time steps). Suppose the
assumptions of Lemma 1 and (4.4)–(4.6) hold. Then the final number of adaptive
steps generated by the algorithm (2.19) and (2.20) satisfies asymptotically

lim sup
TOL↓0

TOLT E[N ] ≤ 4

CR

(
E

[∫ T

0

√
|ρ̂(t)|dt

])2

. (4.23)

The product of the asymptotic upper bounds for E[M ] and E[N ] and an opti-
mization of the choice of TOLT and TOLS gives the following upper bound on the
computational complexity for the adaptive SLMC algorithm.

Proposition 2 (SLMC computational complexity). Suppose the assumptions of
Lemma 1 and (4.4)–(4.6) hold. Then the work for the adaptive SLMC algorithm
satisfies

lim sup
TOL↓0

WORK(TOL)TOL3 ≤ 2 · 33Var(g(X(T )))C2
CCS

CR

(
E

[∫ T

0

√
|ρ̂(t)|dt

])2

,

(4.24)
where CC is the confidence parameter and CR and CS are refinement parameters
described by (2.19) and (2.20).

Proof. Lemma 5 and 6 straightforwardly yield the upper bound

lim sup
TOL↓0

WORK(TOL) TOL2
STOLT ≤

23Var(g(X(T )))C2
C

CR

(
E

[∫ T

0

√
|ρ̂(t)|dt

])2

.

So WORK(TOL) = O
(
TOL−2

S TOL−1
T

)
. Minimizing TOL−2

S TOL−1
T subject to the

restriction CSTOLT + TOLS = TOL, yields

TOLT =
TOL

3CS
and TOLS =

2TOL

3
.

These values for TOLT and TOLS lead to the upper bound (4.24). �

Remark 6. The optimal choices of TOLT and TOLS for minimizing WORK(TOL)
are derived in the proof of Proposition 2 to be

TOLT =
TOL

3CS
and TOLS =

2TOL

3
.

4.2. Multilevel results. We recall from the description of the adaptive MLMC
algorithm in Section 2.2 that given an accuracy TOL = CSTOLT + TOLS, the
adaptive MLMC algorithm generates realizations g

(
X`(T )

)
fulfilling the weak error

bounds
∣∣E[g(X`(T )

)
− g(X(T ))

]∣∣ . TOLT,` on the levels ` = 0, 1, . . . , L. The time

discretization tolerance levels are given by TOLT,` = 2`TOLT, and the number of
levels is set by L = blog2(TOLT,Max/TOLT)c, where TOLT,Max is a predetermined
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max time discretization tolerance value, cf. (2.3). The multilevel sample average
estimator of E[g(X(T ))] is denoted by

AML
(
g
(
X (T )

)
;M0

)
=

M0∑
i=1

g(X0(T ;ω0,i))

M0
+

L∑
`=1

M∑̀
i=1

∆`g(X(T ;ω`,i))

M`
,

where M0 ∈ 2L+dCMLLe2N denotes the number of samples on the coarsest level with
the constant CML ∈ (0, 1), and the number of samples on higher levels is expressed
in terms of M0 by the ratio

M` =
M0

2L

⌈
2L
ρlow(TOLT,0)TOLT,`

ρlow(TOLT,`)TOLT,0

⌉
=
M0

2L

⌈
2L+(γ̄−1)`

⌉
` = 1, 2, . . . , L. (4.25)

The number of samples at the coarsest level is a stochastic process M0 : R+ →
2N+L+dCMLLe defined by

M0(TOLS) = the smallest k0 ∈ 2N+L+dCMLLe such that

VML
(
g
(
X (T )

)
; k0

)
<
k0TOLS

2

C2
C

,
(4.26)

where

VML
(
g
(
X (T )

)
; k0

)
=

k0∑
i=1

(
g(X0(T ;ω0,i))−A

(
g(X0(T ;ω0,·)); k0

))2
k0 − 1

+

L∑
`=1

k0

k`

k∑̀
i=1

(
∆`g(X(T ;ω`,i))−A

(
∆`g(X(T ;ω`,·)); k`

))2
k` − 1

= V
(
g
(
X0(T ;ω0,·)

)
; k0

)
+ 2L

L∑
`=1

V
(
∆`g

(
X0(T ;ω`,·)

)
; k`
)⌈

2L+`(γ̄−1)
⌉

(4.27)

and, analogous to the definition of M`,

k` :=
k0

2L

⌈
2L+(γ̄−1)`

⌉
, ` = 1, 2, . . . , L. (4.28)

Remark 7. In the analysis of the adaptive SLMC algorithm, the requirement M0 ∈
2N+dlog(1/TOL)e ensured that the number of samples used in the MC estimate fulfilled
lim infTOL↓0M = ∞. For the adaptive MLMC algorithm, we analogously ensure

that lim infTOL↓0ML = ∞ by requiring that M0 ∈ 2N+L+dCMLLe for any positive
constant CML.

