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Abstract

In this paper, we show that the use of scrambled Sobol’ sequences in the context

of multilevel quasi-Monte Carlo path simulation leads to a reduction of the

order of complexity, that is the computational cost required to attain a specific

accuracy ε. More specifically, Sobol’ points lead to a cost of O(ε−p), where p

ranges from p ≈ 1.12 to p ≈ 2.01 for the options we consider, which represents

an improvement over the previous best known results obtained by Giles and

Waterhouse ([GW09]) with the use of randomised rank-1 lattice rules.
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1 INTRODUCTION

1 Introduction

Monte Carlo methods are general sampling methods which are widely used to

compute expectations arising in stochastic systems. In computational finance,

they are particularly useful to evaluate the expected value of a contract whose

payoff depends on the solution of a stochastic differential equation. However, a

major drawback of this class of algorithms is that they can be computationally

expensive, and therefore inadequate for some applications. It is later shown

that to achieve a root-mean-square error of ε, the plain Monte Carlo approach

with an Euler–Maruyama path discretisation incurs a cost of O(ε−3), which

can be significant for small ε.

Building on multigrid ideas from the theory of iterative solutions of discre-

tised PDEs, Giles introduced a Multilevel Monte Carlo (MLMC) algorithm

([Gil08b]). He showed that the multilevel approach reduced the computa-

tional cost to O(ε−2(log ε)2) in most cases considered, almost reaching the

lower bound derived by Creutzig et al. ([CDMK09]) for the Euler–Maruyama

discretisation ([Gil15], §5.1). The use of a Milstein discretisation in a subse-

quent paper ([Gil08a]) was shown to eliminate the logarithm term by speeding

up the convergence of the variance of the multilevel estimator, and therefore

improving further the order of complexity.

In 2009, Giles and Waterhouse published a paper ([GW09]) in which they

combined the multilevel approach with ideas borrowed from classical quasi-

Monte Carlo theory. By using a set of 32 independently randomised rank-1

lattice rules, they obtained a significant variance reduction on the coarsest lev-

els, and further reduced the computational cost to approximately O(ε−1.5) in

the case of a Lipschitz European payoff.

In this paper, we show that the use of Sobol’ sequences leads to signif-

icant improvements. We implement a multilevel approach with a set of 32

independently scrambled Sobol’ sequences together with a Milstein path dis-

cretisation, and we show that it achieves a computational cost of O(ε−1.23) in

the European option case.

The paper is structured in three main parts. We first recall basic notions

related to quasi-Monte Carlo methods and its implementation in the context of

financial engineering. We then give an introduction to the multilevel approach

of Giles, make the link with quasi-Monte Carlo theory, and give an outline for a

MLQMC algorithm. Finally, we apply the theory to price a variety of financial

options, and compare our results with those in ([GW09]).

Page 1 of 60



2 BACKGROUND

2 Background

In this section, we recall some ideas and concepts that will be recurrent through-

out the paper. In particular, we briefly describe quasi-Monte Carlo methods

and their implementation, and we give an introduction to the theory of low-

discrepancy sequences.

2.1 Quasi-Monte Carlo methods

In this paper, we fix d ∈ N, and we let Id = [0, 1]d be the closed, d-dimensional

unit hypercube. Consider a random variable X, uniformly distributed on I.

For an integrable function f defined on I, the expectation of f(X) is equal to

its integral. In other words,

E[f(X)] =

∫
I
f(x) dx,

and similarly for Id when d > 1. Therefore, the problem of computing the

expected value of a random variable can be replaced by numerical integration.

To be more specific, the estimator

θN =
1

N

N∑
i=1

f(xi), xi ∼ U(0, 1),

defined for each N is unbiased, and by the strong law of large numbers, it

converges almost surely to E[f(X)] as N →∞. The variance of θN is N−1V[f ],

so that the root-mean-square error (RMSE) is O(N−1/2). To achieve a pre-

specified RMSE of ε therefore requires generating N = O(ε−2) samples.

This can prove to be computationally expensive, especially if evaluating

each sample is costly. For example, this is the case in option pricing, where one

is interested in the expected value of a quantity which is a functional of the

solution to a given stochastic differential equation (SDE). To fix ideas, suppose

we want to estimate E[f(ST )], where f is a (scalar) payoff function which we

assume to be Lipschitz continuous, and where St satisfies the multidimensional

SDE

dSt = a(St, t) dt+ b(St, t) dWt, 0 < t < T.

Consider a time grid 0 = t0 < t1 < · · · < tm = T with timestep h, and let

Sn = S(tn) = S(nh). The simplest approximation to this SDE is the Euler–
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2 BACKGROUND 2.1 Quasi-Monte Carlo methods

Maruyama path discretisation, which leads to the scheme

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn,

and our estimate for E[f(ST )] is then the mean of the payoff values f(ŜT/h)

across N independent path simulations. Theoretical results ([BT95; KP92])

show that under certain conditions on a(St, t) and b(St, t), the error in the ex-

pected payoff due to using a finite timestep h (the weak error) is O(h), while

the expected error in the individual paths (the strong error) is O(
√
h). This

implies that the RMSE is of the form c1N
−1/2+c2h for constants c1, c2 ∈ R. To

achieve a RMSE of ε as before therefore requires N = O(ε−2) samples, and the

use of a timestep h = O(ε) leads a total computational cost of C = O(ε−3). For

small ε, this cost can be significant, outlining one of the weaknesses of Monte

Carlo methods.

A common way of reducing this high cost is the use of quasi-Monte Carlo

(QMC) methods. The basic idea behind QMC is to replace the d-dimensional

points uniformly sampled from Id by well-chosen deterministic points. Indeed,

by using a more regularly distributed set of points we can achieve a better

sampling of the function f , and therefore obtain faster convergence. As we

will see in Section 2.3, the uniformity of a set is formally measured by its dis-

crepancy. Roughly speaking, a d-dimensional sequence will be referred to as

low-discrepancy if it fills Id more uniformly than uncorrelated random points.

The quasi-Monte Carlo method then estimates the integral of a function f over

a d-dimensional hypercube with an N -point equal-weight quadrature rule∫
Id
f(u) du ≈ 1

N

N∑
i=1

f(xi), (2.1)

where (xi)1≤i≤N is a d-dimensional low-discrepancy sequence. As we have seen

above, plain Monte Carlo achieves an accuracy of ε = O(N−1/2). One advan-

tage of QMC is that in the best cases, it leads to O(N−1) convergence: in

fact, it can be shown ([KS05]) that under appropriate conditions, the error in

a quasi-Monte Carlo approximation is O(N−1+δ) for any δ > 0. However, the

use of a deterministic sequence comes at a cost, as we lose the possibility of

constructing confidence intervals, and the estimate in (2.1) is biased.

One way of regaining confidence intervals is by introducing randomised

QMC. The basic idea is to repeat a QMC integration M times independently,
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2 BACKGROUND 2.2 Notes on implementation

giving estimates I1, . . . , IM . Using these M realisations and the Central Limit

Theorem then allows us to construct confidence intervals in the classical way.

To be more specific, we consider M independently randomised low-discrepancy

sequences (x
(1)
i ), . . . , (x

(M)
i ) and we define estimators

Im =
1

N

N∑
i=1

f(x
(m)
i ), m = 1, . . . ,M.

We then construct the global estimator I = M−1∑M
j=1 Ij, which is unbiased.

This allows the estimation of the variance of the estimator in the usual way,

and therefore the computation of confidence intervals. Note that the choice

of M is crucial: by increasing M , one can obtain a better variance estimate

using the Central Limit Theorem, but this comes at the cost of a poorer error.

In this paper, we have chosen to use M = 32.

2.2 Notes on implementation

In this section, we give more details on the implementation of quasi-Monte

Carlo integration in a financial context. We first describe how to approximate

SDEs that we encounter when modelling underlying assets, and we then outline

the different steps in the implementation of a quasi-Monte Carlo method.

2.2.1 Path discretisation

In many financial applications, part of the pricing problem is to model the

behaviour of the underlying assets. In our applications, the assets will follow

SDEs of the form

dS = a(S, t) dt+ b(S, t) dW. (2.2)

For example, we will consider the case of Geometric Brownian Motion (GBM),

where a(S, t) = µS and b(S, t) = σS for some µ, σ ∈ R. As mentioned in Sec-

tion 2.1, an Euler–Maruyama path discretisation leads to a weak error of O(h)

and a strong error of O(
√
h). Although strong convergence is usually not im-

portant, it proves to be key for multilevel Monte Carlo methods. In particular,

the best order of complexity for a given RMSE cannot be achieved with an

Euler–Maruyama approximation, and instead one needs to use a Milstein dis-

cretisation (this is a direct consequence of Theorem 2.1 in [GW09]). For the
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2 BACKGROUND 2.2 Notes on implementation

SDE (2.2), a Milstein path discretisation leads to the scheme

Ŝn+1 = Ŝn + anh+ bn∆Wn +
1

2

∂bn
∂S

bn((∆Wn)2 − h),

where an, bn and ∂bn/∂S are all evaluated at (Ŝn, tn). Under some conditions

on a(S, t) and b(S, t) in (2.2), it has been shown ([KP92]) that the Milstein

scheme achieves a strong convergence of order one, which is why it is more

suitable for multilevel Monte Carlo methods. For more details on the use of

the Milstein discretisation in the multilevel context, see ([GW09], §3).

2.2.2 QMC implementation

As described in Section 2.1, our aim is to estimate an expected payoff E[f(S(T ))].

Consider an SDE path simulation (as one described in Section 2.2.1) with M

timesteps, giving a path Ŝ. Starting with a standard M -dimensional normal

random variable Z, we can express this expected value as

E[f̂(Ŝ(T ))] =

∫
f̂(Ŝ(T ))φ(Z) dZ, (2.3)

where φ(Z) is the density function of Z, and where dZ =
∏M

i=1 dZi, with Zi
being standard one-dimensional normals. Let Φ denote the corresponding

distribution function of Z, and let Ui ∼ U(0, 1) for i = 1, . . . ,M . Then,

putting Zi = Φ−1(Ui) for each i turns the integral in (2.3) into

E[f̂(Ŝ)] =

∫
IM

f̂(Ŝ) dU.

This is then approximated as in (2.1), and so the QMC procedure can be

summarised as follows:

U
(1)−→ Z

(2)−→ ∆W
(3)−→ Ŝ

(4)−→ f̂ .

