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Abstract Giles (Oper. Res. 56:607–617, 2008) introduced a multi-level Monte Carlo
method for approximating the expected value of a function of a stochastic differential
equation solution. A key application is to compute the expected payoff of a finan-
cial option. This new method improves on the computational complexity of standard
Monte Carlo. Giles analysed globally Lipschitz payoffs, but also found good per-
formance in practice for non-globally Lipschitz cases. In this work, we show that
the multi-level Monte Carlo method can be rigorously justified for non-globally Lip-
schitz payoffs. In particular, we consider digital, lookback and barrier options. This
requires non-standard strong convergence analysis of the Euler–Maruyama method.
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1 Background

Many models in mathematical finance take the form of the Itô stochastic differential
equations (SDEs)

dS(t) = a
(
S(t)

)
dt + b

(
S(t)

)
dW(t), 0 ≤ t ≤ T , S(0) given, (1.1)

and the expected value of some functional of S is typically of interest [5, 8]. We focus
here on the case where S(t) represents the price of an asset at time t and the expected
payoff of an option is required.

We assume that the SDE is scalar, with drift and diffusion coefficients satisfying
global Lipschitz bounds; so, for some constant L,

∣∣a(x) − a(y)
∣∣ ∨ ∣∣b(x) − b(y)

∣∣ ≤ L|x − y|, ∀x, y ∈ R, (1.2)

and note that this implies the linear growth bounds
∣∣a(x)

∣∣ ∨ ∣∣b(x)
∣∣ ≤ R + L|x|, ∀x ∈ R,

where R = |a(0)| ∨ |b(0)|. We also suppose that the initial data has bounded mo-
ments; that is, for any m ≥ 0 there is a constant Qm such that E[|S(0)|m] ≤ Qm. Ap-
proximating (1.1) with the Euler–Maruyama (EM) method produces the recurrence
{Xk}Mk=0, with X0 = S(0) and

Xk+1 = Xk + a(Xk)h + b(Xk)�Wk, (1.3)

where h = T/M is a fixed stepsize and �Wk = W((k + 1)h)−W(kh) is a Brownian
increment [9, 10].

For the purpose of illustration, consider now the problem of estimating the ex-
pected final time solution value, E[S(T )]. Using the EM method (1.3) to compute N

approximate samples produces the standard Monte Carlo estimate

μ = 1

N

N∑

i=1

X
[i]
M ,

where X
[i]
M is the numerical approximation to X(T ) on the ith sample path. The

overall error may then be decomposed as

E
[
S(T )

] − μ = E
[
S(T ) − XM + XM − μ

]

= E
[
S(T ) − XM

] + (
E[XM ] − μ

)
. (1.4)

The first term on the right-hand side in (1.4), E[S(T ) − XM ], is the bias. This is a
property of the numerical method. For EM (1.3), classical weak convergence theory
shows that this bias is O(h) [2]. The second term, E[XM ]− μ, is the statistical error
that arises in any Monte Carlo experiment. From the perspective of a confidence
interval width, this error is O(1/

√
N) [5]. Overall, we may regard μ as giving an

accuracy of O(h) + O(1/
√

N). To achieve a target accuracy of O(ε) we should
therefore use the scaling h = 1/

√
N = ε.
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Measuring the cost of the computation either in terms of

• the number of evaluations of a(·),
• the number of evaluations of b(·), or
• the number of pseudo-random number calls to obtain the Brownian increments

�Wk ,

we have a computational complexity proportional to the product of the number of
paths and the number of steps per path, that is, O(N/h). In terms of the target ac-
curacy ε, since h = 1/

√
N = ε, we have computational complexity of O(ε−3). This

type of complexity analysis is standard and the conclusion holds when EM is used to
solve a wide class of problems [3].