The stochastic process M0 is defined in a similar way as the stochastic process
M was defined for the SLMC algorithm, cf. (4.9). And for the adaptive SLMC
algorithm, asymptotic accuracy and complexity results were easily obtained by
applying the asymptotic bounds of M , cf. Lemma 4. Applying the same strategy
for the adaptive MLMC algorithm, we will derive asymptotic bounds for M0 and
use these bounds to prove the accuracy and complexity results of Theorem 2 and 3.

Lemma 7 (Asymptotic bounds for M0). Let

VarML
(
g
(
X (T )

))
:= Var

(
g
(
X0(T )

))
+ 2L

L∑
`=1

Var
(
∆`g

(
X (T )

))⌈
2L+`(γ̄−1)

⌉ , (4.29)
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suppose that assumptions (4.4)–(4.6) hold, and that VarML
(
g
(
X (T )

))
> 0 for all

sufficiently small TOL > 0. Then M0(TOLS) defined according to (4.26) fulfills

lim inf
TOL↓0

M0TOL2
S

VarML
(
g
(
X (T )

))
C2
C

= 1 in probability, and

lim sup
TOL↓0

M0TOL2
S

VarML
(
g
(
X (T )

))
C2
C

= 2 in probability.

(4.30)

Proof. The definition of M0 given in (4.26) implies that the following inequalities
hold:

VML
(
g
(
X (T )

)
;M0

)
VarML

(
g
(
X (T )

)) ≤ M0TOL2
S

VarML
(
g
(
X (T )

))
C2
C

≤ 2
VML
(
g
(
X (T )

)
;M0/2

)
VarML

(
g
(
X (T )

)) .

So to conclude the proof, we will show that

lim
TOL↓0

VML
(
g
(
X (T )

)
;M0

)
VarML

(
g
(
X (T )

)) = 1, in probability. (4.31)

Define the deterministic function k̃0(TOLT) = 2L(TOLT)+dCMLL(TOLT)e+1 and let

{k̃`}L`=1 be the corresponding level functions defined according to (4.28). Then, for
a given ε > 0, let us consider

P

∣∣∣∣∣∣
VML
(
g
(
X (T )

)
; k̃0

)
VarML

(
g
(
X (T )

)) − 1

∣∣∣∣∣∣ > ε


= P

(∣∣∣VML(g(X (T )
)
; k̃0

)
−VarML

(
g
(
X (T )

))∣∣∣ > VarML
(
g
(
X (T )

))
ε
)

≤ P

(∣∣∣V(g(X0(T )
)
; k̃0

)
−Var

(
g
(
X0(T )

))∣∣∣+

L∑
`=1

2L
⌈
2L+`(γ̄−1)

⌉−1

×
∣∣∣V(∆`g

(
X (T )

)
; k̃`

)
−Var

(
∆`g

(
X (T )

))∣∣∣ > VarML
(
g
(
X (T )

))
ε

)

≤ P

(∣∣∣V(g(X0(T )
)
; k̃0

)
−Var

(
g
(
X0(T )

))∣∣∣ > VarML
(
g
(
X (T )

))
ε

L+ 1

)

+

L∑
`=1

P

(
2(1−γ̄)`

∣∣∣V(∆`g
(
X (T )

)
; k̃`

)
−Var

(
∆`g

(
X (T )

))∣∣∣ > VarML
(
g
(
X (T )

))
ε

L+ 1

)
.