Step (1) consists of generating quasi-normals from quasi-uniforms, and is achieved

as described above by applying Φ−1 to the quasi-uniforms. Step (3) is described

in Section 2.2.1 above, and Step (4) is simply a matter of evaluating the payoff

function given the discrete states Ŝi.

As a consequence, the two aspects of a randomised QMC implementation

on which we will focus are the choice of the low-discrepancy sequence and its

randomisation method (which can be seen as Step (0)) as well as the generation
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2 BACKGROUND 2.2 Notes on implementation

of Brownian increments from normal random variables, which is Step (2). We

will devote Section 2.3 to the theory of low-discrepancy sequences, and we will

describe specific sequences and randomisation techniques in Section 2.4. We

now focus on the latter aspect of quasi-Monte Carlo simulation, which is the

generation of Brownian increments ∆W .

Let W (t) denote a scalar standard Brownian motion, and a for a timestep h,

define Wn = W (nh) where n ∈ N. Then, each Wn is normally distributed, and

for any i ≥ j we have E[WiWj] = tj, so that the covariance matrix for W

is Σ = (Σij), where Σij = min{ti, tj}. We now need to find a matrix L such

that LL> = Σ. Clearly, L is not unique, and while the choice of L does not

matter for Monte Carlo applications, it is very important for quasi-Monte Carlo

methods ([Gla03], §3.1).

A first approach is to take L to be the Cholesky factor of Σ, which is easily

found to be

L =
√
h


1 0 . . . 0 0

1 1 . . . 0 0
...

...
. . .

...
...

1 1 . . . 1 0

1 1 . . . 1 1

 .

This gives Wn =
∑n

m=1

√
hZm, so ∆Wn = Wn−Wn−1 =

√
hZn and we obtain

a vector of normal random variables with mean zero and variance h.

A second method is known as Principal Component Analysis. In this case,

we set L = UΛ1/2, where U,Λ are the matrices of eigenvectors and eigenval-

ues respectively, and where the eigenvalues are arranged in descending order.

In other words, the nth column of L is
√
λn un, where λn is the nth largest

eigenvalue, and un its corresponding eigenvector. In Section 4.1, we describe a

hybrid PCA method which we use for our numerical results later on.

The third established method to compute L is known as the Brownian

bridge construction. The idea behind Brownian bridge is to use the first

component of Z to define the terminal value W (M), the second value of Z

to define W (M/2) conditional on W (M) , and so on. More specifically, we

let WM =
√
T Z1. Conditional on WM , the midpoint value WM/2 is normally

distributed with mean 1
2
WM and variance T/4, and so

WM/2 =
1

2
WM +

√
T/4Z2.
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2 BACKGROUND 2.3 Low-discrepancy sequences

Repeating this procedure, the third iteration produces WM/4 and W3M/4, and

we can carry on recursively to generate all Brownian values, and therefore

generate ∆W . Note that behind this construction, there is the implicit as-

sumption that M is a power of two. If this is not the case, the method still

works but is slightly more complex. The advantage of Brownian bridge is its

flexibility, and furthermore it is well-known that this construction is suited for

low-discrepancy methods ([Gla03], §3.1.1). More specifically, for European pay-

offs, Brownian bridge almost reduces the generation of Brownian increments

to a one-dimensional problem. Under a Brownian bridge construction, and as

opposed to a PCA approach for example, the main shape of the Brownian path

is determined by the values of the first few normal random variables Zi (see

[Gla03], §5.5). This is particularly important in light of a result by Koksma and

Hlawka (Theorem 2.1 of this paper) which gives a bound for the quasi-Monte

Carlo error in terms of the dimension of the problem.

2.3 Low-discrepancy sequences

In this section, we give a formal introduction to discrepancy theory. We then

make the link with Monte Carlo methods via the Koksma–Hlawka inequality.

Consider a set P = {x1, . . . , xN} ∈ Id. For an arbitrary subset B ⊆ Id,
let A(B;P ) be the number of elements of P lying in B. If B denotes a non-

empty family of Lebesgue-measurable set, then a general notion of discrepancy

of the set P is given by

DN(B;P ) = sup
B∈B

∣∣∣∣A(B;P )

N
− λd(B)

∣∣∣∣ ∈ [0, 1],

where λd(B) is the d-dimensional Lebesgue measure of B (in this context, one

can think of λd(B) as the volume of the d-box B). By specifying B, we obtain

various definitions of discrepancy. For example, we will refer to the discrepancy

of P as DN(P ) = DN(B, P ) where B is the family of subintervals of [0, 1)d of

the form
∏d

i=1[ui, vi). If all the ui are identically zero in B, then we obtain the

star discrepancy of P , denoted D∗N(P ). For our purposes, it will be sufficient to

consider the discrepancies defined above, but we point out that several other

notions of discrepancy exist ([Nie87], §2.1). We now explain the link with

Monte Carlo methods.

Let S be a sequence (i.e. a set) in Id. By classical results in the theory

of uniform distribution of sequences ([KN74], §2.1), S is uniformly distributed

if and only if DN(S) = 0, or equivalently D∗N(S) = 0. In this sense, the
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2 BACKGROUND 2.3 Low-discrepancy sequences

discrepancy is an adequate measure of the “regularity” of a set, as mentioned

in Section 2.1. In addition to this appeal, low-discrepancy sequences play a

central role in bounding the error of the approximation (2.1). The central

result in that direction is a bound obtained by Jurjen Koksma and generalised

by Edmund Hlawka. First, let us recall that for a sufficiently differentiable

function f , the Hardy–Krause variation of f is defined as

V (f) =

∫
Id

∣∣∣∣ ∂df

∂x1 . . . ∂xd

∣∣∣∣ dx.

For an alternative definition, see ([KN74], §2.5). We can now state the main

theorem.

Theorem 2.1 (Koksma–Hlawka inequality). If f has bounded Hardy–Krause

variation V (f) on I, then for any x1, . . . , xN ∈ I, we have∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫ 1

0

f(u) du

∣∣∣∣∣ ≤ V (f)D∗N(x1, . . . , xN).

In short, the error induced by the quadrature rule (2.1) is bounded by a

product of two terms: first, a measure of the variation of the integrand, and

second a measure of how the sampled points deviate from being uniform. In

general, the Koksma–Hlawka inequality is tight ([Nie87], Theorem 2.12) in the

sense that it is the best possible result, even for C∞ functions. A second obser-

vation is that this result is a strict bound, whereas in the case of plain Monte

Carlo, the best we can achieve is a probabilistic bound (by using the Central

Limit Theorem). By constructing sequences with known asymptotic discrep-

ancy, we can use this bound to show that QMC gives potentially significant

improvements over traditional Monte Carlo. To be more specific, we will give

examples of sequences whose star discrepancy is O(N−1(logN)d), where d is

the dimension of the problem. For d sufficiently small, this leads to a much

better error than the usual O(N−1/2) of plain Monte Carlo.

However, it has to be noted that there are several limitations to using the

Koksma–Hlawka inequality in practice. First, both V (f) and D∗N(x1, . . . , xN)

are expensive to compute, and in some cases even more costly than evaluating

the original integral. Even worse, the Hardy–Krause variation is only rarely

bounded in financial applications (which happens if f is unbounded for exam-

ple), and even when it is, the bound given above often grossly overestimates

the true integration error.
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2.4 Main examples

We describe some of the low-discrepancy sequences we use in later parts of

the paper. In particular, we mention randomisation techniques and results on

asymptotic discrepancy for each sequence.

2.4.1 Lattice rules

Recall that a lattice Λ is a Z-module with a finite basis {w1, . . . , wn} such that

any u ∈ Λ can be written as

u = λ1w1 + · · ·+ λnwn, λi ∈ Z.

In other words, Λ is a vector space over Z spanned by {w1, . . . , wn}1.

Definition 2.2. A rank-1 lattice rule is a set Pn = {x1, . . . , xn} ∈ Id with

xk =
kz

n
mod 1, k = 0, . . . , n− 1.

where z is a generating vector with integer components coprime with n.

The definition above, together with ordinary addition, turns Pn into a finite

cyclic group. To make the link with lattices, recall that the rank of a (free)

module is the cardinality of any basis. Equivalently, the rank of a lattice is

the smallest number of cyclic groups into which it may be decomposed (this

follows by the Chinese Remainder Theorem). In this case, “rank-1” refers to

the fact that Pn can only be decomposed as the product of one cyclic group,

namely Pn itself.

The advantage of using rank-1 lattice rules is that they have low discrep-

ancy, in the sense defined in Section 2.3. In particular, it has been shown that

for any d ≥ 2 and N ≥ 2, there are rank-1 lattice rules who achieve a dis-

crepancy DN(P ) ≤ CN−1(logN)d for a constant C ([Nie78] ,§1). Since then,

several constructions of these lattice rules have been outlined (e.g. [Nuy07]).

In the context of QMC, randomisation is achieved via the introduction

of an offset vector, a technique initially introduced by Cranley and Patterson

([CP76]). More specifically, let ∆1, . . . ,∆M be M independent random vectors,

1Formally, let R be an integral domain with fraction field Q, and let K be a finite-
dimensional Q-linear vector space. An R-lattice in K is an R-submodule M ⊆ K such
that M is finitely generated of rank equal to deg(K/Q), and such that M spans K as a Q-
vector space (e.g. [Sam08]). Here, taking R = Z, we recover the definition given above.
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x1

0 0.2 0.4 0.6 0.8 1

x
2

0

0.2

0.4

0.6

0.8

1

Randomised rank-1 lattice rule

Standard

Randomised

Figure 2.1: Two-dimensional rank-1 lattice rule (128 points)

uniformly distributed in Id, and for each m = 1, . . . ,M , define a sequence

x
(m)
k =

(
kz

n
+ ∆m

)
mod 1, k = 0, . . . , n− 1.

This offset operation applied to our rank-1 lattice rule construction gives a

set of M uniformly distributed sequences ([Gla03], §5.4). These M sequences

give M independent, identically distributed and unbiased estimates of the

form (2.1) and therefore allow the computing of confidence intervals as re-

quired.

We give an example of 128 points generated with a rank-1 lattice rule in

Figure 2.1 above, both with and without a Cranley–Patterson shift.