Recently, however, Giles [4] showed that by using EM more carefully, notably by
taking a range of stepsizes with more paths computed with cheaper, large, stepsizes,
it is possible to reduce the complexity. For an option with globally Lipschitz payoff,
Giles showed how to achieve complexity of O(ε−2 log(ε)2). Remarkably, both the
algorithm and the underlying analysis depend explicitly on the strong convergence
property of EM, even though the fundamental quantity to be computed is weak—
an expected value. Giles also gave numerical results for options where the payoff is
not globally Lipschitz, and showed that improvements on the complexity of standard
Monte Carlo also arise. Our aim in this work is to fill a gap in [4] by giving a rigorous
analysis of multi-level Monte Carlo for the non-globally Lipschitz cases that were
tested numerically. Theorem 3.1 of [4] gives a general complexity result for multi-
level Monte Carlo. Using that framework, we need only focus attention on the mean-
square error between the exact and numerical payoffs. Hence, for specific types of
option, our aim is to derive a bound of the form

E
(|P − P̂ |2) = O

(
hβ

)
, for some β < 1, (1.5)

where P denotes the payoff from the exact SDE solution, S, and P̂ denotes the cor-
responding payoff from the EM approximation, {Xk}Nk=0. Under the assumption that
there is a corresponding weak error bound of the form

E(P − P̂ ) = O
(
hα

)
, for some α ≥ 1

2
, (1.6)

this allows us to conclude that the standard Monte Carlo complexity of O(ε−2−1/α)

is improved to O(ε−2−(1−β)/α) when the multi-level version is used. We note that for
the options considered here, we are not aware of a rigorously derived optimal weak
order α in (1.6), although work in this direction is progressing [6]. However, we em-
phasize that (a) our results show that the multi-level approach gives an improvement
whatever the value of α ≥ 1

2 , and (b) in Sect. 2, where we have β = 1 − δ for any
δ > 0, the multi-level complexity becomes independent of α. Our results are also of
interest in their own right as non-standard strong error bounds in stochastic numerical
analysis.

For valuing path-dependent options we consider the basic numerical method that
uses the discrete numerical approximation {Xk}Mk=0. However, we find it convenient
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to work in continuous time, so we define the piecewise linear interpolant X(t) by

X(kh + θh) = (1 − θ)Xk + θXk+1 for 0 ≤ θ < 1, k = 0,1,2, . . . .

We note that for the underlying discrete-time approximation there is a classical mean-
square, or strong, error bound: there is a constant C such that (for all sufficiently
small h)

E

(
sup

0≤kh≤T

∣∣S(kh) − Xk

∣∣2
)

≤ Ch. (1.7)

More generally, for any m ≥ 2 there is a constant Cm such that

E

(
sup

0≤kh≤T

∣∣S(kh) − Xk

∣∣m
)

≤ Cmhm/2. (1.8)

Proofs of these results can be found, for example, in [9], where it is also shown that
the analogous error moment bounds hold for a non-computable extension of {Xk} to
continuous time.

For the computable approximation X(t), a continuous-time analogue of (1.8) is
available with a slight degradation in the order. Müller-Gronbach [11] established
an asymptotic upper bound on (E(sup0≤t≤T |S(t) − X(t)|m))1/m that is proportional
to

√|h log(h)|. For our purposes, it is sufficient to weaken this to the statement that
given any m ≥ 2 and any δ > 0 there is a constant Cm,δ such that

E

(
sup

0≤t≤T

∣∣S(t) − X(t)
∣∣m

)
≤ Cm,δh

m/2−δ. (1.9)

This basic error bound is a key ingredient for our analysis.
The following sections analyse the cases of digital, lookback, up-and-out and

down-and-in barrier options. To make the equations less cluttered we have not in-
cluded the discount factor e−rT , where r is the interest rate (assumed constant). The
same complexity results hold, of course, for the discounted expected payoff.

Independent work by Avikainen also provides analysis that is relevant to the multi-
level Monte Carlo method. The results in [1] extend material in Sect. 3 by providing
a better upper bound for a broader class of final-time payoff functions and an accom-
panying lower bound.

2 Lookbacks

A floating strike lookback call option differs from the standard European call option
in that the strike price is replaced by the smallest asset price observed [5, 7]. So the
(undiscounted) lookback payoff is

P = S(T ) − inf
0≤t≤T

S(t).