From the fourth moment bound (4.4), Chebycheff’s inequality and k-Statistics
bounds on the variance of the sample variance, cf. [22], we get that

P

(∣∣∣V(g(X0(T )
)
; k̃0

)
−Var

(
g
(
X0(T )

))∣∣∣ > VarML
(
g
(
X (T )

))
ε

L+ 1

)

≤ C(L+ 1)2

VarML
(
g
(
X (T )

))2
ε2k̃0

.
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The equality 2(1−γ̄)` =
ρlow(TOLT,`)TOLT,0

ρlow(TOLT,0)TOLT,`
combined with (4.4) further yields that

P

(
2(1−γ̄)`

∣∣∣V(∆`g
(
X (T )

)
; k̃`

)
−Var

(
∆`g

(
X (T )

))∣∣∣ > VarML
(
g
(
X (T )

))
ε

L+ 1

)

≤ C(L+ 1)2

VarML
(
g
(
X (T )

))2
ε2k̃`

.

Since k̃0 = 2L+dCMLLe+1, the definition of k̃` in (4.28) implies that k̃` ≥ 2L+dCMLLe+1+(γ̄−1)`

for ` = 1, 2, . . . , L, with γ̄ ≥ 0 denoting the lower error density exponent in
ρlow(TOLT) = TOL γ̄T, cf. (1.23). Consequently,

P

∣∣∣∣∣∣
VML
(
g
(
X (T )

)
; k̃0

)
VarML

(
g
(
X (T )

)) − 1

∣∣∣∣∣∣ > ε

 ≤ C(L+ 1)2

VarML
(
g
(
X (T )

))2
ε2k̃0

L∑
`=0

k̃0

k̃`

≤ C(L+ 1)2

VarML
(
g
(
X (T )

))2
ε2k̃0

L∑
`=0

2(1−γ̄)`

<
C(L+ 1)2

2dCMLLe+γ̄LVarML
(
g
(
X (T )

))2
ε2

which implies that for any ε > 0,

lim
TOL↓0

P

∣∣∣∣∣∣
VML
(
g
(
X (T )

)
; k̃0

)
VarML

(
g
(
X (T )

)) − 1

∣∣∣∣∣∣ > ε


< lim

TOL↓0

C(L+ 1)2

2dCMLLe+γ̄LVarML
(
g
(
X (T )

))2
ε2

= 0.

Since M0 ≥ k̃0 by definition, we conclude that also (4.31) holds, i.e.

lim
TOL↓0

P

(∣∣∣∣∣VML
(
g
(
X (T )

)
;M0

)
VarML

(
g
(
X (T )

)) − 1

∣∣∣∣∣ > ε

)
= 0,

for any ε > 0. �

Proof of Theorem 2. With the asymptotic bounds on M0 we are ready to prove
the main asymptotic accuracy result for the adaptive MLMC algorithm.

Proof. This proof is quite similar to the proof of Proposition 1 for the asymptotic
accuracy in the single level setting, but for the sake of the differing details, a full
proof is included in this setting also. For a given δ > 0, we start by bounding the
left-hand side of (4.1) by a product of the statistical error and the time discretization
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error

lim inf
TOL↓0

P
(∣∣E[g(X(T ))]−AML

(
g
(
X (T )

)
;M0

)∣∣ ≤ TOL
)

≥ lim inf
TOL↓0

P
(∣∣E[g(X(T ))− g(XL(T ))

]∣∣
+
∣∣E[g(XL(T )

)]
−AML

(
g
(
X (T )

)
;M0

)∣∣ ≤ CSTOLT + TOLS

)
≥ lim inf

TOL↓0
P
(∣∣E[g(X(T ))− g

(
XL(T )

)]∣∣ ≤ (CS + δ)TOLT

and |E
[
g
(
XL(T )

)]
−AML

(
g
(
X (T )

)
;M0

)
| ≤ (1− δ)TOLS

)
= lim inf

TOL↓0
P
(
|E
[
g(X(T ))− g

(
XL(T )

)]
| ≤ (CS + δ)TOLT

)
× P

(∣∣E[g(XL(T )
)]
−AML

(
g
(
X (T )

)
;M0

)∣∣ ≤ (1− δ)TOLS

)
.

The time discretization error. The assumptions that Lemma 1 and (4.4) holds
implies that

lim sup
TOL↓0

∣∣E[g(X(T ))− g
(
X (T )

)]∣∣
TOLT

≤ CS ,

cf. the proof of Theorem 3.4 in [25]. By construction TOLT,L = TOLT, and this
implies by the above that

lim inf
TOL↓0

P
(∣∣E[g(X(T ))− g

(
XL(T )

)]∣∣ ≤ (1 + δ)CSTOLT

)
= 1.

