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ABSTRACT 

OP2 is an "active" library framework for the solution of 
unstructured mesh-based applications . It utilizes source­
to-source translation and compilation so that a single ap­
plication code written using the OP2 API can be trans­
formed into different parallel implementations for execution 
on different back-end hardware platforms. In this paper we 
present the design of the current OP2 library, and inves­
tigate its capabilities in achieving performance portability, 
near-optimal performance, and scaling on modern multi-core 
and many-core processor based systems . A key feature of 
this work is OP2 's recent extension facilitating the develop­
ment and execution of applications on a distributed memory 
cluster of GPUs . 

We discuss the main design issues in parallelizing unstruc­
tured mesh based applications on heterogeneous platforms. 
These include handling data dependencies in accessing indi­
rectly referenced data, the impact of unstructured mesh data 
layouts (array of structs vs . struct of arrays) and design con­
siderations in generating code for execution on a cluster of 
GPUs . A representative CFD application written using the 
OP2 framework is utilized to provide a contrasting bench­
marking and performance analysis study on a range of multi­
core/many-core systems. These include multi-core CPUs 
from Intel (Westmere and Sandy Bridge) and AMD (Magny­
Cours) , GPUs from NVIDIA (GTX560Ti, Tesla C2070) , a 
distributed memory CPU cluster (Cray XE6) and a dis­
tributed memory GPU cluster (Tesla C2050 GPUs with In­
finiBand) . OP2's design choices are explored with quanti­
tative insights into their contributions to performance. We 
demonstrate that an application written once at a high-level 
using the OP2 API can be easily portable across a wide 
range of contrasting platforms and is capable of achieving 
near-optimal performance without the intervention of the 
domain application programmer. 

Categories and Subject Descriptors 

C .4 [Performance of Systems]; C.1 .2 [Mult iple Data 
Stream Architectures] 
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1. INTRODUCTION 
With the advent of novel processor architectures such as 
general purpose GPUs and heterogeneous many-core pro­
cessors (e .g .  Intel MIC [33] , AMD APUs [1]) , the latest 
"many-core" programming extensions and technologies are 
needed to take advantage of the full potential of emerging 
parallel high performance systems. Even traditional CPUs 
have increasingly larger vector units (e .g .  AVX) and CPU 
clusters are advancing towards capabilities to scale up to 
a billion threads . In turn , the increasing number of pro­
cessor cores demands more data to be exchanged between 
main-memory and processor , within a complicated mem­
ory hierarchy, making data-movement costly and bandwidth 
an increasingly important bottleneck. Such developments 
demand radical new approaches to programming applica­
tions in order to maintain scalability. This problem is com­
pounded by the rapidly changing hardware architectures 
landscape with additional limitations due to chip energy 
consumption and resilience . Application developers would 
like to benefit from the performance gains promised by these 
new systems, but are very worried about the software devel­
opment costs involved and the need to constantly maintain 
an expert level of knowledge in the details of new technolo­
gies and architectures in order to obtain the best perfor­
mance from their codes. It is therefore clear that a level of 
abstraction is highly desirable so that domain application 
developers/scientists can reach an increased level of produc­
tivity and performance without having to learn the intricate 
details of new architectures. 

Such an abstraction enables application developers to fo­
cus on solving problems at a higher level and not worry 
about architecture specific optimizations. This splits the 
problem space into (1) a higher application level where sci­
entists and engineers concentrate on solving domain specific 
problems and write code that remains unchanged for dif­
ferent underlying hardware and (2) a lower implementation 
level, that focuses on how a computation can be executed 
most efficiently on a given platform by carefully analyzing 
the computation, data access/communication and synchro­
nization patterns . The correct abstraction will pave the way 
for easy maintenance of a higher-level application source by 
domain application developers but allow optimization and 

978-1-4673-2633-9/12/$31.00 ©2012 IEEE 



parallel programming experts to apply radically aggressive 
and platform specific optimizations when implementing the 
required solution on various hardware platforms. The ob­
jective will be to provide near optimal performance without 
burdening the domain application developers . Furthermore , 
once a correct abstraction is established it will make it possi­
ble to easily integrate support for any future novel hardware. 

OP2 aims to provide such an abstraction layer, for the 
solution of unstructured mesh-based applications . OP2 uses 
an "active library" approach where a single application code 
written using the OP2 API can be transformed in to different 
parallel implementations which can then be linked against 
the appropriate parallel library (e.g. OpenMP, CUDA, MPI , 
OpenCL ,  AVX, etc.) enabling execution on different back­
end hardware platforms . A key feature of this approach is 
that at the user application level the API statements appear 
similar to normal function calls simplifying the application 
development process . At the same time the generated code 
from OP2 and the platform specific back-end libraries are 
highly optimized utilizing the best low-level features of a 
target architecture to make an OP2 application achieve near­
optimal performance including high computational efficiency 
and minimized memory traffic. 

OP2 currently supports code generation and execution on 
a number of different platforms: (1) single-threaded on a 
CPU, (2) multi-threaded using OpenMP for execution on a 
single SMP node consisting of multi-core CPUs (including 
large shared-memory nodes) , (3) parallelized using CUDA 
for execution on a single NVIDIA CPU, (4) parallelized on 
a cluster of CPUs using MPI and (5) parallelized on a clus­
ter of NVIDIA CPUs using MPI and CUDA. Additionally, 
back-ends targeting OpenCL,  AVX multi-cores and a cluster 
of multi-threaded CPUs (using MPI + OpenMP) are cur­
rently nearing completion. In our previous work [24 ,  25 , 16J 
we presented OP2's API and its back-end design facilitat­
ing the code generation for and execution of unstructured 
mesh applications on single-node systems. In this paper we 
(1) extend the OP2 design to include multi-CPU platforms 
and (2) explore OP2's capabilities in achieving near opti­
mal performance , performance portability and scaling on 
various current multi-core and many-core processor based 
systems . We begin in Section 2 with a brief overview of 
the OP2 API and a review of its main design strategies 
for handling (1) data dependencies on single/shared-memory 
nodes and distributed memory systems and (2) unstructured 
mesh data layouts (array of structs vs . struct of arrays) . 
We then present the design of OP2's multi-CPU back-end 
which facilitates the execution of an OP2 application on a 
cluster of CPUs. Next in Section 3 we investigate the per­
formance of an industrial representative CFD code written 
using OP2 on a range of current flagship multi-core and 
many core systems. Benchmarked systems consist of multi­
core CPUs from AMD (Magny-Cours) , Intel (West mere and 
Sandy Bridge) and CPUs from NVIDIA (CTX560Ti, Tesla 
C2070) , a distributed memory cluster (Cray XE6) and a dis­
tributed memory CPU cluster (based on Tesla C2050 CPUs 
interconnected by DDR InfiniBand) . OP2's design choices 
are explored with quantitative insights into their contribu­
tions to performance. 