Analogously, our numerical approximation to this payoff is

P̂ = X(T ) − inf
0≤t≤T

X(t).
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Hence, using (1.7),

E
(|P − P̂ |2) ≤ 2E

(∣∣S(T ) − X(T )
∣∣2) + 2E

(∣∣∣ inf
0≤t≤T

S(t) − inf
0≤t≤T

X(t)

∣∣∣
2)

= O(h) + 2E

(∣∣∣ inf
0≤t≤T

S(t) − inf
0≤t≤T

X(t)

∣∣∣
2)

. (2.1)

It is straightforward to show that
∣∣∣ inf
0≤t≤T

S(t) − inf
0≤t≤T

X(t)

∣∣∣ ≤ sup
0≤t≤T

∣∣S(t) − X(t)
∣∣. (2.2)

Thus, given any δ > 0, using (2.1) and (1.9), we have

E
(|P − P̂ |2) ≤ O(h) + 2E

(
sup

0≤t≤T

∣∣S(t) − X(t)
∣∣2

)
= O

(
h1−δ

)
.

This shows that (1.5) holds with β = 1 − δ for the floating strike lookback.
Similarly, we have

∣∣∣ sup
0≤t≤T

S(t) − sup
0≤t≤T

X(t)

∣∣∣ ≤ sup
0≤t≤T

∣∣S(t) − X(t)
∣∣, (2.3)

which produces the same result for the floating strike lookback put, whose payoff is

P = sup
0≤t≤T

S(t) − S(T ).

A fixed strike lookback call [7] has

P =
(

sup
0≤t≤T

S(t) − K
)+

, and so P̂ =
(

sup
0≤t≤T

X(t) − K
)+

.

Noting that the function (.)+ := max(.,0) has a unit Lipschitz bound, it follows that

E
(|P − P̂ |2) = E

∣∣
∣
(

sup
0≤t≤T

S(t) − K
)+ −

(
sup

0≤t≤T

X(t) − K
)+∣∣

∣
2

≤ E

∣∣∣ sup
0≤t≤T

S(t) − sup
0≤t≤T

X(t)

∣∣∣
2
. (2.4)

Using (2.3) and (1.9) we conclude from (2.4) that E(|P − P̂ |2) = O(h1−δ).
In this manner we may also obtain the same result for the fixed strike lookback put

[7], where P = (K − inf0≤t≤T S(t))+.
Hence, all four varieties of lookback allow β = 1 − δ in (1.5), for any δ > 0.

3 Digitals

We now consider a cash-or-nothing call option, which pays one unit if the final time
asset price exceeds the fixed strike price K , and pays zero otherwise [7, 8]. Thus, the
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discontinuous payoff function has the form

P = 1{S(T )>K},

with the corresponding EM value

P̂ = 1{X(T )>K}.

Here 1A denotes the indicator function for the set A. For a particular path, the exact
and numerical payoffs differ only when one solution exceeds K at expiry and the
other does not. In particular, we have

E
(|P − P̂ |2) = P

({
S(T ) > K

} ∩ {
X(T ) ≤ K

})

+ P
({

S(T ) ≤ K
} ∩ {X(T ) > K}). (3.1)

Now, for any given δ ∈ (0, 1
2 ), we may choose m sufficiently large for

1

2m + 2
< δ and set β̂ := 1

2
− 1

2m + 2
>

1

2
− δ. (3.2)

We consider first the event where only the exact solution path exceeds the strike price.
Then, for h > 0,

P
({

S(T ) > K
} ∩ {

X(T ) ≤ K
}) = P

({
K + hβ̂ ≥ S(T ) > K

} ∩ {
X(T ) ≤ K

})

+ P
({

S(T ) > K + hβ̂
} ∩ {

X(T ) ≤ K
})

≤ P
({

K + hβ̂ ≥ S(T ) > K
})

+ P
({

S(T ) − X(T ) > hβ̂
})

. (3.3)