2.4.2 Sobol’ sequences

Here, we describe the generation of a Sobol’ sequence (xn) in one dimension,

following the original method by Sobol’ outlined in [BF88]. The paper describes

a method which generalises up to dimension 40, but a remark by Joe and Kuo

([JK03]), which is used in Matlab, extends this to d = 1111.
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2 BACKGROUND 2.4 Main examples

To start, we need a sequence (vn) of direction numbers, where vi = mi/2
i

for mi an odd integer satisfying 0 < mi < 2i. To specify the sequence (mn),

choose a primitive polynomial P of order d in the polynomial ring Z2[x],

where Z2 = Z/2Z is the group of primitive residue classes modulo 2. Sup-

pose that P takes the form

P = xd + a1x
d−1 + · · ·+ ad−1x+ 1 ∈ Z2[x].

We then define the sequence (mn) recursively,

mi = 2a1mi−1 ⊕ 22a2mi−2 ⊕ . . . ⊕ 2d−1ad−1mi−d+1 ⊕ 2dmi−d ⊕ mi−d,

where ⊕ denotes a bit-by-bit exclusive-or operation. As noted in [BF88], if P

is of degree d, then m1, . . . ,md can be chosen arbitrarily so long as each mi

is odd and satisfies the condition 0 < mi < 2i given above. Subsequent val-

ues md+1, . . . are then determined by the recurrence relation. For reference, a

working example is given in ([BF88], §2). Finally, the Sobol’ sequence (xn) can

be specified by

xi = b1v1 ⊕ b2v2 + . . . ,

where . . . b3b2b1 is the binary representation of i.

The Sobol’ sequences described above are examples of (t, d)-sequences (see

[Gla03], §5.1.4), which were also introduced by Sobol’. These sequences are

well-understood, and for example their star discrepancy is known to satisfy

D∗N(P ) ≤ C1
(logN)d−1

N
+O

(
C2

(logN)d−2

N

)
,

where C1, C2 are constants depending only on d ([Nie87], Theorem 4.10).

Sobol’ sequences can be randomised in various ways. A classical technique

is the use of digital scrambling, introduced by Owen ([Owe98]), which can be

applied to more general families of sequences. However, in our paper, we use

a different scrambling, implemented in Matlab, which was developed by Ma-

tous̆ek (see [Mat98] for more details).

Figure 2.2 shows that Sobol’ points are more uniformly distributed on I2 than

random points. It also demonstrates a property of Sobol’ points: each square

on the grid above contains exactly two Sobol’ points, whereas they contain
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anywhere from zero to five random points. For a complete description of this

phenomenon, see ([Gla03], §5.1.4).
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x
2
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0.8

1

Uniformity of Sobol and random points

Sobol

Random

Figure 2.2: Two-dimensional Sobol’ sequence (128 points)

2.4.3 Halton sequences

A third commonly cited low-discrepancy sequence is known as the Halton se-

quence. Let p ≥ 2 be an integer. For n ∈ N, let n = n0 + n1p + n2p
2 + . . .

be the base p expansion of n. This expansion is clearly finite as n is an in-

teger, and furthermore each ni ∈ {0, . . . , p − 1}. Define the radical inverse

function φp : N→ [0, 1) in base p as

φp(n) =
∞∑
s=0

nsp
−1−s.

Now let p1, . . . , pd ≥ 2 be integers. We can define a Halton sequence P of

dimension d in the bases p1, . . . , pd as the sequence (xn) with

xi = (φp1(i), . . . , φpd(i)) ∈ [0, 1)d, ∀i ≥ 0.
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For d = 1, we obtain a particular case called the Van der Corput sequence.

It can be shown ([Nie87], Theorems 3.6–3.8) that the star discrepancy of a

Halton sequence as above satisfies

D∗N(P ) ≤ C1
(logN)d

N
+O

(
(logN)d−1

N

)
, ∀N ≥ 2,

where C1 is a constant depending only on the primes p1, . . . , pd and which is

known explicitly. It is also known that this constant can be minimised by

choosing p1, . . . , pd to be the first d prime numbers ([Nie87], §3.1).

Figure 2.3 below shows 128 points generated from a Halton sequence, together

with pseudo-random points.
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x
2
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0.8

1

Uniformity of Halton and random points

Halton

Random

Figure 2.3: Two-dimensional Halton sequence (128 points)

For Halton sequences, randomisation can also be achieved in several ways.

The technique implemented in Matlab is based on a permutation of the radical

inverse coefficients, which is obtained by applying a reverse-radix operation to

the possible coefficients ([KW97]). Another method, described in ([KP15], §1),

is based on applying a p-adic shift using the Monna map, a generalisation of

the radical inverse function defined above.
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2.4.4 Higher dimensions

The constructions described above can be used to generate d-dimensional se-

quences for any value of d ≥ 1. However, in practice, many low-discrepancy

sequences suffer a loss of uniformity in higher dimensions ([DKS13; SAKK11]).

Figure 2.4.4 below shows examples where a cross-dimensional study of 1000-

dimensional lattice rules and Sobol’ points reveals a decline in uniformity.
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Figure 2.4: Uniformity of low-discrepancy sequences in high dimensions

Note that the behaviour described above is even more pronounced for the

Halton sequence, as the decline in their uniformity is inherent to their con-

struction ([Gla03], §5.2.1.). As an aside, we point out that an alternative to

these Halton sequences was found by Faure, who developed an extension to

the Van der Corput sequence who does not suffer such loss of uniformity. He

showed that the Faure sequences are low-discrepancy, and furthermore that

the constant term in the expression for the discrepancy goes to zero quicker

than it does for the Halton sequence. Note that a complete description of his

construction can be found in ([Gla03], §5.2.2).

In Section 4.6, we will describe how to analyse the effect of this curse of di-

mensionality in the context of a multilevel quasi-Monte Carlo integration. In

particular, we will show that for high dimensions, it might be better to com-

bine low-discrepancy and pseudo-random sequences to achieve better sampling

of the unit hypercube and faster convergence of the MLQMC algorithm.
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3 Multilevel quasi-Monte Carlo

In this section, we describe the multilevel quasi-Monte Carlo theory and outline

some details of its implementation. Sections 3.1 and 3.2 are entirely based on

the founding papers by Giles ([Gil08b]) and Giles and Waterhouse ([GW09]).

3.1 The multilevel approach

The initial setting is the same as the one in Section 2.1. We consider Monte

Carlo path simulations with different timesteps h` = 2−`T , for ` = 0, . . . , L.

Let Wt denote a given Brownian path, P an option payoff, and let P̂` denote

its approximation using a numerical path discretisation with timestep h`. The

basis of the multilevel approach is the trivial observation that

E[P̂L] = E[P̂0] +
L∑
`=1

E[P̂` − P̂`−1]

by linearity of the expectation operator. The idea is then to estimate each of

the expectations in the sum in a way which minimises the overall variance of

the estimator for a given computational cost. Let Ŷ0 be an estimator for E[P̂0]

using N0 samples, and let Ŷ` (for ` > 0) be an estimator for E[P̂` − P̂`−1]

using N` paths. The estimator on level ` is a mean of N` independent samples,

which for ` > 0 is given by

Ŷ` =
1

N`

N∑̀
i=1

(
P̂

(i)
` − P̂

(i)
`−1

)
.

To minimise the variance, it is important that P̂
(i)
` − P̂

(i)
`−1 comes from ap-

proximations on different levels, but with the same Brownian path. Under

this assumption, the variance of the estimator is given by V[Ŷ`] = N−1` V`,

where V` = V[P̂
(i)
` − P̂

(i)
`−1] is the variance of a single sample. The variance

of the global estimator Y =
∑L

`=0 Ŷ` is therefore V[Y ] =
∑L

`=0N
−1
` V`, for

a computational cost proportional to
∑L

`=0N`h
−1
` . Using the method of La-

grange multipliers and treating the N` as continuous variables, the variance is

minimised for a fixed computational cost by choosing N` to be proportional

to
√
V`h`. The analysis is further refined in the main theorem below.

Theorem 3.1 ([Gil08b], Theorem 3.1). Let P denote a functional of the solu-

tion of the SDE (2.2) for a given Brownian path W (t), and let P̂` denote the cor-
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3 MULTILEVEL QUASI-MONTE CARLO 3.1 The multilevel approach

responding approximation using a numerical discretisation with timestep h` =

M−`T .

If there exist independent estimators Ŷ` based on N` Monte Carlo samples,

and positive constants α ≥ 1
2
, β, c1, c2, c3 such that

1.
∣∣∣E[P̂` − P ]

∣∣∣ ≤ c1h
α
` ,

2. E[Ŷ`] =

{
E[P̂0], ` = 0,

E[P̂` − P̂`−1], ` > 0,

3. E[Ŷ`] ≤ c2N
−1
` hβ` ,

4. C`, the computational complexity of Ŷ`, is bounded by C` ≤ c3N`h
−1
` ,

then there exists a positive constant c4 such that for any ε < e−1, there are

values L and N` for which the multilevel estimator

Ŷ =
L∑
`=0

Ŷ`

has a mean-square-error with bound

MSE = E
[(
Ŷ − E[P ]

)2]
< ε2,

with a computational complexity C with bound

C ≤


c4ε
−2, β > 1,

c4ε
−2(log ε)2, β = 1,

c4ε
−2−(1−β)/α, 0 < β < 1.

Proof. See ([Gil08b], §3).

In the case of an Euler path discretisation, Theorem 3.1 above implies that

achieving a RMSE of ε incurs a computational cost of O(ε−2(log ε)2). This

is an improvement compared to the O(ε−3) of plain Monte Carlo, but still

leaves scope for improvement. The first step is the use of a Milstein path dis-

cretisation, which achieves β > 1 above, and therefore reduces the complexity

to O(ε−2). A further improvement, which is the central theme of this paper, is

the application of a quasi-Monte Carlo element to Giles’ multilevel method.
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3.2 QMC component

In this section, we will follow a paper by Giles and Waterhouse [GW09] in

which the authors develop a MLQMC algorithm using a randomised rank-1

lattice rule. Although we have used another kind of low-discrepancy sequence,

namely Sobol’ points, the theory which we describe below is similar for all such

sequences.

At level `, we define the number of samples N` to be the number of QMC

points, and Ŷ` is the average of P̂` (for ` = 0) or P̂` − P̂`−1 (for ` > 0) over

the 32 sets of N` quasi-Monte Carlo points, each set being randomised appro-

priately. Note here that some authors use fewer than 32 sets, but doing so

might hinder the confidence interval obtained via randomisation of the QMC

component. We then compute an (unbiased) estimate of the variance V` of Ŷ`
from the 32 different averages.