The statistical error. From the above introduced δ > 0, define the family of sets

Ωδ(TOLS) =

{
k ∈ 2N+L+dCMLLe

∣∣∣∣∣ 1− δ < kTOLS
2

VarML
(
g
(
X (T )

))
C2
C

≤ 2 + δ

}
, (4.32)

indexed by TOLS > 0. Lemma 7 then implies that limTOL↓0 P (M0 ∈ Ωδ) = 1.
Recall further that for the adaptive MLMC algorithm, the number of samples M0

is determined in the step prior to generating the output AML
(
g
(
X (T )

)
;M0

)
, so that

M0 is independent from AML
(
g
(
X (T )

)
;M0

)
. Using this independence property and

Fatou’s Lemma, the statistical error is bounded from below as follows:

lim inf
TOL↓0

P
(∣∣E [g(XL(T )

)]
−AML

(
g
(
X (T )

)
;M0

)∣∣ ≤ (1− δ)TOLS

)
= lim inf

TOL↓0

∑
k0∈2N+L+dCMLLe

P
(∣∣E[g(XL(T )

)]
−AML

(
g
(
X (T )

)
; k0

)∣∣ ≤ (1−δ)TOLS

)
P (M0 = k0)

≥ lim inf
TOL↓0

∑
k0∈Ωδ

P
(∣∣E[g(XL(T )

)]
−AML

(
g
(
X (T )

)
; k0

)∣∣ ≤ (1−δ)TOLS

)
P (M0 = k0)

+
∑

k0∈2N+L+dCMLLe\Ωδ

lim inf
TOL↓0

P
(∣∣E[g(XL(T )

)]
−AML

(
g
(
X (T )

)
; k0

)∣∣≤(1−δ)TOLS

)
P (M0 = k0)

≥ lim inf
TOL↓0

∑
k0∈Ωδ

P

√k0

∣∣E[g(XL(T )
)]
−AML

(
g
(
X (T )

)
; k0

)∣∣√
VarML

(
g
(
X (T )

)) ≤ (1−δ)3/2CC

P (M0 = k0)

≥
∫ (1−δ)3/2CC

−(1−δ)3/2CC

e−x
2/2

√
2π

dx.

(4.33)
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The last inequality above follows from the application of Lindeberg-Feller’s Central
Limit Theorem (CLT) which is justified by Lemma 8 and the observation that
E
[
AML

(
g
(
X (T )

)
; k0

)]
= E

[
g(XL(T ))

]
. The reasoning leading to inequality (4.33)

is valid for any δ > 0, so the proof of Theorem 2 is finished. �

Next we derive the weak convergence CLT result for the multilevel estimator
AML

(
g
(
X (T )

)
; k0

)
which is needed in the proof of Theorem 2.

Lemma 8 (A CLT result). Suppose the assumptions (4.4)–(4.6) hold, and, in
correspondence with the set defined in (4.32), let

k0(TOLS) := min

{
k ∈ 2N+L+dCMLLe

∣∣∣∣∣ kTOLS
2

VarML
(
g
(
X (T )

))
C2
C

> 1− δ

}
,

for a given δ > 0. Then for any z ∈ R+, we have that

lim
TOL↓0

P

√k0

∣∣E[AML(g(X (T )
)
; k0

)]
−AML

(
g
(
X (T )

)
; k0

)∣∣√
VarML

(
g
(
X (T )

)) ≤ z

=

∫ z

−z

e−x
2/2

√
2π

dx.

(4.34)

Proof. This Lemma will be proved by verifying that the assumptions of the Lindeberg-
Feller CLT are fulfilled, cf. Theorem 4. Let us write√

k0

E
[
AML

(
g
(
X (T )

)
; k0

)]
−AML

(
g
(
X (T )

)
; k0

)√
VarML

(
g
(
X (T )

)) =

K∑
i=1

YK,i

where K :=
∑L
`=0 k` and the elements of YK,i are independent and defined by

YK,i :=



E[g(X0(T ))]−g(X0(T ;ωi))
√
k0

√
VarML(g(X (T )))

for i = 1, 2, . . . , k0,√
k0
k1

(E[∆1g(X(T ))]−∆1g(X(T ;ωi)))
√
k1

√
VarML(g(X (T )))

for i = k0 + 1, . . . , k0 + k1

...
...√

k0
kL

(E[∆Lg(X (T ))]−∆Lg(X(T ;ωi)))
√
kL

√
VarML(g(X (T )))

for i = kL−1 + 1, . . . ,K.