We believe that results from a performance analysis study 
of a standard CFD benchmark, the Airfoil , on CPU clusters 
is an important step forward with respect to our previous 
work [24 , 25 , 16] .  With the inclusion of the multi-CPU back-

o 
(0.128) 2 

(7. ) 

6 
(0.112) 

Figure 1: An example mesh with edge and quadri­
lateral cell indices (data values in parenthesis) 

end, the range of target back-ends supported by OP2 gives 
us a unique opportunity to carry out an extensive study into 
the comparative performance of modern systems. As such, 
this paper details the most comprehensive platform compar­
ison we have carried-out to date with OP2. We use highly­
optimized code generated through OP2 for both CPU and 
CPU back-ends , using the same application code , allowing 
for a direct performance comparison.  Our results demon­
strate that an application written once at a high-level using 
the OP2 API is easily portable across a wide range of con­
trasting platforms and is capable of achieving near-optimal 
performance without the intervention of the domain appli­
cation programmer. 

2. OP2 

2.1 The OP2 API 
Unstructured grids/meshes have been and continue to be 
used for a wide range of computational science and engi­
neering applications . They have been applied in the so­
lution of partial differential equations (PDEs) in computa­
tional fluid dynamics (CFD) , structural mechanics , compu­
tational electro-magnetics (CEM) and general finite element 
methods . In three dimensions , millions of elements are often 
required for the desired solution accuracy, leading to signif­
icant computational costs. 

Unstructured meshes , unlike structured meshes, use con­
nectivity information to specify the mesh topology. The 
OP2 approach to the solution of unstructured mesh prob­
lems (based on ideas developed in its predecessor OPlus [17 , 
19]) involves breaking down the algorithm into four distinct 
parts :  (1) sets, (2) data on sets, (3) connectivity (or map­
ping) between the sets and (4) operations over sets. This 
leads to an API through which any mesh or graph can be 
completely and abstractly defined. Depending on the ap­
plication, a set can consist of nodes , edges , triangular faces , 
quadrilateral faces , or other elements . Associated with these 
sets are data (e .g .  node coordinates, edge weights) and map­
pings between sets which define how elements of one set 
connect with the elements of another set . 

In our previous work [24 , 25J we have presented in detail 
the design of the OP2 API . For completeness, here we give 
an overview of the API using the simple quadrilateral mesh 
illustrated in Figure 1. The OP2 API supports program 
development in C/C++ and Fortran. We use the C/C++ 
API in this paper; an illustration of the OP2 API based 
on Fortran is detailed in [16] . The mesh in Figure 1 can 
be defined by three sets: edges , cells (quadrilaterals) and 
boundary edges . There are 12 edges , 9 cells and 12 boundary 



edges which can be defined using the OP2 API as follows : 

int nedges = 12; int ncells = 9; int nbedges = 12; 
op_set edges = op_decl_set(nedges, "edges"); 
op_set cells = op_decl_set(ncells, "cells"); 
op_set bedges = op_decl_set(nbedges, "bedges"); 

The connectivity is declared through the mappings between 
the sets . Considering only the interior edges in this exam­
ple , the integer array edge_to_cell gives the connectivity 
between cells and interior edges . 

int edge_to_cell[24] = {0,1, 1,2, 0,3, 1,4, 2,5, 3,4, 
4,5, 3,6, 4,7, 5,B, 6,7, 7,B }; 

op_map pecell = op_decl_map(edges, cells, 2, 
edge_to_cell, "edge_to_cell_map"); 

Each element belonging to the set edges is mapped to two 
different elements in the set cells. The op_map declaration 
defines this mapping where pecell has a dimension of 2 and 
thus its index 0 and 1 maps to cells 0 and 1, index 2 and 3 
maps to cells 1 and 2 and so on. When declaring a mapping 
we first pass the source set (e .g .  edges) then the destination 
set (e .g .  cells) . Then we pass the dimension of each map 
entry (e .g .  2; as pecell maps each edge to 2 cells) . Once 
the sets and connectivity are defined, data can be associated 
with the sets; the following are some data arrays that contain 
double precision data associated with the cells and the edges 
respectively. Note that here a single double precision value 
per set element is declared. A vector of a number of values 
per set element could also be declared (e .g .  a vector with 
three doubles per cell to store its X,Y,Z coordinates) . 

double cell_data[9] = {0.12B, 0.345, 0.224, 0.11B, 0.246, 
0.324, 0.112, 0.92B, 0.237}; 

double edge_data[12] = {3.3, 2.1, 7.4, 5.5, 7.6, 3.4, 
10.5, 9.9, B.9, 6.4, 4.4, 3.6}; 

op_dat dcells op_decl_dat (cells, 1, "double", 
cell_data, "data_on_cells"); 

op_decl_set(edges, 1, "double", 
edge_data, "data_on_edges"); 

op_dat dedges 

All the numerically intensive computations in the unstruc­
tured mesh application can be described as operations over 
sets. Within an application code , this corresponds to loops 
over a given set , accessing data through the mappings ( i .e .  
one level of indirection) , performing some calculations , then 
writing back (possibly through the mappings) to the data 
arrays. If the loop involves indirection through a mapping 
OP2 denotes it as an indirect loop; if not , it is called a direct 
loop . The OP2 API provides a parallel loop declaration syn­
tax which allows the user to declare the computation over 
sets in these loops . Consider the following sequential loop, 
operating over each interior edge in the mesh illustrated in 
Figure 1. Each of the cells updates its data value using the 
data values held on the edge connected to that cell and the 
corresponding neighboring cell . 

void res_seq_Ioop(int nedges, int *edge_to_cell, 
double *edge_data, double *cell_data) 

{ 

} 

for (int i = 0; i<nedges; i++){ 
cell_data[edge_to_cell[2*i]] += edge_data[i]; 
cell_data[edge_to_cell[2*i+1]] += edge_data[i]; 

} 

An application developer declares this loop using the OP2 
API as follows , together with the "elemental" kernel func­
tion. 

void res(double* edge, double* cellO, double* cel11){ 
*cellO += *edge; 
*cell1 += *edge; 

} 

op_par _lOOp (res, "residual_calculation", edges, 
op_arg(dedges, -1, Op_rD, 1, "double", OP_READ), 
op_arg(dcells, 0, pecell, 1, "double", oP_INC), 
op_arg(dcells, 1, pecell, 1, "double", OP_INC)); 

The elemental kernel function takes 3 arguments in this case 
and the parallel loop declaration requires the access method 
of each to be declared (OP_INC ,  OP_READ, etc) . OP_ID 
indicates that the data in dedges is to be accessed without 
any indirection (i .e .  directly) . decells on the other hand is 
accessed through the pecell mapping using the given index 
(0 and 1) . The dimension (or cardinality) of the data (in 
this example 1, for all data) is also declared. 

The OP2 compiler handles the architecture specific code 
generation and parallelization . An application written using 
the OP2 API will be parsed through the OP2 compiler and 
will produce a modified main program and back-end specific 
code . These are then compiled using a conventional compiler 
(e .g .  gcc , icc, nvcc) and linked against platform specific 
OP2 back-end libraries to generate the final executable. In 
the OP2 project we currently have two prototype compilers , 
one written in MATLAB which only parses OP2 calls and 
a second source-to-source translator built using the ROSE 
compiler framework [lOJ which is capable of full source code 
analysis. Preliminary details of the ROSE source-to-source 
translator can be found in [16J . The slightly verbose API 
was needed as a result of the initial MATLAB prototype 
parser but also facilitate consistency checks to identify user 
errors during application development . 