Assuming first order weak convergence, the remaining bias at the finest

level E[P − P̂L] is approximately equal to ŶL. To allow for the possibility

that Ŷ` changes sign as ` increases before settling into first order asymptotic

convergence, we estimate the magnitude of the bias with max{1
2
|ŶL−1|, |ŶL|}.

As before, we know that the RMSE is the sum of the (combined) variance of

the estimator and the square of the bias. To achieve a RMSE of ε, we therefore

choose to make each term smaller than ε2/2. The multilevel QMC algorithm

can then be summarised as follows:

1. start with L = 0

2. compute VL over the 32 sets of points, using NL = 1

3. while the combined variance is greater than ε2/2, double N` on the level

with largest V`/(2
`N`)

4. if L < 2 or the bias estimate is greater than ε/
√

2, set L = L+ 1 and go

to step 2.

As explained in ([GW09]), on one hand, doubling N` will eliminate most of the

variance V`. On the other hand, it will also incur a cost proportional to 2`N`.

We therefore choose ` to maximise V`/(2
`N`), as this will lead to an optimal

reduction in the variance per unit cost.
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4 Numerical Results

In this section, we start by giving a summary of our findings in terms of

the order of complexity required by the MLQMC algorithm to achieve a pre-

specified accuracy. We then briefly describe the particular implementation of

the MLQMC algorithm for a variety of financial options, and we then give our

results, comparing them with rank-1 lattice rules.

Summary of results

Using independently scrambled Sobol’ sequences with a Milstein path discreti-

sation, we estimated the cost required to achieve an accuracy of ε. We then

performed a regression to approximate this cost as O(ε−p), where p is the order

of complexity, which is dependent on the type of the option and the choice of

Brownian bridge or PCA construction, as described below.

Option

Method European Asian Lookback Digital Barrier

BB 1.23 1.12 1.58 2.01 1.92

PCA 1.30 1.15 1.66 2.01 1.81

Figure 4.1: Orders of complexity for various options using MLQMC

In the simplest case of a Lipschitz European payoff, we obtain p ≈ 1.23,

while the previous best known result reported by Giles and Waterhouse was

approximately p ≈ 1.5 ([Gil15], §5.2). Furthermore, significant improvements

can be observed across all option types, except the digital option. This is

consistent with the results obtained in ([GW09]) where the authors note that

the use of a QMC component does not add benefits over a plain multilevel

method for the digital option. Overall, it seems that Sobol’ sequences allow

a better sampling of the payoff functions for the options we considered, and

therefore a faster convergence of the MLQMC algorithm.

4.1 European call option

We first apply our multilevel quasi-Monte Carlo technique to a European call

option, which has a payoff P = exp(−rT )(S(T )−K)+. We use an initial stock

price S(0) = 1, a strike K = 1, and parameters T = 1, r = 0.05, σ = 0.2. We

first recall the results obtained by Giles and Waterhouse with lattice rules in

Page 18 of 60



4 NUMERICAL RESULTS 4.1 European call option

ℓ

0 5

lo
g
2
(v
ar
ia
n
ce
)

-40

-30

-20

-10

0

1

16

256

4096

ℓ

0 5

lo
g
2
(|
m
ea
n
|)

-20

-15

-10

-5

0

Pℓ

Pℓ − Pℓ−1

ℓ

0 5

N
ℓ

10
0

10
5

ε = 0.00005

ε = 0.0001

ε = 0.0002

ε = 0.0005

ε = 0.001

ε

10
-4

10
-3

ε
2
×

C
os
t

10
-4

10
-3

10
-2

10
-1

Std QMC

MLQMC

Figure 4.2: European call option with rank-1 lattice rule

Figure 4.2 and we then present our results with Sobol’ points in Figure 4.3.

The solid lines in the top left plot of Figure 4.2 show how the variance

of P̂` varies with the level when four different numbers N` of low-discrepancy

points are used, and therefore illustrate the effect of using quasi-Monte Carlo

methods (the case N` = 1 corresponding to a standard Monte Carlo method).

On the other hand, the dashed lines show the variance of P̂`− P̂`−1 on different

levels, again for N` = 1, 16, 256 and 4096 low-discrepancy points, and therefore

illustrate the effect of combining the multilevel approach with QMC methods.

Recall that the quasi-Monte Carlo interpretation of the estimator Ŷ` from

Section 3.1 is an average over N` low-discrepancy points. When using a stan-

dard Monte Carlo method, the variance of the average of M points with

common variance σ2 is σ2/M . For example, the variance of the estimator

for N` = 4096 will approximately be 1/256th of the corresponding variance

when N` = 16. Therefore, in order to obtain a fair comparison and useful plots
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Figure 4.3: European call option with Sobol’ sequence

of the variances of P̂` and P̂` − P̂`−1 for various N`, we have multiplied the

variance estimates by the number of low-discrepancy points to correct for this

difference in the denominator.

The solid lines results show that using quasi-Monte Carlo on its own

already gives significant improvements over plain Monte Carlo. The dashed

lines show that combining QMC with a multilevel approach gives additional

improvements. This is particularly clear on the coarsest levels, as the benefit

decreases on the finest levels. However, most of the computational cost of the

multilevel method is on the coarsest levels and so overall we still obtain a major

reduction in the computational cost.

The top right plot of both figures shows that E[P̂` − P̂`−1] = O(h`), which

demonstrates that we obtain first order weak convergence as expected. On

the bottom left plot, we can see the number of samples N` per level, which

decreases as the theory predicts.
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The bottom right plot of both figures shows the behaviour of ε2Cm for var-

ious values of ε, where Cm is the computational cost of the multilevel QMC

algorithm, defined as Cm = 32
∑

` 2`N`, i.e. the total number of fine grid

timesteps on all levels. In the standard QMC case, the cost Cs is the product

of the number of samples required to achieve the desired variance and the num-

ber of timesteps. For the standard QMC, we see that ε2Cs is roughly constant.

However, it is clearly increasing for the multilevel case, both for lattice rules

and Sobol’ points. To have a better idea of the order of complexity, we have

run a simple (logarithmic) regression on the cost to find the power of ε which

best describes the cost. Figure 4.4 presents our results in the case of Sobol’

points and a Brownian bridge construction.
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Figure 4.4: Regression on the order of complexity of a European call

Regression gives a cost which is close to O(ε−1.23). This is near-optimal,

as in the best case the error is inversely proportional to the number of points,

and therefore at best inversely proportional to the computational cost. Fur-

thermore, it almost gives an improvement of two orders of complexity over the

plain Monte Carlo method.
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Brownian bridge vs PCA

For each option considered, we will compare the Brownian bridge construction

and a hybrid PCA method based on Fast Fourier Transforms, which we now

briefly describe.

Consider a scalar Brownian motion W (t) and times 0 ≤ t1 < t2. Classical

results in stochastic calculus ([Gla03], §3.1.1) imply that for any t ∈ (t1, t2)

and given W (t1) and W (t2), the random variable W (t) is normally distributed

with

E[W (t)] = W (t1) +
t− t1
t2 − t1

(W (t2)−W (t1)) ,

V[W (t)] =
(t2 − t)(t− t1)

t2 − t1
.

Now, we further specify that W satisfies W (0) = 0, we set WN =
√
T Z1,

and we consider a time grid 0 = t0 < t1 < t2 < · · · < tN−1 < tN = 1,

so that Wn = W (n/N) = W (tn). By the results above, it is easy to show

that the covariance matrix Ω for the discrete Brownian values Wn is given

by Ωij = min{ti, tj} − titj. In particular, we can compute Ω−1, and so the

eigenvalues and unit eigenvectors of Ω are

λi =
1

4N

(
sin

(
iπ

2N

))−2
,

(vi)j =
2√
2N

sin

(
ijπ

N

)
,

respectively, where i, j = 1, . . . , N − 1. Now in the hybrid construction, the

discrete Brownian values Wn are defined for each n as

Wn =
n

N
WN +

N−1∑
i=1

Zi+1

√
λi(vi)n,

where λi is an eigenvalue of Ω, (vi)n the nth component of the correspond-

ing unit eigenvector, and the Zi are independent standard normal random

variables. The link with Fast Fourier Transforms is made explicit if we de-

fine ai = 2√
2N
Zi+1

√
λi for each i. Indeed, this leads to

Wn =
n

N
WN +

N−1∑
i=1

ai sin

(
inπ

N

)
, n = 1, . . . , N − 1.
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We can then apply a discrete sine transform to the coefficients ai and produce

the discrete Brownian values W1, . . . ,WN−1 as required. The advantage of this

hybrid method is that when N is a power of 2, this results in a much faster

algorithm than a standard PCA construction.

In the case of a European call option, we obtain the following results.
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Figure 4.5: Comparison of BB vs PCA for a European call

The first observation here is that Sobol’ sequences outperform rank-1 lattice

rules for this type of option. The second observation is that BB and PCA

produce similar results. The only difference seems to be that Brownian bridge

is slightly more efficient for smaller values of ε while PCA is more performant

on larger values of ε. In any case, it seems complicated to conclude anything

on that behaviour from these results alone.
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4.2 Asian option

We consider an Asian option with discounted payoff P = exp(−rT )(S −K)+,

where S is the (continuous) arithmetic average of S. As described by Giles and

Waterhouse ([GW09], §6.2), we have for the fine path

Ŝ =
1

T

nT−1∑
n=0

(
1

2
h(Ŝn + Ŝn+1) + bn∆In

)
,

where

∆In =

∫ tn+1

tn

(W (t)−W (tn)) dt− 1

2
h∆W

is a N (0, h3/12) random variable, independent of ∆W . The approximation for

the coarse path is similar, except that the values for ∆In are derived from the

fine path values. Noting that∫ tn+2h

tn

(W (t)−W (tn)) dt− h(W (tn + 2h)−W (tn))

=

∫ tn+h

tn

(W (t)−W (tn)) dt− 1

2
h(W (tn + h)−W (tn))

+

∫ tn+2h

tn+h

(W (t)−W (tn + h)) dt− 1

2
h(W (tn + 2h)−W (tn + h))

+
1

2
h(W (tn + h)−W (tn))− 1

2
h(W (tn + 2h)−W (tn + h)),

we deduce that

∆Ic = ∆I f1 + ∆I f2 +
1

2
h(∆W f1 −∆W f2),

where ∆Ic is the value for the coarse timestep, ∆I f1, ∆W f1 are the values

for the first fine timestep, and ∆I f2, ∆W f2 are the values for the second fine

timestep.