Then it follows that
K∑
i=1

E
[
Y 2
K,i

]
=

VarML
(
g
(
X (T )

))
VarML

(
g
(
X (T )

)) = 1, ∀TOL > 0,

so condition (a) of Theorem 4 is fulfilled. To verify that condition (b) of Theorem 4
is fulfilled, one must show that for any ε > 0,

lim sup
TOL→0

K∑
i=1

E
[
Y 2
K,i1|YK,i|>ε

]
= 0.

The definition of k`, cf. (4.28), combined with the moment bound (4.4) implies that
there exists a C > 0 such that

E

[(
k0

k`

)2 ∣∣∆`g
(
X (T )

)
− E

[
∆`g

(
X (T )

)]∣∣4] ≤ C, ∀` ∈ {1, 2, . . . , L}.
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Using Chebycheff’s inequality and the fact that kL ≥ 2dCMLLe+γ̄L+1, cf. (4.28), we
derive that

K∑
i=1

E
[
Y 2
K,i1|YK,i|>ε

]
≤

K∑
i=1

ε−2E
[
Y 4
K,i

]
=

1

ε2 VarML
(
g
(
X (T )

))2
{

1

k0
E
[∣∣g(X0(T ))− E

[
g
(
X0(T )

)]∣∣4]

+

L∑
`=1

1

k`
E

[(
k0

k`

)2 ∣∣∆`g
(
X (T )

)
− E

[
∆`g

(
X (T )

)]∣∣4]}

≤ C

ε2 VarML
(
g
(
X (T )

))2 L∑
`=0

k−1
`

≤ C L

kL ε2 VarML
(
g
(
X (T )

))2 → 0, as TOL ↓ 0.

This verifies that condition (b) is fulfilled. �

We conclude the analysis of the adaptive MLMC algorithm by estimating the
work required to fulfill the accuracy estimate (4.1). We recall that WORK(TOL),
defined in (4.2) by

WORK(TOL) =

L∑
`=0

E[M`]E[N`],

is an estimate of the average number of operations required in the generation of
AML

(
g
(
X (T )

)
;M0

)
to approximate E[g(X(T ))] with the prescribed confidence CC

and accuracy TOL. First, let us derive an asymptotic bound for E[M0].

Lemma 9. Suppose the assumptions (4.4)–(4.6) hold. Then the number of samples
M0 used at the base level of the MLMC algorithm approximation of E[g(X(T ))]
satisfies

lim sup
TOL↓0

E[M0]TOL2
S

VarML
(
g
(
X (T )

))
C2
C

≤ 2. (4.35)

Proof. For given δ > 0, define the deterministic function

M̃0(TOL) = min

{
k ∈ 2N+L+dCMLLe

∣∣∣ k0TOL2

VarML
(
g
(
X (T )

))
C2
C

> 1 + δ

}
.

By the relation (4.15), the moment bound assumption (4.4), Hölder’s inequality,
and k-Statistics bounds on the variance of the sample variance, cf. [22], we derive
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that

P (M0 = 2M̃0) ≤ P

VML
(
g
(
X (T )

)
; M̃0

)
VarML

(
g
(
X (T )

)) > M̃0
TOL2

VarML
(
g
(
X (T )

))
C2
C


≤ P

VML
(
g
(
X (T )

)
; M̃0

)
VarML

(
g
(
X (T )

)) > 1 + δ


≤ P

(
VML
(
g
(
X (T )

)
; M̃0

)
−VarML

(
g
(
X (T )

))
> δVarML

(
g
(
X (T )

)))
≤ E


∣∣∣VML(g(X (T )

)
; M̃0

)
−VarML

(
g
(
X (T )

))∣∣∣2
δ2VarML

(
g
(
X (T )

))2


≤
Var
(
V
(
g
(
X0(T )

)
; M̃0

))
+
∑L
`=1 Var

(
V
(

∆`g
(
X (T )

)
; M̃`

))
δ2VarML

(
g
(
X (T )

))2
≤ CL

δ2VarML
(
g
(
X (T )

))2
M̃L

,

and for ` = 1, 2, . . . that

P (M0 = 2`+1M̃0)

≤ P
(
VML
(
g
(
X (T )

)
; 2`M̃0

)
−VarML

(
g
(
X (T )

))
> 2`−1VarML

(
g
(
X (T )

)))
≤ E


∣∣∣VML(g(X (T )

)
; 2`M̃0

)
−VarML

(
g
(
X (T )

))∣∣∣2
22(`−1)VarML

(
g
(
X (T )

))2


<
CL

23` VarML
(
g
(
X (T )

))2
M̃L

.