One could argue that most if not all of the details that an 
op_par _loop specifies could be inferred automatically just 
by parsing a conventional loop (e.g. res_seq_loop in the 
above example) without the need for a specialized API such 
as used in OP2. However , in industrial-strength applica­
tions it is typically hard or impossible to perform full pro­
gram analysis due to an over-complex control flow and the 
impossibility of full pointer analysis . The syntax presented 
in this paper permits instead the definition of "generic" rou­
tines which can be applied to different datasets , giving the 
compiler the opportunity to achieve code analysis and syn­
thesis in a simple and straightforward way. 

OP2's general decomposition of unstructured mesh algo­
rithms, imposes no restrictions on the actual algorithms, it 
just separates the components of a code [24 , 25J . However, 
OP2 makes an important restriction that the order in which 
elements are processed must not affect the final result , to 
within the limits of finite precision floating-point arithmetic. 
This constraint allows OP2 to choose its own order to obtain 
maximum parallelism, which on platforms such as GPUs is 
crucial to gain good performance. We consider that this 
is a reasonable limitation of OP2 considering that all high 
performance implementations for unstructured grids do ex­
tensive renumbering for MPI partitioning and also cache op­
timization [18], and accept the loss of bit-wise reproducibil­
ity. However, if this is a concern for some users, then one 
option is to move to approximate quad-precision [28J using 
two double-precision variables for the local summations so 



that it becomes very much less likely to get even a single bit 
difference when truncating back to double precision . This 
technique requires four floating point operations instead of 
one , but in most applications this is unlikely to increase the 
overall operation count by more than 5-10%, so in practice 
the main concern is probably the additional memory require­
ments. The same approach could also be used to greatly 
reduce the variation in the results from global summations . 

Another restriction in OP2, is that the sets and mappings 
between sets must be static and the operands in the set 
operations cannot be referenced through a double level of 
mapping indirection (i .e .  a mapping to another set which in 
turn uses another mapping to access data associated with 
a third set) . The straightforward programming interface 
combined with efficient parallel execution makes it an at­
tractive prospect for the many algorithms which fall within 
the scope of OP2. For example the API could be used for 
explicit relaxation methods such as Jacobi iteration; pseudo­
time-stepping methods; multi-grid methods which use ex­
plicit smoothers; Krylov subspace methods with explicit pre­
conditioning; semi-implicit methods where the implicit solve 
is performed within a set member, for example performing 
block Jacobi where the block is across a number of PDE's at 
each vertex of a mesh. However, algorithms based on order 
dependent relaxation methods , such as Gauss-Seidel or ILU 
(incomplete LU decomposition) , lie beyond the current ca­
pabilities of the framework. The OP2 API could be extended 
to handle such sweep operations , but the loss in the degree of 
parallelism available means that it seems unlikely one would 
obtain good parallel performance on multiple GPUs [31]. 

Currently, OP2 supports generating parallel code for exe­
cution on a single-threaded CPU, a single SMP system based 
on multi-core CPUs using OpenMP, a single NVIDIA GPU 
using CUDA, a cluster of CPUs using MPI and a cluster of 
GPUs using MPI and CUDA. In the next sections we present 
in detail the design of OP2 for parallelizing unstructured 
mesh applications on these contrasting back-end platforms. 
The OP2 auto-generated code contains all of the best hand­
tuning optimizations to our knowledge (except for using SoA 
data layout for solely directly accessed data as detailed in 
Section, 2 .4) and we are not aware of any ways of obtaining 
additional performance at the time of writing . The perfor­
mance data on bandwidth in Section 3.1 show that there is 
very little scope for additional speedup . 

2.2 The OP2 Parallelization Strategy 
OP2 uses hierarchical parallelism with two principal levels : 
(1) distributed memory and (2) single-node/shared-memory. 
Using exactly the same approach as OPlus [17 , 19]

' 
the 

distributed memory level uses standard graph partitioning 
techniques in which the domain is partitioned among the 
compute nodes of a cluster , and import/export halos are 
constructed for MPI message-passing. A key issue impact­
ing performance with the above design is the size of the 
halos which directly determines the size of messages passed 
when a parallel loop is executed. Our assumption is that the 
proportion of halo data becomes very small as the partition 
size becomes large. This depends on the quality of partitions 
held by each MPI process . OP2 utilizes two well established 
parallel mesh partitioning libraries , ParMETISs [8] and PT­
Scotch [12] to obtain high quality partitions. 

The single-node design is motivated by several key fac­
tors . Firstly a single node may have different kinds of par-

allelism depending on the target hardware : on multi-core 
CPUs shared memory multi-threading is available with the 
possibility of each thread using vectorization to exploit the 
capabilities of SSE/ AVX vector units. On GPUs, multiple 
thread blocks are available with each block having multiple 
threads . Secondly, memory bandwidth is a major limita­
tion on both existing and emerging processors . In the case 
of CPUs this is the bandwidth between main-memory and 
the CPU cores , while on the GPUs this is the bandwidth 
between the main graphics (global) memory and the GPU 
cores . Thus the OP2 design is motivated to reduce the data 
movement between memory and cores . 

In the specific case of GPUs , the size of the distributed­
memory partition assigned to each GPU is constrained to be 
small enough to fit entirely within the GPU's global memory. 
This means that the only data exchange between the GPU 
and the host CPU is for the halo exchange with other GPUs . 
Within the GPU,  for each parallel loop with indirect refer­
encing, the partition is sub-divided into a number of mini­
partitions; these are sized so that the required indirectly­
accessed data will fit within the 48kB of shared memory in 
the SM.  Each thread block first loads the indirectly-accessed 
data into the shared memory, and then performs the desired 
computations. Using shared memory instead of L1 cache 
makes maximum use of the available local memory; caches 
hold the entire cache line even when only part of it may be 
needed. This approach requires some tedious programming 
to use locally renumbered indices for each mini-partition , 
but this is all handled automatically by OP2 's run-time rou­
tines . Since the global memory is typically 3-6GB in size, 
and each mini-partition has at most 48kB of data, the total 
number of mini-partitions is very large, usually more than 
10,000 . This leads naturally to very good load-balancing 
across the GPU.  Within the mini-partition, each thread in 
the thread block works on one or more elements of the set 
over which the operation is parallelised; the only potential 
difficulty here concerns the data dependencies addressed in 
the next section. 

In standard MPI computations , because of the cost of 
re-partitioning, the partitioning is usually done just once 
and the same partitioning is then used for each stage of 
the computation . In contrast, for single node CPU and 
GPU executions , between each stage of the computation the 
data resides in the main memory (on a CPU node) or the 
global memory (on a GPU) , and so the mini-partitioning 
and thread block size for each parallel loop calculation can 
be considered independently of the requirements of the other 
parallel loops. Based on ideas from FFTW [21] ,  OP2 con­
structs for each parallel loop an execution "plan" (op_plan) 
which is a customized mini-partition and thread-block size 
execution template. Thus on a GPU the execution of a 
given loop makes optimum use of the local shared memory 
on each multiprocessor considering in detail the memory re­
quirements of the loop computation. OP2 allows the user 
to set the mini-partition and thread block size both at com­
pile and run-time for each loop , allowing for exploring the 
best values for these parameters for a given application . We 
investigate the performance impact of choosing the correct 
mini-partition and thread-block size quantitatively in Sec­
tion 3 .  