Again, we first mention the existing computations for rank-1 lattice rules, and

we then present our results for Sobol’ sequences. As in the European case, we

take S(0) = 1, K = 1, and parameters T = 1, r = 0.05, σ = 0.2.
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Figure 4.6: Asian call option with rank-1 lattice rule

The graphs of Figure 4.6 are similar to those in obtained for European

options. More specifically, the top left plot shows that both the multilevel

approach and the QMC element reduce the variance of the estimator. Fur-

thermore, the benefits of the multilevel approach are more significant on the

coarsest levels.

The top left graph of Figure 4.7 shows that on the coarsest levels, Sobol’ se-

quences outperform rank-1 lattice rules, with the benefits decreasing across the

levels. In addition, we see that ε2×Cost is increasing in the bottom right plots

of both figures, but it is hard to quantify the exact computational cost.
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Figure 4.7: Asian call option with Sobol’ sequence

Regression for the Asian option is given in Figure 4.8, and shows that the

cost of our problem is approximately O(ε−1.12). Again this is near-optimal,

and shows again the advantage of using QMC in the multilevel setting.

The BB vs PCA graph given in Figure 4.9 confirms our results that Sobol’

sequences outperform rank-1 lattice rules. Furthermore, there is very little

difference between the two methods described to generate Brownian values:

indeed, Brownian bridge and PCA constructions lead to very similar results.
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Figure 4.8: Regression on the order of complexity of an Asian option
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Figure 4.9: Comparison of BB vs PCA for an Asian option
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4.3 Lookback option

We now consider a lookback option, with discounted payoff

P = exp(−rT )

(
S(T )− min

0<t<T
S(t)

)
.

For the fine path calculation, it is a standard result ([Gla03], §6.4) that the

minimum value can be given as

Ŝf
n,min =

1

2

(
Ŝf
n + Ŝf

n+1 −
√(

Ŝf
n+1 − Ŝf

n

)2
− 2b2nh logUn

)
,

where Un ∼ U(0, 1) is a uniform random variable. We therefore obtain an

approximation to min[0,T ] S(t) by taking the minimum over all timesteps, and

therefore an approximation P̂` to the payoff.

For the coarse path calculation, P̂`−1 is defined in a similar way, except that

we used an interpolated midpoint in the Milstein discretisation ([GW09], §3).

This leads to

Ŝc
m,min = min

{
1

2

(
Ŝc
m + Ŝc

m+ 1
2
−
√(

Ŝc
m+ 1

2

− Ŝc
m

)2
− b2mh logU2m−1

)
,

1

2

(
Ŝc
m+ 1

2
+ Ŝc

m+1 −
√(

Ŝc
m+1 − Ŝc

m+ 1
2

)2
− b2mh logU2m

)}
.

Note that the uniform random variables U2m−1 and U2m in the coarse path

calculation are re-used from the fine path calculation. This ensures that the

minimum from the coarse path is close to the minimum from the fine path,

giving a low variance for P̂` − P̂`−1.

Figures 4.10 and 4.11 give the numerical results for S(0) = 1, T = 1, r = 0.05,

and σ = 0.2.
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Figure 4.10: Lookback option with rank-1 lattice rule

An interesting observation from the top left graph in Figure 4.10 above is

that the benefit of combining QMC with the multilevel method only appears

on the two or three coarsest levels (see dashed lines), as compared to the first

five or six levels in the previous two cases. In addition, when looking at QMC

on its own (solid lines), the benefit also decreases across the levels, whereas it

was approximately constant for European and Asian options. However, rank-1

lattice rules still provide an improvement over a plain MLMC algorithm, as

will be clear with Figures 4.12 and 4.13.
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Figure 4.11: Lookback option with Sobol’ sequence

The results in Figure 4.11 are qualitatively similar to those in Figure 4.10.

As in the previous cases, we perform a regression on the order of complexity,

and we compare the BB and PCA constructions.

Regression for the lookback option is given in Figure 4.12 below, and shows

that the cost of our problem is approximately O(ε−1.58) for the lookback option.

Although this is not as low as the European case, it is still much lower than

the O(ε−2) lower bound achieved without QMC component.

The BB vs PCA graph given in Figure 4.13 confirms our results that Sobol’

sequences outperform rank-1 lattice rules. Furthermore, Brownian bridge and

PCA constructions once again lead to similar results.
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Figure 4.12: Regression on the order of complexity of a lookback option
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Figure 4.13: Comparison of BB vs PCA for a lookback option
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4.4 Barrier option

For the barrier option case, we consider a down-and-out call with discounted

payoff

P = exp(−rT )(S(T )−K)+1τ>T ,

where 1τ>T denotes an indicator function which is 1 if τ > T and 0 otherwise,

and where τ is the barrier crossing time, i.e. τ = inft>0 S(t) < B.

For the fine path simulation, the conditional expectation of the payoff

([Gla03], §6.4) can be expressed as

exp(−rT )(Ŝf
nT
−K)+

nT−1∏
n=0

p̂n,

where p̂n denotes the probability that the interpolated path did not cross the

barrier at timestep n, and which equals

p̂n = 1− exp

(
−2(Ŝf

n −B)+(Ŝf
n+1 −B)+

b2nh

)
.

For the coarse path calculation, we use the midpoint trick as for the lookback

option case. Given the value Ŝc
m+ 1

2

at each timestep, the probability that the

Brownian interpolation path does not cross the barrier during the mth (coarse)

timestep is

p̂ c
m =

1− exp

−2(Ŝc
m −B)+(Ŝc

m+ 1
2

−B)+

b2mh


×

1− exp

−2(Ŝc
m+ 1

2

−B)+(Ŝc
m+1 −B)+

b2mh

 .

We give the numerical results with S(0) = 1, K = 1, B = 0.85 and the usual

parameters T = 1, r = 0.05, σ = 0.2 in Figures 4.14 and 4.15.
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Figure 4.14: Barrier option with rank-1 lattice rule

In the top left graph of Figure 4.14, the solid lines show that the variance

of P̂` (solid lines) decreases at a slower rate than before, displaying a similar

behaviour than for lookback options. Worse, the dashed lines show that on

some levels, there is at least one occurrence where increasing the number of

points increases the variance of P̂` − P̂`−1 (for example at level ` = 7). The

same qualitative results can be observed in Figure 4.15 for Sobol’ sequences.
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Figure 4.15: Barrier option with Sobol’ sequence

Page 34 of 60



4 NUMERICAL RESULTS 4.4 Barrier option

The graph of the regression for the barrier option is given in Figure 4.16. To

summarise, it shows that the cost of our problem is approximately O(ε−1.92) for

the barrier option. This is worse than the previous cases, but still represents

an improvement over the plain techniques considering that it is (relatively)

more complicated to price a barrier option than a simple European option.

Furthermore, this order of complexity is consistent with the qualitative results

from Figure 4.15. Indeed, we see on the bottom right plot that for the MLQMC

algorithm, the product of ε2 with the computational cost is almost constant,

indicating that we should not expect a cost much lower than O(ε−2).
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Figure 4.16: Regression on the order of complexity of a barrier option

The BB vs PCA graph given in Figure 4.17 is similar to what we have

seen so far. On one hand it shows that Sobol’ sequences also outperform rank-

1 lattice rules for barrier options. This is particularly clear for larger values

of ε, with the difference in the results obtained from the two low-discrepancy

sequences diminishing as ε decreased. On the other hand, it confirms that

Brownian bridge and PCA methods lead to similar results.
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Figure 4.17: Comparison of BB vs PCA for a barrier option

4.5 Digital option

We consider a digital option with discounted payoff

P = exp(−rT )1S(T )>K ,

where again 1S(T )>K denotes an indicator function which is 1 if the terminal

value S(T ) is greater than the strike K, and 0 otherwise.

We follow the same procedure as Giles in ([Gil08a]), smoothing the payoff

using the technique of conditional expectation ([Gla03], §7.2.3) in which the

path calculations are terminated one timestep before the final time T . The

method is described in more details in ([GW09], §6.5).

The numerical results with S(0) = 1, K = 1, T = 1, r = 0.05, and σ = 0.2 are

given in Figures 4.18 and 4.19.
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Figure 4.18: Digital option with rank-1 lattice rule

On the top left plot of Figure 4.18, we see that combining the multilevel

method with quasi-Monte Carlo techniques significantly reduces the variance

of P̂`− P̂`−1 on the coarsest levels. However, the solid lines results suggest that

this might be due to the multilevel approach rather than the QMC component.

This can be seen for example at level ` = 6, where increasing the number of

quasi-uniform points from N` = 256 to N` = 4096 has no effect on the variance

of P̂`. This qualitative observation, which attempts to distinguish the benefits

provided by the multilevel and QMC components, will be discussed further

when analysing Figure 4.21.
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Figure 4.19: Digital option with Sobol’ sequence

The graph of the regression for the digital option is presented in Figure 4.20.

To summarise, it shows that the cost of our problem is approximately O(ε−2.01),

which is our worst cost out of all applications considered. As mentioned pre-

viously, this is consistent with what Giles and Waterhouse report in ([GW09],

§6.5) where they mention that the QMC element does not add significant ben-

efits for this option.

The BB vs PCA graph given in Figure 4.21 is perhaps even more surpris-

ing. Indeed, it shows that lattice rules outperform Sobol’ sequences for some

values of ε. This might be a consequence of the complexity of the payoff, but

we cannot draw conclusions from this graph alone.

Page 38 of 60



4 NUMERICAL RESULTS 4.5 Digital option

ε

10
-4

10
-3

C
os
t

10
4

10
5

10
6

10
7

Order of complexity of a digital option

Sobol and BB

O(ε−2.01)

Figure 4.20: Regression on the order of complexity of a digital option
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Figure 4.21: Comparison of BB vs PCA for a digital option
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4.6 Dimension reduction

In this section, we analyse the importance of dimension reduction in the MLQMC

algorithm in light of the observations from Section 2.4.4.

One of the first steps in a quasi-Monte Carlo method is to convert a d-

dimensional vector of QMC points to a vector Z of quasi-normals. Suppose for

simplicity that d is a power of 2, as it is the case in the multilevel algorithm.