Here, we have introduced a threshold hβ̂ . On the one hand we should like hβ̂ to be
small so that K + hβ̂ ≥ S(T ) > K is a low probability event. On the other hand we
should like hβ̂ to be large so that, by appealing to the strong convergence behavior
of EM, S(T ) − X(T ) > hβ̂ is a low probability event. The power β̂ in (3.2) has been
chosen to balance these two aims. Under the global Lipschitz assumption (1.2) it
follows from the Picard iteration used to establish existence and uniqueness [10] that
S(T ) is a continuously distributed random variable with a bounded density. So

P
({

K + hβ̂ ≥ S(T ) > K
}) = O

(
hβ̂

)
. (3.4)

But from the Markov inequality [9] and the error moment bound (1.8), we have

P
({

S(T ) − X(T ) > hβ̂
}) ≤ E|S(T ) − X(T )|m

hβ̂m

≤ Cmhm/2

hβ̂m
= O

(
h

1
2 − 1

2m+2
) = O

(
hβ̂

)
. (3.5)
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Combining (3.3)–(3.5) we find that

P
({

S(T ) > K
} ∩ {

X(T ) ≤ K
}) = O

(
hβ̂

)
.

Similar arguments give

P
({

S(T ) ≤ K
} ∩ {

X(T ) > K
}) = O

(
hβ̂

)
,

and so, in (3.1),

E
(|P − P̂ |2) = O

(
hβ̂

) = O
(
h

1
2 −δ

)
.

Overall, we have shown that for any δ > 0, (1.5) holds with β = 1
2 − δ.

Very similar arguments can be used to obtain the same β = 1
2 − δ result for

a cash-or-nothing put option, where P = 1{S(T )<K}. Alternatively, the same com-
plexity arises immediately by valuing the put in terms of the call, since their
sum is riskless [7, Exercise 17.1]. Similarly, an asset-or-nothing call option, where
P = S(T )1{S(T )>K}, could be valued via the relation “European call equals asset-or-
nothing call minus cash-or-nothing call” and an asset-or-nothing put option, where
P = S(T )1{S(T )<K}, could be valued in terms of an asset-or-nothing call [7, Exer-
cise 17.8].

4 Barriers

4.1 Ups

An up-and-out call gives a European payoff if the asset never exceeds the barrier, B ,
where B > K ; otherwise it pays zero [5, 7, 8]. So, for the exact solution we have

P = (
S(T ) − K

)+1{sup0≤t≤T S(t)≤B},

and for the EM approximation

P̂ = (
X(T ) − K

)+1{sup0≤t≤T X(t)≤B}.

Consider the events

F =
{

sup
0≤t≤T

S(t) ≤ B
}

and G =
{

sup
0≤t≤T

X(t) ≤ B
}
.

We have

E
(|P − P̂ |2) = E

(∣∣(S(T ) − K)+1F − (
X(T ) − K

)+1G

∣∣2)

= E
(∣∣(S(T ) − K

)+ − (
X(T ) − K

)+∣∣21F∩G

)

+ E
(∣∣(S(T ) − K

)+∣∣21F∩Gc

) + E
(∣∣(X(T ) − K

)+∣∣21G∩Fc

)

≤ E
(∣∣S(T ) − X(T )

∣
∣21F∩G

)

+ (B − K)2
P
(
F ∩ Gc

) + (B − K)2
P
(
G ∩ Fc

)



410 M.B. Giles et al.

≤ E
(∣∣S(T ) − X(T )

∣∣2) + (B − K)2[
P
(
F ∩ Gc

) + P
(
G ∩ Fc

)]

≤ O(h) + (B − K)2[
P
(
F ∩ Gc

) + P
(
G ∩ Fc

)]
, (4.1)

where the final step used (1.7).
Now, for any δ ∈ (0, 1

2 ), choose m sufficiently large and γ > 0 sufficiently small
for

2γ + 1

2m + 2
< δ so that β̂ := 1

2
− 2γ + 1

2m + 2
>

1

2
− δ.