Consequently,

E[M0]TOL2
S

Var
(
g
(
X (T )

))
C2
C

≤

[
P (M0 ≤ M̃0) +

∞∑
`=1

2`P (M0 = 2`M̃0)

]
M̃0TOL2

S

Var
(
g
(
X (T )

))
C2
C

≤ 2(1 + δ)

[
P (M0 ≤ M̃0) + P (M0 = 2M̃0) +

∞∑
`=1

2`+1P (M0 = 2`+1M̃0)

]

≤ 2(1 + δ)

[
P (M0 ≤ M̃0) +

CL

δ2M̃L

+
CL

M̃L

∞∑
`=1

2−2`

]
.

Taking limits in the above inequality leads to

lim sup
TOL↓0

E[M0]TOL2
S

VarML
(
g
(
X (T )

))
C2
C

≤ 2(1 + δ).

Finally, observe that since the obtained inequality holds true for any δ > 0, the
proof is finished. �
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An asymptotic bound on E[N`] may be deduced from the single level result of
Lemma 6. For the convenience of the reader we present the result of Lemma 6 in
a way that is fitting for the multilevel setting.

Lemma 10 (Multilevel asymptotic average number of time steps). Suppose the
assumptions of Lemma 1 and (4.4)–(4.6) hold. Then the final number of time steps
generated by the adaptive MLMC algorithm with time steps (2.19) and (2.20) and
TOLT,` = 2−`TOLT,0 satisfies

lim sup
`↑∞

TOLT,` E[N`] ≤
4

CR

(
E

[∫ T

0

√
|ρ̂(t)|dt

])2

. (4.36)

Proof of Theorem 3. With bounds for E[M0] and E[N`] at hand, we are ready
to prove the main complexity theorem for the adaptive MLMC algorithm.

Proof. First, we note that the conditions γ̄ → 0 and Lγ̄ →∞ as TOL ↓ 0 yields a
consistent lower error density, since it leads to

ρlow(TOLT) = TOL γ̄T = O
(
2−Lγ̄

)
,

which implies that ρlow(TOLT) → 0 as TOL ↓ 0. Lemma 10 implies that for any

given δ > 0, there exists an L̂(δ) not depending on TOL such that

TOLT,` E[N`] ≤ (1 + δ)
4

CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

, ∀` ≥ L̂. (4.37)

Furthermore, recall that M` as defined in (4.25) fulfills

E[M`] ≤ (2`(γ̄−1) + 2−L)E[M0], ∀` ∈ {0, 1, . . . , L}.

By this property, intequality (4.37), the monotonic relation N` ≤ N`+1, and recall-
ing that by construction TOLT,0 > TOLT,Max,

L∑
`=0

E[M`]E[N`] ≤ E
[
NL̂
]
TOLT,L̂

L̂∑
`=0

E[M`]

TOLT,L̂

+

L∑
`=L̂+1

E[M`]

TOLT,`
E[N`]TOLT,`

≤ (1 + δ)4E[M0]

CR TOLT,0

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

×

2L̂
L̂−1∑
`=0

(2`(γ̄−1) + 2−L) +

L∑
`=L̂

(2`γ̄ + 2−L+`)


≤ (1 + δ)4E[M0]

CR TOLT,Max

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2(
2L̂

1− 2γ̄−1
+ L̂2L̂−L +

2(L+1)γ̄

log(2γ̄)
+ 2

)
.

The asymptotics of γ̄ imply that

lim
TOL↓0

γ̄

2γ̄L

(
2L̂

1− 2γ̄−1
+ L̂2L̂−L +

2(L+1)γ̄

log(2γ̄)
+ 2

)
=

1

log(2)
.
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Lemma 9 and (4.40) then yields

lim sup
TOL↓0

WORK(TOL) TOL2
S γ̄

VarML
(
g
(
X (T )

))
2γ̄L

≤ (1 + δ)
8C2

C

log(2) TOLT,Max CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

.