Following an idea of Giles, we propose to generate Z as follows:

Z =
(
Φ−1(u1), . . . ,Φ

−1(ud/2),Φ
−1(v1), . . . ,Φ

−1(vd/2)
)
,

where (ui) is a low-discrepancy sequence and (vi) a sequence of pseudo-random

numbers. We then apply a Brownian bridge construction to Z and follow the

MLQMC algorithm described in Section 3.2. Based on existing empirical re-

sults ([DKS13; SAKK11]) we have chosen to implement this idea when the

dimension exceeds a threshold α, where α ∈ {8, 16, 32, 64}. Figure 4.6 shows

the behaviour of the computational cost when the threshold α varies, using

Sobol’ points and with ε = 0.0001. We chose a relatively small ε to ensure

that the multilevel algorithm generates sufficiently high-dimensional Sobol’ se-

quences. Note that α = 0 in the plot corresponds to results obtained without

this strategy.
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Figure 4.22: Cost in terms of threshold α
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We observe that for the European and Asian options, the strategy has lit-

tle to no impact. This is probably because the multilevel algorithm converges

faster, and therefore does not need to generate as many high-dimensional se-

quences as with the other options.

A second observation is that for the three remaining cases, there exists a

threshold α which is either 8 or 16 such that the cost of the MLQMC computa-

tion is minimised. Furthermore, the cost displays a shape similar to a smile. A

possible explanation for this is that there exists a tradeoff between the loss of

uniformity caused by the use of pseudo-random numbers and the benefit they

incur by reducing the effective dimension of the problem.

Further work needs to be carried to determine how robust the smile shape

is, and if there is an optimal threshold for each option. If confirmed however,

these results would potentially simplify the implementation of Brownian bridge

constructions on Graphics Processing Units (GPUs).
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5 Conclusions and future work

In this paper, we have shown that Sobol’ sequences often outperform rank-1

lattice rules in the context of option pricing. This is the case with all options

that we considered, except the digital option, for which the use of quasi-Monte

Carlo methods does not seem to add any benefit. In the case of a Lipschitz

European payoff, we found that with Sobol’ points, the MLQMC algorithm led

to a computational cost of approximately O(ε−1.25), an improvement over the

previous best known results of O(ε−1.5).

A first extension to our work would be to develop and test a MLQMC applica-

tion of basket options using Sobol’ sequences. In this case, a challenge might

be the limitation on the number of dimensions imposed by Matlab (d = 1111).

For a basket of 10 options, this would indeed restrict the number of timesteps h

in the path simulation to 111, and actually to 64 as h is a power of two in the

multilevel formulation.

Perhaps a more challenging extension would be to generalise the MLQMC

algorithm for multidimensional SDEs. A main issue in this case is that the Mil-

stein path discretisation requires the simulation of Lévy areas ([Gla03; KP92]),

which is not yet fully understood. Initial results have already been obtained

in the MLMC case by Giles and Szpruch ([GS14]) who developed an antithetic

multilevel correction estimator to avoid the simulation of Lévy areas for Eu-

ropean and Asian options. Further work is required to achieve computational

costs of O(ε−2) for more complex payoffs such as digital, barrier and lookback

options, and also to analyse whether a quasi-Monte Carlo treatment would add

further benefits as it does in the scalar case.

In terms of practical applications, a main direction for future research would

be to further investigate the ideas of dimension reduction mentioned in Sec-

tion 4.6. In particular, it might be possible to identify an optimal threshold

for the dimension at which the vector of uniforms is split into low-discrepancy

and pseudo-random points. The initial results we obtained in that direction

suggest that additional work could simplify the implementation of Brownian

bridge constructions on GPUs.
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Appendix

We attach the main functions used to build the multilevel quasi-Monte Carlo

algorithm. The implementation of the test cases and the plots can be found in

multilevelqmc, while the implementation of the QMC component is in the

function mlmc l which is the level ` estimator.

1 %

2 % This code implements a quasi−Monte Carlo version

3 % of the multilevel method of Giles (2008).

4 % It uses geometric Brownian motion to price

5 % options with various payoffs.

6 %

7 % opt = integer from 1 to 5, with

8 % 1 = European option

9 % 2 = Asian option

10 % 3 = Lookback option

11 % 4 = Digital option

12 % 5 = Barrier option

13 %

14 % randomisation = integer from 1 to 3, with

15 % 1 = rank−1 lattice rule

16 % 2 = Sobol’ sequence

17 % 3 = mixture sequence (see paper)

18 %

19

20

21 function [mlmc cost] = multilevelqmc(opt,randomisation)

22

23 clearvars −EXCEPT opt randomisation

24

25 global option z cbc method

26

27 nvert = 2;

28 method = randomisation;

29

30 load z d4096 m15 gf1

31 z cbc = z;

32

33 if method ==1

34 rtitle = ’Lattice rule’;

35 elseif method == 2

36 rtitle = ’Sobol sequence’;

37 elseif method ==3

38 rtitle = ’Halton sequence’;
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39 else

40 rtitle = ’Other’;

41 end

42

43 for option = opt

44

45 if option==1

46 stitle = ’European’;

47 elseif option==2

48 stitle = ’Asian’;

49 elseif option==3

50 stitle = ’Lookback’;

51 elseif option==4

52 stitle = ’Digital’;

53 elseif option==5

54 stitle = ’Barrier’;

55 end

56 disp(stitle)

57

58 rand(’state’,0);

59 randn(’state’,0);

60

61 %

62 % first, convergence tests

63 %

64

65 if option==4

66 L = 0:8;

67 else

68 L = 0:8;

69 end

70

71 for m = 1:4

72 disp(sprintf(’m = %d’,m))

73 N = 16ˆ(m−1);

74

75 for l = L

76 Ns = max(128,min(4096,2ˆ(18−3∗m−l))); %number of QMC families

77 sums = mlmc l(l,Ns,N);

78 del1( l+1) = sums(3)/Ns;

79 del2( l+1) = sums(1)/Ns;

80 var1(m,l+1) = max(1e−12, (sums(4)/Ns−(sums(3)/Ns)ˆ2)∗N);

81 var2(m,l+1) = max(1e−12, (sums(2)/Ns−(sums(1)/Ns)ˆ2)∗N);

82 end

83 end
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84

85 %

86 % second, mlmc complexity tests

87 %

88

89 rand(’state’,0);

90 randn(’state’,0);

91

92 if option==3 | option==4

93 Eps = [ 0.002 0.001 0.0005 0.0002 0.0001 ];

94 else

95 Eps = [ 0.001 0.0005 0.0002 0.0001 0.00005 ];

96 end

97

98 % calculate cost and savings

99 savings = zeros(length(Eps),1);

100 mlmc cost = zeros(length(Eps),1);

101 std cost= zeros(length(Eps),1);

102

103 for i = 1:length(Eps)

104 eps = Eps(i);

105 Ns = 32; % number of sets/families for QMC

106 [P, Nl] = mlmc(eps,Ns,@mlmc l);

107 l = length(Nl)−1;

108 mlmc cost(i) = sum(Nl.∗2.ˆ(0:l));

109 Nls{i} = Nl/Ns;

110

111 [P, Nl] = mc(eps,Ns,l,@mlmc l);

112 std cost(i) = Nl∗2ˆl;

113

114 disp(sprintf(’mlmc cost = %d, std cost = %d, savings = %f\n’,...

115 mlmc cost(i),std cost(i),std cost(i)/ mlmc cost(i)))

116 end

117

118 %l = max(l,4);

119 l = 8;

120

121 %

122 % plot figures

123 %

124

125 set(0,’DefaultAxesFontSize’,12)

126 figure(’name’,rtitle); pos=get(gcf,’pos’); pos(4)=pos(4)∗0.75∗nvert; set(gcf,’pos’,pos);

127 set(groot, ’DefaultTextInterpreter’, ’LaTex’);

128 set(groot, ’DefaultLegendInterpreter’, ’LaTex’);
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129

130 set(0,’DefaultAxesColorOrder’,[0 0 0]);

131 set(0,’DefaultAxesLineStyleOrder’,’−o|−x|−d|−∗|−−o|−−x|−−d|−−∗’);
132

133 subplot(nvert,2,1)

134 plot(L,log(var1)’/log(2),L(2:end),log(var2(:,2:end))’/log(2));

135 xlabel(’$\ell$’,’Interpreter’,’LaTex’); ylabel(’$\log 2$(variance)’,’Interpreter’,’LaTex’);

%title(stitle)

136 legend(’$1$’,’$16$’,’$256$’,’$4096$’,’Location’,’SouthWest’)

137 axis([0 l −40 0])

138

139 set(0,’DefaultAxesLineStyleOrder’,’−∗|−−∗’)
140

141 subplot(nvert,2,2)

142 plot(L,log(abs(del1))/log(2),L(2:end),log(abs(del2(2:end)))/log(2))

143 xlabel(’$\ell$’,’Interpreter’,’LaTex’); ylabel(’$\log 2 (\left| \textrm{mean} \right|)$’,’

Interpreter’,’LaTex’); %title(stitle)

144 legend(’$P \ell$’,’$P \ell− P {\ell−1}$’,’Location’,’SouthWest’,’Interpreter’,’LaTex’)

145 axis([0 l −20 0])

146

147 if nvert==1

148 print(’−deps2c’,sprintf(’mlmc gbm%da.eps’,option))

149 figure; pos=get(gcf,’pos’); pos(4)=pos(4)∗0.75; set(gcf,’pos’,pos);

150 end

151

152 set(0,’DefaultAxesLineStyleOrder’,’−−o|−−x|−−d|−−∗|−−s’);

153

154

155 if(nvert==3)

156 subplot(nvert,2,3)

157 set(0,’DefaultAxesLineStyleOrder’,’−−o|−−x|−−d|−−∗’);
158 plot(log(16.ˆ(0:3))/log(2),log(var1(:,2))/log(2),log(16.ˆ(0:3))/log(2),log(var1(:,3))/

log(2),log(16.ˆ(0:3))/log(2),log(var1(:,4))/log(2),...

159 log(16.ˆ(0:3))/log(2),log(var1(:,5))/log(2));

160 legend(’l=1’, ’l=2’, ’l=3’, ’l=4’);

161 xlabel(’log 2(m)’);

162 ylabel(’log 2 var (P \ell)’);

163 %{
164 set(0,’DefaultAxesLineStyleOrder’,’−o|−x|−d|−∗’);
165 plot(log(16.ˆ(0:3))/log(2),log(var2(:,6))/log(2),log(16.ˆ(0:3))/log(2),log(var2(:,7))/log(2)

,...