2.3 Data Dependencies 
One key design issue in parallelizing unstructured mesh com­
putations is managing data dependencies encountered when 



Rank Y 

Set core export halo import halo 
exec non-exec exec non-exec 

X edges 0,1,3,4,6 2 - 5 ,8,9 -
X cells 0,1,2 ,4,5 - 0,4,5 3,7 ,8 
Y edges 7,10,11 5,8 ,9 2 -
Y cells 3,6 ,7,8 3 ,7,8 0,4,5 

Figure 2: OP2 part itioning over two MPI ranks and 
resulting halos on each rank 

incrementing indirectly referenced arrays [24, 25] . For ex­
ample , in a mesh with cells and edges, with a loop over edges 
updating cells (as in the op_par _loop example above) a po­
tential problem arises when multiple edges update the same 
cell. 

At the higher distributed-memory level, we follow the 
OPlus approach [17 , 19] in using an "owner compute" model 
in which the partition which "owns" a cell is responsible for 
performing the edge computations which will update it . If 
the computations for a particular edge will update cells in 
different partitions, then each of those partitions will need 
to carry out the edge computation . This redundant com­
putation is the cost of this approach. However, we assume 
that the distributed-memory partitions are very large such 
that the proportion of redundant computation becomes very 
small. 

The current implementation is based on MPI . OP2 par­
titions the data so that the partition within each MPI pro­
cess owns some of the set elements e .g .  some of the cells 
and edges. These partitions only perform the calculations 
required to update their own elements . However , it is pos­
sible that one partition may need to access data which be­
longs to another partition; in that case a copy of the re­
quired data is provided by the other partition. This follows 
the standard "halo" exchange mechanism used in distributed 
memory message passing parallel implementations . Figure 2 
illustrates OP2's distributed memory partitioning strategy 
for a mesh with edges and cells and a mapping between two 
cells to one edge . 

The core elements do not require any halo data and thus 
can be computed without any MPI communications . This 
allows for overlapping of computation with communications 
using non-blocking MPI primitives for higher performance. 
The elements in the import and export halos are further 
separated into two groups depending on whether redundant 
computations will be performed on them. For example edges 
5, 8 and 9 on rank Y forms part of the import halo on 
rank X and a loop over edges will require these edges to be 
executed by rank X, in order for values held on cells 4 and 5 
on rank X to be correctly updated/calculated. The import 
non-exec elements are, on the other hand a read-only halo 
that will not be executed, but is referenced by other elements 
during their execution . Thus , for example when edges 5, 8 
and 9 are to be executed on rank X as part of the import 

Mini-partition 1 Mini'partition 2 Mini-partition 3 
(color 1) (color 2) (color 1) 

Figure 3: OP2 coloring of a mesh - each edge of the 
same color can be evaluated in parallel 

execute block they need to reference cells 3, 7 and 8. Thus 
cells 3, 7 and 8 forms the import non-exec halo on X and 
correspondingly the export non-exec halo on Y. The export 
non-exec elements are a subset of the core elements. 

Within a single CPU,  the size of the mini-partitions is 
very small , and so the proportion of redundant computation 
would be unacceptably large if we used the owner-compute 
approach. Instead we use the approach previously described 
in [24, 25] , in which we adopt the "coloring" idea used in 
vector computing [32] . The mini-partitions are colored so 
that no two mini-partitions of the same color will update the 
same cell. This allows for parallel execution for each color 
using a separate CUDA kernel , with implicit synchronization 
between different colors . Key to the success of this approach 
is the fact that the number of mini-partitions is very large 
and so even if 10-20 colors are required there are still enough 
mini-partitions of each color to ensure good load-balancing . 

There is also the potential for threads within a single 
thread block, working on a single mini-partition , to be in 
conflict when trying to update the same cell . One solution 
to this is to use atomic operations , but the necessary hard­
ware support (especially for doubles) is not present on all 
the hardware platforms we are interested in. Instead, we 
again use the coloring approach, assigning colors to individ­
ual edges so that no two edges of the same color update 
the same cell, as illustrated in Figure 3. When increment­
ing the cells , the thread block first computes the increments 
for each edge , and then loops over the diferent edge colors 
applying the increments by color , with thread synchroni­
sation between each color . This results in a slight loss of 
performance during the incrementing process due to warp 
divergence , but the cost is minimal. 

A similar technique is used for multi-core processors . The 
only difference is that now each mini-partition is executed 
by a single OpenMP thread. The mini-partitions are col­
ored to stop multiple mini-partitions attempting to update 
the same data in the main memory simultaneously. This 
technique is simpler than the CPU version as there is no 
need for global-local renumbering (for CPU global memory 
to shared memory transfer) and no need for low level thread 
coloring . Using the mini-partitioning strategy on CPUs (and 
by selecting the correct mini-partition size) good cache uti­
lization can also be achieved. 

2.4 Data Layout in Memory 
Another key design issue in generating efficient code for dif­
ferent processor architectures is the layout in which data 
should be organized when there are multiple components 
for each element . For example, a set element such as a cell 
or an edge can have more than one data variable; if there 
are 4 values per cell should these 4 components be stored 
contiguously for each cell (a layout which is referred to as 
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Figure 4: AoS vs SoA data layouts 

an array-of-structs, AoS ) or should all of the first compo­
nents be stored contiguously, then all of the second compo­
nents , and so on (a layout which is referred to as a struct­
of-arrays, SoA) ? Figure 4 illustrates the two options . The 
array-of-structs (AoS ) approach views the 4 components as 
a contiguous item, and holds an array of these . The struct­
of-arrays (SoA) approach has a separate array for each one 
of the components . 

In [25J we qualitatively discussed OP2's design of data lay­
outs. In this section we present a more detailed evaluation 
of the pros and cons of the AoS and SoA data layouts. Our 
assessment enables us to quantitatively estimate the ben­
efits of the data layouts for a concrete application in Sec­
tion 3 .1 .  The SoA layout was natural in the past for vector 
supercomputers which streamed data to vector processors , 
but the AoS layout is natural for conventional cache-based 
CPU architectures for two reasons . Firstly, if there is a very 
large number of elements then in the SoA approach each 
component for a particular element will be on a different 
virtual page, and if there are a lot of components this leads 
to poor performance I . The second is due to the fact that 
an entire cache line must be transferred from the memory 
to the CPU even if only one word is actually used . This 
is a particular problem for unstructured grids with indirect 
addressing; even with renumbering of the elements to try 
to ensure that neighboring elements in the grid have similar 
indices , it is often the case that only a small fraction of the 
cache line is used (vector supercomputers circumvented this 
problem by adding gather/scatter hardware to the memory 
sub-system) . This problem is worse for SoA compared to 
AoS , because each cache line in the SoA layout contains 
many more elements than in the AoS layout . In an extreme 
case , with the AoS layout each cache line may contain all of 
the components for just one element , ensuring perfect cache 
efficiency, assuming that all of the components are required 
for the computation being performed. For these reasons , the 
OP2 back-ends for x86 based CPUs use the AoS data layout 
for both direct and indirectly accessed data. 