Then

P
(
F ∩ Gc

) = P

({
B − hβ̂ < sup

0≤t≤T

S(t) ≤ B
}

∩ Gc
)

+ P

({
sup

0≤t≤T

S(t) ≤ B − hβ̂
}

∩ Gc
)

≤ P

(
B − hβ̂ < sup

0≤t≤T

S(t) ≤ B
)

+ P

(
sup

0≤t≤T

X(t) − sup
0≤t≤T

S(t) ≥ hβ̂
)
. (4.2)

Since sup0≤t≤T S(t) is a continuously distributed random variable with bounded den-
sity, we have

P

(
B − hβ̂ < sup

0≤t≤T

S(t) ≤ B
)

= O
(
hβ̂

)
. (4.3)

Also, using (2.3), the Markov inequality and the error moment bound (1.9),

P

(
sup

0≤t≤T

X(t) − sup
0≤t≤T

S(t) ≥ hβ̂
)

≤ P

(
sup

0≤t≤T

(
X(t) − S(t)

) ≥ hβ̂
)

≤ 1

hβ̂m
E

(
sup

0≤t≤T

∣∣X(t) − S(t)
∣∣m

)

≤ Cm,γ hm/2−γ

hβ̂m

= O
(
hβ̂

)
. (4.4)

Using (4.3) and (4.4) in (4.2) we see that P(F ∩Gc) = O(hβ̂). Similarly, we can show

P(G∩Fc) = O(hβ̂), and hence, in (4.1) we have E(|P − P̂ |2) = O(hβ̂) = O(h
1
2 −δ).

An up-and-out put, for which P = (K −S(T ))+1{sup0≤t≤T S(t)≤B}, can be analysed
in an analogous manner (under the reasonable condition that S(t) ≥ 0 over 0 ≤ t ≤ T

with probability one) giving the same mean-square order.
Up-and-in calls and puts may then be valued with the same complexity using the

relation “in plus out equals European” [7, Exercise 19.3].
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4.2 Downs

Before analysing options that knock in or out based on a lower bound, we state and
prove a lemma.

Lemma 4.1 Suppose S is a non-negative scalar random variable such that for any
integer q > 0

E
[
Sq

] = cq < ∞.

Then for any x > 0 and integer n > 0

E
[
Sq1{S>x}

] ≤ √
c2q+2nx

−n.

Proof Since

Sq1{S>x} = Sq+n
(
S−n1{S>x}

)
,

the Hölder inequality gives

E
[
Sq1{S>x}

] ≤ (
E

[
S2q+2n

])1/2(
E

[
S−2n1{S>x}

])1/2 ≤ √
c2q+2nx

−n. �

A down-and-in call [8] knocks in when the minimum asset price dips below the
barrier B , so that

P = (
S(T ) − K

)+1{inf0≤t≤T S(t)≤B},

and, accordingly,

P̂ = (
X(T ) − K

)+1{inf0≤t≤T X(t)≤B}.

We can use a similar style of analysis to that in Sect. 4.1 for the up-and-out call.
Denote the events

H =
{

inf
0≤t≤T

S(t) ≤ B
}

and I =
{

inf
0≤t≤T

X(t) ≤ B
}
.

Then, using the strong convergence result (1.7),

E
(|P − P̂ |2) = E

(∣∣(S(T ) − K
)+1H − (

X(T ) − K
)+1I

∣∣2)

= E
(∣∣(S(T ) − K

)+ − (
X(T ) − K

)+∣∣21H∩I

)

+ E
(∣∣(S(T ) − K

)+∣∣21H∩I c

) + E
(∣∣(X(T ) − K

)+∣∣21I∩Hc

)

≤ E
(∣∣S(T ) − X(T )

∣
∣2)

+ E
(∣∣(S(T ) − K

)+∣∣21H∩I c

) + E
(∣∣(X(T ) − K

)+∣∣21I∩Hc

)

= O(h) + E
(∣∣(S(T ) − K

)+∣∣21H∩I c

)

+ E
(∣∣(X(T ) − K

)+∣∣21I∩Hc

)
. (4.5)
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Now, for any given δ ∈ (0, 1
2 ), choose m > 2 sufficiently large and γ > 0 sufficiently

small for

max

(
2

m − 2
,

2γ + 1

2m + 2

)
<

δ

2
so that β̂ := 1

2
− 2γ + 1

2m + 2
>

1

2
− δ

2
.