166 log(16.ˆ(0:3))/log(2),log(var2(:,8))/log(2),log(16.ˆ(0:3))/log(2),log(var1(:,9))/log

(2));

167 legend(’l=5’, ’l=6’, ’l=7’, ’l=8’);

168 xlabel(’log 2 (m)’);
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169 ylabel(’log 2 var(P l−P {l−1})’);
170 %}
171 subplot(nvert,2,4)

172 set(0,’DefaultAxesLineStyleOrder’,’−−o|−−x|−−d|−−∗’);
173 % for a given level, variance in terms of number of points

174 plot(log(16.ˆ(0:3))/log(2),log(var1(:,6))/log(2),log(16.ˆ(0:3))/log(2),log(var1(:,7))/

log(2),log(16.ˆ(0:3))/log(2),log(var1(:,8))/log(2),...

175 log(16.ˆ(0:3))/log(2),log(var1(:,9))/log(2));

176 legend(’l=5’, ’l=6’, ’l=7’, ’l=8’);

177 xlabel(’log 2(m)’);

178 ylabel(’log 2 var (P \ell)’);

179 end

180

181 subplot(nvert,2,2∗nvert−1)

182 semilogy(0:length(Nls{5})−1,Nls{5}, ...

183 0:length(Nls{4})−1,Nls{4}, ...

184 0:length(Nls{3})−1,Nls{3}, ...

185 0:length(Nls{2})−1,Nls{2}, ...

186 0:length(Nls{1})−1,Nls{1});
187 xlabel(’$\ell$’,’Interpreter’,’LaTex’); ylabel(’$N \ell$’,’Interpreter’,’LaTex’); %title(

stitle)

188 if option==3 | option==4

189 legend(’$\varepsilon=0.0001$’,’$\varepsilon=0.0002$’,’$\varepsilon=0.0005$’,...

190 ’$\varepsilon=0.001$’,’$\varepsilon=0.002$’,1,’Interpreter’,’LaTex’)

191 else

192 legend(’$\varepsilon=0.00005$’,’$\varepsilon=0.0001$’,’$\varepsilon=0.0002$’,...

193 ’$\varepsilon=0.0005$’,’$\varepsilon=0.001$’,1,’Interpreter’,’LaTex’)

194 end

195 if option==4

196 axis([0 l 1 1e7])

197 elseif option==5

198 axis([0 l 1 1e6])

199 else

200 axis([0 l 1 1e5])

201 end

202

203 set(0,’DefaultAxesLineStyleOrder’,’−∗|−−∗’)
204

205 subplot(nvert,2,2∗nvert)

206 loglog(Eps’,Eps’.ˆ2.∗std cost,Eps’,Eps’.ˆ2.∗mlmc cost)

207 xlabel(’$\varepsilon$’,’Interpreter’,’LaTex’); ylabel(’$\varepsilonˆ2 \times$ Cost’,’

Interpreter’,’LaTex’); %title(stitle)

208 if option ==1 || option == 2

209 legend(’Std QMC’,’MLQMC’,’Location’,’SouthEast’,’Interpreter’,’LaTex’)

210 else
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211 legend(’Std QMC’,’MLQMC’,’Location’,’SouthEast’,’Interpreter’,’LaTex’)

212 end

213 if option==3

214 axis([1e−4 2e−3 0.001 1])

215 elseif option==4

216 axis([1e−4 2e−3 0.01 10])

217 elseif option==5

218 axis([5e−5 1e−3 0.001 1])

219 else

220 axis([5e−5 1e−3 0.0001 0.1])

221 end

222

223 if nvert==1

224 print(’−deps2c’,sprintf(’mlmc gbm%db.eps’,option))

225 else

226 print(’−deps2c’,sprintf(’%s %s.eps’,stitle,rtitle))

227 end

228

229

230 end

231

232 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

233

234 % function [P, Nl] = mlmc(eps,Ns,mlmc l)

235 %

236 % multi−level Monte Carlo path estimation

237 % P = value

238 % Nl = number of lattice points at each level

239 % eps = accuracy (rms error)

240 % Ns = number of random shifts

241 % mlmc l = function for level l estimator

242 %

243 % mlmc l(l,Ns,N)

244 % l = level

245 % Ns = number of random shifts

246 % N = number of lattice points

247

248 function [P, Nl] = mlmc(eps,Ns,mlmc l)

249

250 L = −1;

251 converged = 0;

252

253 while ˜converged
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254

255 %

256 % initial variance estimate

257 %

258

259 L = L+1;

260

261 Nl(L+1) = 1;

262 sums = feval(mlmc l,L,Ns,Nl(L+1));

263 Pl(L+1) = sums(1)/Ns;

264 Vl(L+1) = max(sums(2)/Ns − (sums(1)/Ns).ˆ2, 0) / (Ns−1);

265

266 %

267 % increase lattice size as needed

268 %

269

270 while sum(Vl) > 0.5∗epsˆ2

271 err = Vl ./ (Nl.∗2.ˆ(0:L));

272 [foo,l] = max(err);

273 Nl(l) = 2∗Nl(l);

274 sums = feval(mlmc l,L,Ns,Nl(l));

275 Pl(l) = sums(1)/Ns;

276 Vl(l) = max(sums(2)/Ns − (sums(1)/Ns).ˆ2, 0) / (Ns−1);

277 testsum = sum(Vl);

278 end

279

280 disp(sprintf(’ %d ’,Nl))

281

282 %

283 % test for convergence

284 %

285

286 range = −1:0;

287 if L>1 & 2ˆL>=16

288 con = 2.ˆrange.∗Pl(L+1+range);

289 converged = (max(abs(con)) < eps/sqrt(2)) | (2ˆL>=1024) ;

290 end

291 end

292

293 %

294 % evaluate multi−timestep estimator

295 %

296

297 P = sum(Pl);

298 Nl = Ns∗Nl;
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299

300 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

301

302 %

303 % standard Monte Carlo estimation

304 %

305

306 function [P, N] = mc(eps,Ns,L,mlmc l)

307

308 %

309 % initial variance estimate

310 %

311

312 N = 1;

313 sums = feval(mlmc l,L,Ns,N);

314 P = sums(3)/Ns;

315 V = max(sums(4)/Ns − (sums(3)/Ns).ˆ2, 0) / (Ns−1);

316

317 %

318 % increase lattice size as needed

319 %

320

321 while V > 0.5∗epsˆ2

322 N = 2∗N;

323 sums = feval(mlmc l,L,Ns,N);

324 P = sums(3)/Ns;

325 V = max(sums(4)/Ns − (sums(3)/Ns).ˆ2, 0) / (Ns−1);

326 end

327

328 disp(sprintf(’ %d ’,N))

329 N = Ns∗N;

330

331 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

332

333 %

334 % level l estimator

335 %

336

337 function sums = mlmc l(l,Ns,N)

338

339 global option z cbc method
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340

341 T = 1;

342 r = 0.05;

343 sig = 0.2;

344 B = 0.85;

345

346 nf = 2ˆl;

347 nc = nf/2;

348

349 hf = T/nf;

350 hc = T/nc;

351

352 sums(1:4) = 0;

353

354 % define random shifts

355 delta = rand(2∗nf,Ns);

356 % loop over lattice points

357 Ninc = max(1,floor(min(2ˆ20/(Ns∗nf),2ˆ10/Ns)));

358

359

360 if (method == 1) %rank−1 lattice rule

361

362 Pf sum = zeros(1,Ns);

363 Pc sum = zeros(1,Ns);

364

365 for N1 = 1:Ninc:N

366 N2 = min(Ninc,N−N1+1);

367

368 %

369 % GBM model

370 %

371

372 X0 = 1;

373

374 Xf = X0∗ones(1,N2∗Ns);

375 Xc = Xf;

376

377 Af = zeros(1,N2∗Ns);

378 Ac = Af;

379

380 Mf = Xf;

381 Mc = Xc;

382

383 Bf = 1;

384 Bc = 1;
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385

386 ind1 = reshape((1:N2)’∗ones(1,Ns),1,N2∗Ns);

387 ind2 = reshape(ones(1,N2)’∗(1:Ns),1,N2∗Ns);

388

389 Uf = (z cbc(1:2∗nf)/N)∗(N1:N1+N2−1);

390 Uf = rem(Uf(:,ind1)+delta(:,ind2), 1);

391

392 Zf = ncfinv(Uf(1:nf,:));

393 Lf = log(Uf(nf+1:end,:));

394 If = sqrt(hf/12)∗hf∗ncfinv(Uf(nf+1:end,:));

395

396 % Choice of Brownian Bridge or PCA

397

398 % Wf = pca(Zf,T,’bb fft’);

399 Wf = bb(Zf,T);

400

401 if l==0

402 Xf0 = Xf;

403 Xf = Xf + r∗Xf∗hf + sig∗Xf.∗Wf + 0.5∗sigˆ2∗Xf.∗(Wf.ˆ2−hf);

404 vf = sig∗Xf0;

405 if option==2

406 Af = Af + 0.5∗hf∗(Xf0+Xf) + vf.∗If;
407 elseif option==3

408 Mf = min(Mf,0.5∗(Xf0+Xf−sqrt((Xf−Xf0).ˆ2−2∗hf∗vf.ˆ2.∗Lf)));

409 elseif option==5

410 Bf = Bf.∗(1−exp(−2∗max(0,(Xf0−B).∗(Xf−B)./(hf∗vf.ˆ2))));

411 end

412

413 else

414

415 Wc = Wf(1:2:nf,:) + Wf(2:2:nf,:);

416 Ic = If(1:2:nf,:) + If(2:2:nf,:);

417

418 for n = 1:nc

419 for m = 1:2

420 dWf = Wf(2∗n+m−2,:);

421 Xf0 = Xf;

422 Xf = Xf + r∗Xf∗hf + sig∗Xf.∗dWf + 0.5∗sigˆ2∗Xf.∗(dWf.ˆ2−hf);

423 vf = sig∗Xf0;

424

425 if option==2

426 Af = Af + 0.5∗hf∗(Xf0+Xf) + vf.∗If(2∗n−2+m,:);

427 elseif option==3

428 Mf = min(Mf,0.5∗(Xf0+Xf−sqrt((Xf−Xf0).ˆ2−2∗hf∗vf.ˆ2.∗Lf(2∗n
−2+m,:))));
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429 elseif option==5