Until recently, NVIDIA GPUs did not have caches and 
most applications have used structured grids. Therefore, 
most researchers have preferred the SoA data layout which 
leads to natural memory transfer "coalescence" giving high 
throughput . However, the current NVIDIA GPUs based on 
the Fermi architecture have L1/L2 caches with a cache line 
size of 128 bytes , twice as large as used by Intel's West mere 
and the Sandy Bridge CPUs [15J . This leads to significant 
problems with cache efficiency, especially since there is only 
48kB of local shared memory and so not many elements are 
worked on at the same time by a single thread-block. For 
example , in the benchmark application used in Section 3 
(Airfoil) , in one of the indirect loops (res_calc) there are 
four floating-point values to be computed on. Within the 
Fermi architecture with a 128 bytes cache line , this corre-

IOn an IBM RS/6000 workstation in the 1990's ,  one of the 
authors experienced a factor 10 drop in performance due to 
the limited size of the Translation Look-aside Buffer which 
holds a cache of the virtual memory address tables . 

sponds to 32 floating-point values in single precision . When 
data is accessed indirectly, the SoA layout can lead to a 
worst-case scenario in which only 1/32 of the cache line is 
used . But with the AoS layout the worst case is only 1/8.  
Hence , in extreme cases with almost random addressing , the 
AoS layout could be 4 times more efficient than the SoA lay­
out . The savings could be even larger for applications with 
more data per set element . Consequently, the AoS layout 
is used in OP2 for indirectly accessed data. Because indi­
rect datasets are staged in shared memory and their transfer 
from global memory takes place before executing the user 's 
kernel, cache efficiency is maximized. 

For directly accessed data, on the other hand, if AoS is 
used , then if there are N components in the data array then 
a warp of 32 threads uses 32N pieces of data. This is N 
number of cache lines when working with floats. Given the 
very constrained cache size per thread, not all cache lines 
using AoS can fit into the cache, resulting in a high ratio of 
misses . For large N (e .g .  for LMA matrices [29] )  this will be 
significant . But if SoA is used instead in this case , then the 
same cache line will be reused N times . Furthermore , within 
direct loops where all data arrays are directly accessed, SoA 
gives perfectly coalesced access as the array allocation is 
cache aligned. Currently OP2 uses AoS for all arrays on 
GPUs but we plan to change this to SoA for arrays only 
accessed directly. 

Currently for indirectly accessed data, OP2 does on-th­
fly data transposition. The following code segment demon­
strates this for an AoS with four elements similar to Figure 4 :  

float arg_l[4]; \\ register array 
__ shared __ float arg_s[4*32]; \\ shared memory 

for (int m=O; m<4; m++) 
arg_s[tid+m*32] = arg_d[tid+m*32]; 

for (int m=O; m<4; m++) 
arg_l[m] = arg_s[m+tid*4]; 

The first loop does a coalesced transfer from the global mem­
ory array arg_d into the shared memory array arg_s for each 
tid thread. By using a separate shared memory "scratch­
pad" for each warp , we can generalize this without needing 
thread synchronization. However, this method may utilize 
too much shared memory and could increase register pres­
sure for future applications; hence the plan to implement 
SoA layout for solely directly accessed data. 

2.5 Multi-GPU Systems 
The latest addition to OP2's multi-platform capabilities is 
the ability to execute an OP2 application on a cluster of 
GPUs . The design of OP2 for such a back-end involved two 
primary considerations; (1) combining the owner compute 
strategy across nodes and coloring strategy within a node 
and (2) implementing overlapping of computation with com­
munication within the "plan" construction phase of OP2. 

The OP2 multi-GPU design assumes that one MPI process 
will have access to only one GPU.  Thus MPI will be used 
across nodes (where each node is interconnected by a com­
munication network such as InfiniBand) and CUDA within 
each GPU node. For clusters with each node consisting of 
multiple GPUs, OP2 assigns one MPI process per GPU.  This 
simplifies the execution on heterogeneous cluster systems by 
allowing separate processes (and not threads) to manage any 
multiple GPUs on a single node. At runtime, on each node, 



Algorithm 
1 .  for each op_dat requiring a halo exchange { 
2 .  execute CUDA kernel to gather export halo data 
3 .  copy export halo data from GPU to host 
4 .  start non-blocking MPI communication } 
5 .  execute CUDA kernel with op_plan for core elements 
6 .  wait for al l  MPI communications to complete 
7 .  for each op_dat requiring a halo exchange 
8 .  { copy import halo data from host to GPU } 
9 .  execute CUDA kernel with op_plan for non-core ele­

ments 

Figure 5: Multi-GPU non-blocking communication 

each MPI process will select any available GPU device . Code 
generation with such a strategy reuses the single node code 
generation with only a few minor modifications as there is 
no extra level of thread management/partitioning within a 
node for multiple GPUs. 

Recall that the MPI back-end achieves overlapping of com­
putation with communication by separating the set-elements 
into two groups where the core elements can be computed 
over without accessing any halo data. To achieve the same 
objective on a cluster of GPUs, for each op_par_loop that 
does halo exchanges, OP2 creates two separate plans , one for 
executing only the core elements and the second for all other 
elements ( including redundant computation) . As such the 
pseudo-code for executing an op_par_loop on a single GPU 
within a GPU cluster is detailed in Figure 5 .  The op_plan 
for the core elements will be computed while non-blocking 
communications are in-flight . Each op_plan consists of a 
mini-partitioning and coloring strategy optimized for their 
respective loop and number of elements. The halos are trans­
fered via MPI by first copying it to the host over the PCIe 
bus . As such the current implementation does not utilize 
NVIDIA's new GPUDirect [7J technology for transferring 
data directly between GPUs. This will be implemented in 
future work for the OP2 MPI+CUDA back-end. 

3. PERFORMANCE 
In this section , we present quantitative results exploring the 
performance portability and scaling of the OP2 design. An 
industrial representative CFD code, Airfoil, written using 
OP2 's C/C++ API is used in this performance analysis and 
benchmarking. Airfoil is a non-linear 2D inviscid airfoil code 
that uses an unstructured grid. It is a finite volume applica­
tion that solves the 2D Euler equations using a scalar numer­
ical dissipation. The algorithm iterates towards the steady 
state solution, in each iteration using a control volume ap­
proach - for example the rate at which the mass changes 
within a control volume is equal to the net flux of mass 
into the control volume across the four faces around the 
cell. This is representative of the 3D viscous flow calcula­
tions OP2 aims to eventually support for production-grade 
CFD applications (such as the Hydra [22, 23J CFD code at 
Rolls Royce plc . ) . The Airfoil code consists of five parallel 
loops: save_soln, adt_calc, res_calc, bres_calc and up­
date. Out of these , save_soln and update are direct loops 
while the other three are indirect loops . We use two mesh 
sizes (1.5M and 26M edges) in this analysis . When solv­
ing the 1 .5M edge mesh, the most compute intensive loop , 
res_calc, is called 2000 times during the total execution of 
the application and performs about 100 floating-point oper­
ations per mesh edge . All results presented are from execu-

Table 1: Single node CPU system specificat ions 
Node System Cores /node Mem. Compiler 

(Clock/ core) /node [flags] 
2 x Intel Xeon 12 [24 SMT] 24 GB ICC 11.1 

X5650 (West mere) (2.67GHz) [-02 -xSSE4.2] 
Intel Core 4(8 SMT] 8 GB ICC 12.0.4 
i7-2600K (3.4GHz) [-02 -xAVX ] 

(Sandy Bridge) 
2xAMD Opteron 16 12 GB ICC 12.0.4 

6128 (MagnyCours) (2.0GHz) [-02 -xSSE2] 

Table 2: Single node GPU system specifications 
GPU 

GeForce 
GTX560Ti 

Tesla C2070 

Cores Clk Glob.Mem Driver ver. 
(ECC) (Comp.Cap.) 