Letting J = {S(T ) > h−1/(m−2)}, we have

E
(∣∣(S(T ) − K

)+∣∣21H∩I c

) = E
(∣∣(S(T ) − K

)+∣∣21H∩I c∩J

)

+ E
(∣∣(S(T ) − K

)+∣∣21H∩I c∩J c

)
. (4.6)

Using Lemma 4.1 with q = 2, x = h−1/(m−2) and n = m − 2, we see that there is a
constant Dm such that

E
(∣∣(S(T ) − K

)+∣
∣21H∩I c∩J

) ≤ E
(∣∣(S(T ) − K

)+∣
∣21J

) ≤ Dmh. (4.7)

Also,

E
(∣∣(S(T ) − K

)+∣∣21H∩I c∩J c

) ≤ h−2/(m−2)
P
(
H ∩ I c

)
. (4.8)

Now

P
(
H ∩ I c

) = P

({
B − hβ̂ < inf

0≤t≤T
S(t) ≤ B

}
∩ I c

)

+ P

({
inf

0≤t≤T
S(t) ≤ B − hβ̂

}
∩ I c

)

≤ P

(
B − hβ̂ < inf

0≤t≤T
S(t) ≤ B

)

+ P

(
inf

0≤t≤T
X(t) − inf

0≤t≤T
S(t) ≥ hβ̂

)
. (4.9)

Since inf0≤t≤T S(t) is a continuously distributed random variable, we have

P

(
B − hβ̂ < inf

0≤t≤T
S(t) ≤ B

)
= O

(
hβ̂

)
. (4.10)

Using the Markov inequality, (2.2) and (1.9), we then have

P

(
inf

0≤t≤T
X(t) − inf

0≤t≤T
S(t) ≥ hβ̂

)
≤ P

(
sup

0≤t≤T

(
X(t) − S(t)

) ≥ hβ̂
)

≤ 1

hβ̂m
E

(
sup

0≤t≤T

∣∣X(t) − S(t)
∣∣m

)

≤ Cm,γ hm/2−γ

hβ̂m

= O
(
hβ̂

)
. (4.11)
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Using (4.10) and (4.11) in (4.9) we have P(H ∩ I c) = O(hβ̂), whence (4.7) and (4.8)
in (4.6) give

E
(∣∣(S(T ) − K

)+∣
∣21H∩I c

) = O
(
h

−2
m−2 +β̂

) = O
(
h

1
2 −δ

)
. (4.12)

Next we note from (1.9) that E[|X(T )|m] has an upper bound that is uniform over
small h, so that Lemma 4.1 remains applicable. So, analogously to (4.12), we can
show that

E
(∣∣(X(T ) − K

)+∣∣21I∩Hc

) = O
(
h

1
2 −δ

)
,

so that, from (4.5), the overall error bound E(|P − P̂ |2) = O(h
1
2 −δ) holds for any

δ > 0.
Entirely analogous arguments give the same order for the down-and-in put [7],

where P = (K − S(T ))+1{inf0≤t≤T S(t)≤B}, and, as mentioned in Sect. 4.1, the “out”
versions can be valued via “in plus out equals European” [7, Exercise 19.3].

5 Discussion

Our aim in this work was to develop new mean-square convergence rates for Euler–
Maruyama approximations to non-globally Lipschitz option payoffs. Specifically, we
have shown that, for any δ > 0, (1.5) holds with β = 1 − δ in the case of lookbacks
and with β = 1

2 − δ in the case of digitals and barriers. As discussed in Sect. 1,
these results allow us to quantify an improvement in computational complexity when
standard Monte Carlo is replaced by the multi-level version of [4]; they also explain
the numerical results presented there. Promising topics for further work in this area
include the analysis of (a) the weak error rate α in (1.6) for path-dependent options,
(b) methods with higher strong order, and (c) quasi-Monte Carlo.
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