(4.38)

We observe that WORK(TOL) = O
(
TOL−2

S VarML
(
g
(
X (T )

))
2γ̄L
)
. To obtain a

bound on more explicit form, the assumption (4.4) on Lp convergence implies there
exists a CG > 0 such that10

lim sup
`↑∞

ρlow(TOLT,`)

TOLT,`
E
[∣∣∆`g

(
X (T )

)∣∣2] ≤ CG. (4.39)

Inequality (4.39) further implies that

lim sup
TOL↓0

VarML
(
g
(
X (T )

))
L

≤ CG, (4.40)

which in turn yields

lim sup
TOL↓0

WORK(TOL) TOL2
S γ̄

VarML
(
g
(
X (T )

))
2γ̄L

≤ (1 + δ)
8C2

C CG
log(2) TOLT,Max CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

.

(4.41)

We approximately minimize the complexity by the splitting choice

TOLS =
2

2 + γ̄(TOL)
TOL and TOLT =

γ̄(TOL)

(2 + γ̄(TOL))CS
TOL,

which fulfills the restrictions CSTOLT + TOLS = TOL and TOLT ≤ TOLS. Ap-
plying this splitting choice in (4.41) and noting that the proof argument is valid for
all δ > 0 leads to (4.3). �

For settings where ρ̂ is bounded from below by a positive real, adaptive MLMC
has the same complexity as uniform MLMC.

Corollary 1. Suppose the assumptions of Lemma 1 and (4.4)–(4.6) hold, that
ρlow(TOLT) = ρmin ∈ R+, and

min
τ∈[0,T ]

|ρ̂(τ)| ≥ ρmin a.s. (4.42)

Then

lim sup
TOL↓0

WORK(TOL)TOL2

L2
≤ 8C2

C CG
TOLT,Max CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

. (4.43)

Proof. For ρlow(TOLT) = ρmin, M` as defined in (4.25) fulfills

E[M`] = 2−`E[M0], ∀` ∈ {0, 1, . . . , L}. (4.44)

10See Remark 9 for a discussion on how to estimate CG.
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By inequality (4.37), equation (4.44), and the monotonic relation N` ≤ N`+1,

L∑
`=0

E[M`]E[N`] ≤ E
[
NL̂
]
TOLT,L̂

L̂∑
`=0

E[M`]

TOLT,L̂

+

L∑
`=L̂+1

E[M`]

TOLT,`
E[N`]TOLT,`

≤ 4(1 + δ)E[M0]

CR TOLT,0

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2
2L̂

L̂−1∑
`=0

2−` +

L∑
`=L̂

1


≤ 4(1 + δ)E[M0]

CR TOLT,0

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2 (
2L̂+1 + (L− L̂)

)
.

(4.45)

Recalling the definition L = blog2(TOLT,Max/TOLT)c and that L̂ is fixed, it follows
that

lim
TOL↓0

2L̂+1 + (L− L̂)

L
= 1.

Using (4.45) combined with Lemma 9 and recalling that TOLT,0 > TOLT,Max/2,
we obtain the bound

lim sup
TOL↓0

WORK(TOL) TOL2
S

VarML
(
g
(
X (T )

))
L
≤ 16(1 + δ)E[M0]

CR TOLT,Max

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

. (4.46)

To approximately minimize the complexity we introduce the splitting choice

TOLS =
log(TOL−1)

log(TOL−1) + log(log(TOL−1))
TOL,

TOLT =
log(log(TOL−1))

(log(TOL−1) + log(log(TOL−1)))CS
TOL.

Combining (4.39) with the above splitting choice in inequality (4.46), and noting
that this bound is valid for any δ > 0 leads to (4.43). �

Remark 8 (Splitting of the tolerance). The optimal choices of TOLS and TOLT

given TOL obtained in the proof allocates most of the tolerance to the statistical
error when TOL is small. This differs from the equal splitting between TOLS and
TOLT used in the numerical experiments which were sub-optimal in that sense.

Remark 9 (Particular estimate for the constant CG). It is possible to estimate the
asymptotic constant CG given in inequality (4.39). For instance, when the exact
error density is bounded away from zero so there exist a constant ρmin such that
ρ̂ > ρmin > 0 a.s. and the SDE is given by

dX(t) = b(X(t))dW (t), t > 0

X(0) = X0,

then we have

CG ≤ CS E

[∥∥∥∥ (b′b)2(X(t))(ϕ)2(t)

ρ̂(t)

∥∥∥∥
L∞([0,T ])

]
.