384 1.6 GHz 1.0 GB 4.0 
(off) (2.1) 

448 1.15 GHz 6.0 GB (off) 4.0 (2.0) 

tion in double-precision floating-point arithmetic . 

3.1 Single Node Systems 
Table 1 and 2 detail the key hardware and software specifi­
cations of the CPU and GPU nodes used in our benchmark­
ing study. The Intel Xeon E5650 (based on the West mere 
micro-architecture) node consist of two Intel Xeon E5462 
hex-core (total of 12 cores) processors operating at 2 .67GHz 
and 24GB of main memory. The Intel Core i7-2600K proces­
sor node (based on Intel's Sandy Bridge micro-architecture) , 
consists of a single 3.4GHz quad-core processor and 8GB 
of main memory. Both have simultaneous multi-threading 
(SMT) enabled for the execution of 24 and 8 SMT threads 
respectively. The AMD processor node (based on the Magny­
Cours architecture) consist of two 8-core (total of 16 cores) 
2 .0GHz processors and 12GB of main memory. On each pro­
cessor we set compiler flags to utilize the latest SSE/ AVX in­
struction sets . For brevity and to avoid confusion for the rest 
of this paper, we refer to these processor nodes as Westmere, 
Sandy Bridge and Magny-Cours . The GPU systems consist 
of a consumer grade GPU (GTX560Ti) and the high perfor­
mance computing NVIDIA C2070 GPU.  Both are based on 
NVIDIA's Fermi architecture . 

Recall that the thread-blocks and mini-partitions are key 
features in the OP2 design for efficiently distributing work 
and operating in parallel over the mesh elements. The first 
set of results explores the performance trends due to select­
ing different mini-partition and thread block sizes on these 
single node systems. The thread-block and mini-partition 
sizes for the overall application can be set at run-time using 
command-line arguments or a different value for each indi­
vidual loop could be set at compile time. Figure 6 illustrates 
the typical performance trends we observe when the overall 
application level thread-block and mini-partition sizes are 
varied on the Westmere and C2070 nodes . These results 
follow the performance trends that was observed previously 
in [24, 25J for older multi-core CPUs (Intel Penryn, Intel 
Nehalem) and GPUs (GTX260, C2050) . 

Qualitatively all three CPUs and GPUs showed perfor­
mance behaviors similar to the trends seen in Figure 6 (a) 
and (b) respectively, when the mini-partition and thread­
block sizes are varied. On the CPU nodes , only mini-partitions 
are used , where each mini-partition of the same color is 
solved in parallel by an OpenMP thread. Increasing the 
number of OpenMP threads appear to give diminishing re­
turns and different mini-partition sizes give only a minor 
variation in performance. In contrast , on the GPUs there 
is significant variation in performance due to using different 
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Figure 6: Runtime of Airfoil ( 1 .5M edges, 1000 iterat ions) on the West mere and C2070 node on a range of 
mini-part ition and thread-block size configurations 

Table 3: Airfoil single node results: 1 . 5M edges, 
1000 iterations 

System Num. Time res_calc res_calc res_calc 
OMP (sec) GFlops GB/sec GB/sec 

/sec (useful) (cache) 
Westmere 24 37.85 16.83 15.10 15.39 

Sandy Bridge 8 62.80 9.39 13.71 13.90 
Magny-Cours 16 46.30 12.70 11.40 11.61 

GTX560Ti 19.63 23.01 24.17 40.30 
C2070 13.20 35.50 34.38 46.51 

mini-partition and thread block size configurations . 
In general ,  on the GPUs we see that using a thread-block 

size equal to the mini-partition size gets close to the best 
performance achievable for each mini-partition size. How­
ever in some cases having a number of spare threads may be 
useful for carrying out more memory loads simultaneously 
with computation , but only when the GPU occupancy lim­
its [14J are exceeded. Thus for example if having a larger 
thread-block size than the mini-partition size utilizes more 
registers than the maximum available number of registers 
per SM,  then we see a performance degradation due to reg­
ister spillage into global memory. Given a thread-block size 
equal to the mini-partition size, reducing the mini-partition 
size decreases the amount of shared memory used and thus 
the GPU is able to execute multiple thread-blocks at the 
same time on each SM. This is advantageous as now one 
thread-block can be loading data into shared memory while 
another block is doing the computation. On the other hand, 
smaller mini-partitions result in less data re-use as the ra­
tio of boundary/interior nodes and cells increases . Smaller 
mini-partitions also decrease cache efficiency. We believe 
that these conflicting trends account for the run times we 
see in the above figure . However, there is no straightfor­
ward way of knowing the best parameters for a new applica­
tion from the outset . Thus , on GPUs, incorrectly "guessing" 
these values can lead to significantly poorer performance. 

Table 3 presents the best run-times gained on each single­
node system. The optimum mini-partition size , thread block 
size and OpenMP number of threads (Num. OMP) were ob­
tained using a recently developed auto-tuning framework [5J . 
In this case we auto-tuned both mini-partition and thread­
block sizes for each of the five parallel loops to obtain the 
best run-times for each system. The final two columns presents 
the achieved floating-point rate ( in DP) and effective band­
width between main-memory or global-memory on the CPUs 
and GPUs respectively for the res_calc loop in Airfoil. As 
mentioned before , this loop is the most compute intensive 

Table 4: Ratio of data transfer rates (SoA/ AoS) on 
the Tesla C2070 : 1 .5M edges, 1000 iterations 

Loop Mini-partition size 
64 128 256 512 

1 .04 1.02 1 .01 1 .01 
1 .99 1.65 1 .39 1 .22 
2 .49 2 .48 2 .48 2 .47 

loop in Airfoil and also the most time consuming one . When 
solving the 1.5M edge mesh, it performs about 30 x 1010 
floating-point operations during the total runtime (i .e .  1000 
iterations) of the application . The bandwidth figure was 
computed by counting the total amount of useful data bytes 
transferred from/to global memory during the execution of 
a parallel loop and dividing it by the runtime of the loop . 
The bandwidth is higher if we account for the size of the 
whole cache line loaded from main-memory /global-memory 
(see column 6) . 