430 Bf = Bf.∗(1−exp(−2∗max(0,(Xf0−B).∗(Xf−B)./(hf∗vf.ˆ2))));

431 end

432 end

433

434 dWc = Wc(n,:);

435 Xc0 = Xc;

436 Xc = Xc + r∗Xc∗hc + sig∗Xc.∗dWc + 0.5∗sigˆ2∗Xc.∗(dWc.ˆ2−hc);

437 vc = sig∗Xc0;

438

439 if option==2

440 Ac = Ac + 0.5∗hc∗(Xc0+Xc) + vc.∗(Ic(n,:)+0.25∗hc∗(Wf(2∗n−1,:)−
Wf(2∗n,:)) );

441 elseif option==3 || option==5

442 Xc1 = 0.5∗(Xc0 + Xc + vc.∗(Wf(2∗n−1,:)− Wf(2∗n,:)));

443 if option==3

444 Mc = min(Mc, 0.5∗(Xc0+Xc1−sqrt((Xc1−Xc0).ˆ2−2∗hf∗vc.ˆ2.∗
Lf(2∗n−1,:))));

445 Mc = min(Mc, 0.5∗(Xc1+Xc −sqrt((Xc −Xc1).ˆ2−2∗hf∗vc.ˆ2.∗Lf

(2∗n,:))));

446 else

447 Bc = Bc .∗(1−exp(−2∗max(0,(Xc0−B).∗(Xc1−B)./(hf∗vc.ˆ2))));

448 Bc = Bc .∗(1−exp(−2∗max(0,(Xc1−B).∗(Xc −B)./(hf∗vc.ˆ2))));

449 end

450 end

451 end

452 end

453

454 if option==1

455 Pf = max(0,Xf−1);

456 Pc = max(0,Xc−1);

457 elseif option==2

458 Pf = max(0,Af−1);

459 % Pf = 0.5∗(Pf(1:N2∗Ns)+Pf(end−N2∗Ns+1:end)); no longer using antithetic

pair

460 Pc = max(0,Ac−1);

461 elseif option==3

462 Pf = Xf − Mf;

463 Pc = Xc − Mc;

464 elseif option==4

465 if l==0

466 Pf = ncf((Xf0+r∗Xf0∗hf−1)./(sig∗Xf0∗sqrt(hf)));

467 Pc = Pf;

468 else

469 dWf = Wf(nf−1,:);

Page 53 of 60



APPENDIX

470 Pf = ncf((Xf0+r∗Xf0∗hf−1)./(sig∗Xf0∗sqrt(hf)));

471 Pc = ncf((Xc0+r∗Xc0∗hc+sig∗Xc0.∗dWf−1)./(sig∗Xc0∗sqrt(hf)));

472 end

473 elseif option==5

474 Pf = Bf.∗max(0,Xf−1);

475 Pc = Bc.∗max(0,Xc−1);

476 end

477

478 Pf = exp(−r∗T)∗Pf;

479 Pc = exp(−r∗T)∗Pc;

480

481 if l==0

482 Pc = zeros(1,N2∗Ns);

483 end

484

485 Pf sum = Pf sum + sum(reshape(Pf,N2,Ns),1);

486 Pc sum = Pc sum + sum(reshape(Pc,N2,Ns),1);

487 end

488

489 Pf = Pf sum/N;

490 Pc = Pc sum/N;

491

492 else %Sobol or mixture

493

494

495 Pftot = 0;

496 Pctot = 0;

497

498 for scr = 1:Ns

499 Pf sum = 0;

500 Pc sum = 0;

501 if (method ==2 || method == 3);

502 if(option == 2 || option == 3)

503 P = sobolset(2∗nf);

504 else

505 P = sobolset(nf);

506 end

507 P = scramble(P,’MatousekAffineOwen’);

508 end

509

510 N2 = N;

511

512 %

513 % GBM model

514 %
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515

516 X0 = 1;

517

518 Xf = X0∗ones(1,N2);

519 Xc = Xf;

520

521 Af = zeros(1,N2);

522 Ac = Af;

523

524 Mf = Xf;

525 Mc = Xc;

526

527 Bf = 1;

528 Bc = 1;

529

530 % if (method == 2)

531 %Uf = net(P,(scr∗N2)+1);

532 %Uf = Uf((scr−1)∗N2+2:scr∗N2+1,:)’;

533 Uf = net(P,N2)’;

534 % end

535

536 if(method ==3 && nf>8)

537 Zf = [ncfinv(Uf(1:nc,:));randn(nc,N2)];

538 if(option ==2)

539 If = sqrt(hf/12)∗hf∗[ncfinv(Uf(nf+1:nf+nc,:));randn(nc,N2)];

540 end

541 else

542 Zf = ncfinv(Uf(1:nf,:));

543 if(option == 2)

544 If = sqrt(hf/12)∗hf∗ncfinv(Uf(nf+1:end,:));

545 end

546 end

547

548 Lf = log(Uf(nf+1:end,:));

549

550 % Choice of Brownian Bridge or PCA

551

552 % Wf = pca(Zf,T,’bb fft’);

553 Wf = bb(Zf,T);

554

555 if l==0

556 Xf0 = Xf;

557 Xf = Xf + r∗Xf∗hf + sig∗Xf.∗Wf + 0.5∗sigˆ2∗Xf.∗(Wf.ˆ2−hf);

558 vf = sig∗Xf0;

559 if option==2
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560 Af = Af + 0.5∗hf∗(Xf0+Xf) + vf.∗If;
561 elseif option==3

562 Mf = min(Mf,0.5∗(Xf0+Xf−sqrt((Xf−Xf0).ˆ2−2∗hf∗vf.ˆ2.∗Lf)));

563 elseif option==5

564 Bf = Bf.∗(1−exp(−2∗max(0,(Xf0−B).∗(Xf−B)./(hf∗vf.ˆ2))));

565 end

566

567 else

568

569 Wc = Wf(1:2:nf,:) + Wf(2:2:nf,:);

570 if(option ==2)

571 Ic = If(1:2:nf,:) + If(2:2:nf,:);

572 end

573

574 for n = 1:nc

575 for m = 1:2

576 dWf = Wf(2∗n+m−2,:);

577 Xf0 = Xf;

578 Xf = Xf + r∗Xf∗hf + sig∗Xf.∗dWf + 0.5∗sigˆ2∗Xf.∗(dWf.ˆ2−hf);

579 vf = sig∗Xf0;

580

581 if option==2

582 Af = Af + 0.5∗hf∗(Xf0+Xf) + vf.∗If(2∗n−2+m,:);

583 elseif option==3

584 Mf = min(Mf,0.5∗(Xf0+Xf−sqrt((Xf−Xf0).ˆ2−2∗hf∗vf.ˆ2.∗Lf(2∗n
−2+m,:))));

585 elseif option==5

586 Bf = Bf.∗(1−exp(−2∗max(0,(Xf0−B).∗(Xf−B)./(hf∗vf.ˆ2))));

587 end

588 end

589

590 dWc = Wc(n,:);

591 Xc0 = Xc;

592 Xc = Xc + r∗Xc∗hc + sig∗Xc.∗dWc + 0.5∗sigˆ2∗Xc.∗(dWc.ˆ2−hc);

593 vc = sig∗Xc0;

594

595 if option==2

596 Ac = Ac + 0.5∗hc∗(Xc0+Xc) + vc.∗(Ic(n,:)+0.25∗hc∗(Wf(2∗n−1,:)−
Wf(2∗n,:)) );

597 elseif option==3 || option==5

598 Xc1 = 0.5∗(Xc0 + Xc + vc.∗(Wf(2∗n−1,:)− Wf(2∗n,:)));

599 if option==3

600 Mc = min(Mc, 0.5∗(Xc0+Xc1−sqrt((Xc1−Xc0).ˆ2−2∗hf∗vc.ˆ2.∗
Lf(2∗n−1,:))));
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601 Mc = min(Mc, 0.5∗(Xc1+Xc −sqrt((Xc −Xc1).ˆ2−2∗hf∗vc.ˆ2.∗Lf

(2∗n,:))));

602 else

603 Bc = Bc .∗(1−exp(−2∗max(0,(Xc0−B).∗(Xc1−B)./(hf∗vc.ˆ2))));

604 Bc = Bc .∗(1−exp(−2∗max(0,(Xc1−B).∗(Xc −B)./(hf∗vc.ˆ2))));

605 end

606 end

607 end

608 end

609

610 if option==1

611 Pf = max(0,Xf−1);

612 Pc = max(0,Xc−1);

613 elseif option==2

614 Pf = max(0,Af−1);

615 % Pf = 0.5∗(Pf(1:N2∗Ns)+Pf(end−N2∗Ns+1:end)); no longer using antithetic

pair

616 Pc = max(0,Ac−1);

617 elseif option==3

618 Pf = Xf − Mf;

619 Pc = Xc − Mc;

620 elseif option==4

621 if l==0

622 Pf = ncf((Xf0+r∗Xf0∗hf−1)./(sig∗Xf0∗sqrt(hf)));

623 Pc = Pf;

624 else

625 dWf = Wf(nf−1,:);

626 Pf = ncf((Xf0+r∗Xf0∗hf−1)./(sig∗Xf0∗sqrt(hf)));

627 Pc = ncf((Xc0+r∗Xc0∗hc+sig∗Xc0.∗dWf−1)./(sig∗Xc0∗sqrt(hf)));

628 end

629 elseif option==5

630 Pf = Bf.∗max(0,Xf−1);

631 Pc = Bc.∗max(0,Xc−1);

632 end

633

634 Pf = exp(−r∗T)∗Pf;

635 Pc = exp(−r∗T)∗Pc;

636

637 if l==0

638 Pc = zeros(1,N2);

639 end

640

641 Pf sum = Pf sum + sum(reshape(Pf,N2,1));

642 Pc sum = Pc sum + sum(reshape(Pc,N2,1));

643
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644 Pftot(scr) = Pf sum/N;

645 Pctot(scr) = Pc sum/N;

646 end

647

648 Pf = Pftot;

649 Pc = Pctot;

650 end

651

652 sums(1) = sums(1) + sum(Pf−Pc);

653 sums(2) = sums(2) + sum((Pf−Pc).ˆ2);

654 sums(3) = sums(3) + sum(Pf);

655 sums(4) = sums(4) + sum(Pf.ˆ2);
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