Here ϕ(t) = g′(X(T ))X
′(T )

X′(t) and the first variation X ′(s) solves, for s > 0, the

linear equation
dX ′(s) = b′(X(s))X ′(s)dW (s),



IMPLEMENTATION AND ANALYSIS OF AN ADAPTIVE MLMC ALGORITHM 49

with initial condition X ′(0) = 1. The constant CS is the parameter in the stopping
condition (2.19).

Remark 10 (Jump Diffusions). It is possible to extend these results of adaptive
multilevel weak approximation for diffusions to the case of jump diffusions with time
dependent jump measure analyzed in [27].

5. Conclusions

In this work we presented and analyzed an adaptive multilevel Monte Carlo al-
gorithm, where the multilevel simulations are performed on adaptively generated
mesh hierarchies based on computable a posteriori weak error estimates. The the-
oretical analysis of the adaptive algorithm showed that the algorithm stops after a
finite number of steps, and proceeded to show accuracy and efficiency results under
natural assumptions in Theorems 2 and 3. In particular, Theorem 2 states that
the probability of the weak error being bounded by the specified tolerance TOL is
asymptotically bounded by any desired probability through the confidence param-
eter. Theorem 3 states computational complexity results where the involved con-
stants are explicitly given in terms of algorithm parameters and problem properties.
It shows that the L1/2-quasi norm of the error density appears as a multiplicative
constant in the complexity bounds, instead of the larger L1-norm of the same er-
ror density that would appear using a uniform time stepping MLMC algorithm;
the difference between these two factors can be arbitrarily large even in problems
with smooth coefficients where they are both finite. Disregarding the constants the
result shows that, depending on assumptions on the limit error density and the
lower bound on the computed error density used by the adaptive algorithm, the
complexity can be either the same as or nearly the same as the complexity uniform
MLMC has in cases where the order of strong convergence of the Euler-Maruyama
method is 1/2.

Numerical results for scalar SDEs confirmed the theoretical analysis. For the two
problems with reduced weak convergence order a simple single level Monte Carlo
method has complexity O(TOL−4) while the adaptive MLMC method has the
improved complexity O(TOL−2 log2(TOL0/TOL)2). The use of advanced Monte
Carlo methods such as the adaptive MLMC algorithm presented in this paper is
most attractive for SDEs in higher dimension, where the corresponding standard
PDE-based computational techniques are not competitive. It would also be in-
teresting to compare adaptive MLMC with uniform MLMC for Barrier problems
in higher dimensions, since it is not clear that the order of strong convergence of
the Euler-Maruyama method will be (1 − δ)/2, for any positive δ, in that case.
The fact that computational complexity of uniform multilevel Monte Carlo, disre-
garding constants, depends on the strong convergence indicates that adaptive mesh
refinements based on strong error estimates can also be used to improve the com-
putational efficiency; such methods are also subjects of ongoing research and higher
dimensional examples will be treated in that context.

In this paper the adaptive algorithms were presented with global error control in
the quantity of interest, starting from a given coarse mesh. Alternatively, local error
estimates can be applied to control the adaptive time stepping in the computation
of the forward problem. This approach can be used on its own when global error
control is deemed unnecessary or too computationally expensive, but it can also be
used together with the global error control in situations with stiff SDEs where any
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given initial mesh can be too coarse depending on the realization. This is particu-
larly relevant for MLMC simulations where stability issues in the computations on
the coarsest level can destroy the results of the whole multilevel simulation, as was
pointed out by Hutzenthaler, Jentzen, and Kloeden in [18].

Appendix A. Theorems

Theorem 4 (Lindeberg-Feller Theorem [7, p. 114]). For each n, let Xn,m, 1 ≤
m ≤ n, be independent random variables with E[Xn,m] = 0. Suppose

(a)
n∑

m=1

E[X2
n,m]→ σ2 > 0, and

(b) for all δ > 0,

lim
n→∞

n∑
m=1

E[X2
n,m1|Xn,m|>δ] = 0.

Then the Central Limit Theorem holds, i.e., the random variable

Sn :=

n∑
m=1

Xn,m ⇀ σΞ, as n→∞,

where Ξ is a standard normal distributed random variable.
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