We see that , for Airfoil , only a fraction of the advertised 
peak floating-point rates are achieved by any CPU or GPU.  
For example , only about 16 GFlops/sec out of  a peak of 
about 127 GFlops/s (10.64 GFlops/s per core x 12 cores) on 
the West mere is achieved. Similarly only about 30 GFlop­
sis out of a peak of 515 GFlops/s [13J is achieved on the 
C2070. On the other hand, the achieved bandwidth on the 
West mere is close to half of its peak (32GB/s) which indi­
cates that on CPUs the problem is much more constrained 
by bandwidth.  Our experiments also showed that for direct 
loops such as save_sol, the memory bandwidth utilized on 
the GPUs gets closer to 70% of the peak bandwidth due 
to its low computational intensity. The trends on achieved 
computational intensity and bandwidth utilization remain 
very similar to the observed results from previous work [25J 
with about 25%-30% improvement over the previous CPUs 
(Intel Nehalem) and GPUs (C2050) . 

Next , we attempt to quantify and compare the amount of 
data transferred with GPU global memory due to the two 
different data layouts discussed in Section 2.4 for indirect 
data sets . We compute the amount of data transfered during 
each indirect loop (adt_calc, res_calc and bres_calc) as 
follows . Consider the case when a loop over elements (each 
containing a number of variables) of an indirectly accessed 
set is performed; for example the loop over cells (each with 
4 flow variables) in res_calc. Then if the AoS data layout 
is used, we can compute the total number of bytes trans­
ferred from global memory to shared memory by counting 
the number of times a new cache line is loaded (assuming 



Table 5: 
System 

Node 
Architecture 

Memory/Node 
Interconnect 

07s 
Compilers 

Compiler flags 

Cluster systems specifications 
HECToR SKYNET 

(Cray XE6) (GPU Cluster) 
2x12-core AMD 2xTesla C2050 
Opteron 2.1GHz + 2xlntel Xeon E5440 
(Magny-Cours) 2.83GHz 

32GB 2.6 GB/GPU (ECC on) 
Cray Gemini DDR InfiniBand 
CLE 3.1.29 CentOS 5.6, Rocks 5.1 

PGI CC 11.3 ICC 12.0.0 
Cray MPI OpenMPI 1.4.3 

-Minline=levels: l O  -02 -xSSE4.1 
-Mipa=fast -arch=sIIL20 

-use_fast_math 

that the first element of each array is cache-aligned) . For 
each new cache line loaded, the amount of data transferred 
is incremented by the cache line size if the access is only a 
read operation. If the access is a write operation then we 
increment the amount of data transferred by two cache line 
sizes to account for the write back. The number of cache 
lines loaded will need to be increased if the variables mak­
ing up an element takes more storage space than a single 
cache line size. Thus for example an element with 28 flow 
variables (each a double precision floating point value, i .e  
each of 8 bytes) will require 224 bytes of memory space in 
total. This is larger than the 128 byte cache line size on the 
NVIDIA Fermi architecture. 

Alternatively consider the SoA data layout . Now, given 
a set with N elements each with v variables, then the dis­
tance between the first variable and the second variable (and 
so on) of each element will be N x  sizeof (double) bytes . 
This number of bytes is significantly larger than a cache line 
of a CPU (or CPU) , due to the size of N. Thus loading 
each element will mean that v number of new cache lines 
may need to be transferred from global memory to access 
all the variables for that element . In addition to the data 
values transferred, we also include in our calculation the 
bytes transferred due to loading mapping tables that are 
used to perform the indirect accessing of data. The ratio of 
data transfer rates (SoAj AoS ) calculated in this method are 
given in Table 4. The results indicate that for indirect loops 
the AoS data layout is always better and for a number of 
cases reduces the data transfer between global memory and 
the CPU by over 50%. 

3.2 Distributed Memory Systems 
The single node results show that there are considerable 
performance gains to be made on CPU platforms. However, 
execution on large distributed memory clusters is needed 
for production-grade applications , due to higher computa­
tional and memory requirements. In this section we present 
OP2 's performance on distributed memory platforms. We 
report run-time results and scaling behavior of Airfoil on 
two cluster systems: a traditional CPU cluster and a CPU 
cluster. Table 5 notes the key details of these systems. The 
first system, HECToR [6] , is a large-scale proprietary Cray 
XE6 system which we use to investigate the scalability of 
the MPI implementation . The second system, SKYNET is 
a small C2050jInfiniBand cluster that we use to benchmark 
OP2 's latest MPI+CUDA back-end. For this application we 
observed that PT-Scotch gave marginally better performing 
partitions (i .e  smaller halo sizes and fewer MPI neighbors 
per process) and as such in all results presented we used 
PT-Scotch to partition the mesh. 
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Figure 7: Airfoil strong scaling on HECToR ( 1 .5M 
and 26M edges) 

Table 6: CPU cluster vs. GPU cluster 
System Nodes 1.5M 26M 

(sec) (sec) 
5 (120 cores) 7.86 157.65 
10 (240 cores) 4.02 78.73 

HECToR 20 (480 cores) 2.09 39.31 
40 (960 cores) 1.12 19.15 
60 (1440 cores) 1.41 13.07 
80 (1920 cores) 1.28 9.72 
1/2 (1 x C2050) 22.08 

SKYNET 1 (2 x C2050) 12.22 186.83 
2 (4 x C2050) 7.44 93.57 
4 (8 x C2050) 5.25 53.06 
8 (16 x C2050) 4.28 27.39 

Figure 7 reports the strong-scaled run-times of the appli­
cation solving a mesh with 1.5M and 26M edges respectively 
on HECToR up to 3840 cores . The run-times given here are 
averaged from 5 runs for each processor core count . The 
standard deviation in run times was significantly less than 
10% and thus we limited the number of times that each test 
was repeated to save time on the system. The figure shows 
excellent scalability for both problem sizes until it collapses 
due to over partitioning the mesh, leading to an increase in 
redundant computation at the halo regions (compared to the 
core elements per partition) and an increase in communi­
cation time spent during halo exchanges . For instance , the 
increase in runtime at 1440 cores for the 1.5M edges is due to 
an unusually large halo region created by the partitioner for 
that number of MPI processes . The best run-time for 1.5M 
edges is 1 .12 seconds at 960 processor cores . As expected 
the 26M edge mesh continues to scale up further , giving a 
best runtime of about 9 .72 at 1920 cores. We also observed 
up to 30% performance gains due to the use of non-blocking 
communications overlapped with computation during halo 
exchanges. 

Comparing performance on HECToR to that of the CPU 
cluster SKYNET (See Table 6) reveals that for the 1.5M 
edge mesh both systems gives approximately similar per­
formance at scale . For example five HECToR nodes ( i .e .  
120 Opteron cores) gives an equivalent runtime to 4 x C2050 
GPUs on SKYNET. However, for the larger 26M edge mesh, 
the performance gains are considerably higher on the CPU 
cluster . For instance four CPU nodes gives about 1.5 times 
the performance on five HECToR nodes . Our observation 
was that the CPU jCPU speedups are larger if we compare 
run-times from small machine sizes on these systems. How­
ever due to the limited memory resources on the CPU,  larger 
mesh sizes may not fit on smaller systems (e.g. one C2050 
CPU could not fit the the 26M edge mesh in global mem­
ory) . The scalability on the CPU cluster is poorer than on 
HECToR for the 1.5M edge mesh. We believe that this is 
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Figure 8: Airfoil speedups summary 

due to the increasingly smaller amount of work assigned to 
each CPU at increasing scale . However, the 26M edge mesh 
scales well up to 16 CPUs, where the runtime is almost 
halved each time we double the number of CPUs. 

We believe that a single node consisting of multiple CPUs 
will perform/scale in a similar (or even better) manner to 
SKYNET. The reason being that on a singe node with mul­
tiple CPUs the MPI messages will be transfered over PCIe 
while on a distributed memory CPU cluster (e.g. SKYNET) 
there is a much slower InfiniBand interconnect between inter­
node CPUs. We will explore this further in future work. 

A summary of the speedups gained on both single node 
and distributed memory systems is presented in Figure 8 .  
The speedups are calculated compared to a single West mere 
core. On the smaller mesh, the high-end C2070 CPU gives 
close to about 3 x  speedup over the 12-core West mere node 
(running 24 OpenMP threads) . It is surprising to see that 
notable performance gains can be achieved even on a single 
consumer-grade CTX560Ti for this application , especially 
as its double-precision performance is much poorer than the 
C2070. On the larger mesh, the CPU cluster gives higher 
performance gains than on the traditional cluster system. 

4. RELATED WORK 
There are several well established conventional libraries sup­
porting unstructured mesh based application development 
on traditional distributed memory architectures. These in­
clude the popular PETSc [9] ,  Sierra [34] libraries as well as 
others such as Deal .H [2] ,  Dune [3] and FEATFLOW [4] . 
There are also conventional libraries such as the computa­
tional fluid dynamics (CFD) solver TAU [27] which attempts 
to extend its capabilities to heterogeneous hardware for ac­
celerating applications . In contrast to these libraries , OP2 's 
objective is to support multiple back-ends (particularly for 
emerging multi-core/many-core technologies) for the solu­
tion of mesh based applications without the intervention of 
the application programmer. 

OP2 can be viewed as an instantiation of the AEcute 
(access-execute descriptor) [26] programming model that sep­
arates the specification of a computational kernel with its 
parallel iteration space , from a declarative specification of 
how each iteration accesses its data. The decoupled Ac­
cess/Execute specification in turn creates the opportunity 
to apply powerful optimizations targeting the underlying 
hardware. A number of research projects have implemented 
similar or related programming frameworks. Liszt [20] and 
FEniCS [30] specifically target mesh based computations . 

The FEniCS [30] project defines a high-level language 

UFL for the specification of finite element algorithms . The 
FEniCS abstraction allows the user to express the prob­
lem in terms of differential equations , leaving the details 
of the implementation to a lower-library. Although well es­
tablished finite element methods could be supported by such 
a declarative abstraction, it lacks the flexibility offered by 
frameworks such as OP2 for developing new applications/al­
gorithms. Currently, a compiler for UFL is being developed 
at Imperial College London to translate the FEniCS dec­
larations down to code that uses the OP2 API . Thus, the 
performance results in this paper will directly relate to per­
formance of code written using FEniCS in the future . 

While OP2 uses an "active" library approach utilizing code 
transformation, Liszt [20] from Stanford University imple­
ments a domain specific language (embedded in Scala [11]) 
for the solution of unstructured mesh based partial differ­
ential equations (PDEs) . A Liszt application is translated 
to an intermediate representation which is then compiled 
by the Liszt compiler to generate native code for multiple 
platforms. The aim, as with OP2, is to exploit informa­
tion about the structure of data and the nature of the al­
gorithms in the code and to apply aggressive and platform 
specific optimizations . Performance results from a range 
of systems (CPU, multi-core CPU, and MPI based cluster) 
executing a number of applications written using Liszt have 
been presented in [20]. The N avier-Stokes application in [20] 
is most comparable to the Airfoil application and shows sim­
ilar speedups to those gained with OP2 in our work. Ap­
plication performance on heterogeneous clusters such as on 
clusters of CPUs is not considered in [20] and is noted as 
future work. 

5. CONCLUSION 
In this paper , we presented the OP2 abstraction framework 
for the solution of unstructured mesh-based applications . A 
key contribution detailed in this work is OP2's recent exten­
sions facilitating the development and execution of applica­
tions on a distributed memory cluster of CPUs. 

We discussed OP2's key design strategies in parallelizing 
unstructured mesh based applications on a range of con­
trasting back-end platforms . These consisted of handling 
data dependencies in accessing indirectly referenced data, 
the impact of unstructured mesh data layouts (AoS vs . SoA) 
and design considerations in generating code for execution 
on a cluster of CPUs. OP2 currently supports generating 
code for execution on a single-threaded CPU, multi-threaded 
SMP /CMP node consisting of multi-core CPUs, a single 
NVIDIA CPU,  a traditional CPU cluster and a CPU clus­
ter. We benchmarked and analyzed the performance of an 
industrial representative CFD application written using the 
OP2 API on a range of modern flagship platforms to inves­
tigate OP2's performance portability and scaling. 

Performance results show that for CPU platforms vary­
ing the thread-block and mini-partition size gives significant 
performance differences compared to CPU platforms. We 
also observed that indirectly accessed data should be for­
matted in the Array-of-Structs (AoS) layout for processors 
utilizing a cache. However, due to the limited cache size on 
NVIDIA CPUs, solely directly referenced arrays should be 
organized in the Struct-of-Arrays (SoA) format for higher 
performance. 

The achieved floating-point performance on both CPU 
and CPU single node systems were only a small fraction of 



the peak rates advertised by vendors. Bandwidth appears to 
become a bottleneck where, on some cases , over half of the 
peak bandwidth is utilized. We expect bandwidth to be a 
significant restriction for future processors where increased 
number of cores demands more data to be exchanged be­
tween main-memory and processor. 

On distributed memory platforms, OP2 's MPI back-end 
showed excellent scaling until the mesh was too small to 
be partitioned further . The performance gains on a GPU 
cluster were more significant on larger unstructured meshes 
compared to a traditional CPU cluster . Performance is af­
fected considerably by the amount of parallelism available 
per partition to be exploited by each GPU at scale . Thus 
a balance must be achieved to not overload the resources of 
individual GPUs but at the same time have enough compu­
tation that can be parallelized within a node to gain good 
performance . 

As future work we note that the OP2 multi-GPU back­
end requires further benchmarking and analysis, particularly 
on a larger GPU cluster with better QDR InfiniBand net­
working . It will also need modifications to utilize NVIDIA's 
new GPUDirect technology. We are also aiming to complete 
development of other back-ends for OP2 including OpenCL 
and Intel AVX. Once completed, these will enable us to in­
vestigate performance on several other novel hardware plat­
forms including heterogeneous processors such as the AMD 
fusion CPUs and the upcoming Intel MIC processor . 

We believe that the future of numerical simulation soft­
ware development is in the specification of algorithms trans­
lated to low-level code by a framework such as OP2. Such 
an approach will , we believe , offer revolutionary potential in 
delivering performance portability and increased developer 
productivity. This we predict will be an essential paradigm 
shift for utilizing the ever-increasing complexity of novel 
hardware/software technologies . 
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