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ABSTRACT
Sparse matrix-vector multiplication is an integral part of
many scientific algorithms. Several studies have shown that
it is a bandwidth-limited operation on current hardware.
On cache-based architectures the main factors that influence
performance are spatial locality in accessing the matrix, and
temporal locality in re-using the elements of the vector.

This paper discusses efficient implementations of sparse
matrix-vector multiplication on NVIDIA’s Fermi architec-
ture, the first to introduce conventional L1 caches to GPUs.
We focus on the compressed sparse row (CSR) format for de-
veloping general purpose code. We present a parametrised
algorithm, show the effects of parameter tuning on perfor-
mance and introduce a method for determining the near-
optimal set of parameters that incurs virtually no overhead.
On a set of sparse matrices from the University of Florida
Sparse Matrix Collection we show an average speed-up of
2.1 times over NVIDIA’s CUSPARSE 4.0 library in single
precision and 1.4 times in double precision.

Many algorithms require repeated evaluation of sparse
matrix-vector products with the same matrix, so we in-
troduce a dynamic run-time auto-tuning system which im-
proves performance by 10-15% in seven iterations.

The CSR format is compared to alternative ELLPACK
and HYB formats and the cost of conversion is assessed us-
ing CUSPARSE. Sparse matrix-vector multiplication perfor-
mance is also analysed when solving a finite element problem
with the conjugate gradient method. We show how problem-
specific knowledge can be used to improve performance by
up to a factor of two.

General Terms
Algorithms, Performance, Many-core, GPU

Keywords
sparse matrix-vector multiplication, cache performance, auto-
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1. INTRODUCTION
Due to the physical limitations to building faster single

core microprocessors, the development and use of multi- and
many-core architectures has been the focus of attention for
the past few years. Besides the increasing number of proces-
sor cores on a single chip, new architectures have emerged
that support general purpose computing - the most promi-
nent of which are Graphical Processing Units (GPUs). Gen-
eral Purpose computing on Graphical Processors (GPGPU)

has become very popular in the high performance computing
community; a great number of papers discuss its viability in
accelerating applications ranging from molecular dynamics
[1] through dense [12] and sparse linear algebra [4] to medical
imaging [17].

The evolution trend of high performance computer archi-
tectures shows exponential growth in the number of pro-
cessing cores, however the increase in bandwidth between
on-chip and off-chip memory is slower. Hence, these archi-
tectures are becoming increasingly bandwidth-limited, while
the cost of computations decreases. This bottleneck can be
alleviated by exploiting the multi-level memory hierarchy
of these architectures to reuse data that has already been
moved to the chip. The absolute amount of L1 cache mem-
ory per core in the CPU and per streaming multiproces-
sor (SM ) on the GPU is similar, however while the CPU
runs 1-2 threads per core, the GPU has hundreds of active
threads per SM. On previous-generation NVIDIA GPUs,
only 16kBytes of explicitly managed shared memory per SM
and limited caching of data stored in texture memory was
available. With the introduction of NVIDIA’s Fermi archi-
tecture [15], this was extended to 16kB/48kB shared mem-
ory and 48kB/16kB L1 cache per SM along with a 768kB
global L2 cache1.

The sparse matrix-vector (SpMV) multiplication is com-
monly known to be a bandwidth-limited operation. Due to
the small number of non-zeros in the matrix, sparse matrix
formats explicitly store row and column index information.
Thus, to perform the multiplication between an element of
the matrix and an element of the multiplicand vector, and
to write the result to the product vector, the row and col-
umn index of the non-zero matrix element is required. The
main factor that influences performance is data reuse. The
efficiency of index storage can be controlled by the choice
of storage format. However, the access pattern to the mul-
tiplicand vector is highly dependent on the structure of the
matrix and can be extremely irregular.

Due to the high demand for accelerating sparse linear alge-
bra operations several papers have presented different stor-
age formats, algorithms and optimisations to improve the
performance of the sparse matrix-vector multiplication. Bell
and Garland [3] present a comprehensive study of storage
formats like the diagonal format (DIA) for matrices where
non-zeros are restricted to a small number of diagonals; the
ELLPACK format where the number of non-zeros per row is
bounded by a number K and shorter rows are padded with

1The size and use of L1 cache can be controlled explicitly
by the programmer.
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zeros thereby enabling aligned memory access; the coordi-
nate format (COO) which stores the row and column index
for each non-zero; and the compressed sparse row (CSR)
format stores elements row-by-row thus only a pointer to the
first element of each row is stored besides column indices and
values. For matrices with a varying number of non-zeros per
row they propose a hybrid format, that stores up to K nonze-
ros per row in the ELLPACK format and the rest in COO
format. A special format, the packet format, for storing
symmetric mesh-based matrices is also introduced. Their re-
sults show the best performance when using the ELLPACK
and hybrid formats, they achieve a performance of up to
35 GFlops for structured and up to 25 GFlops for unstruc-
tured matrices in single precision using previous generation
GTX 280 hardware. They show a performance difference
of up to 10 times between storage formats. Vázquez et al.
[18] improves upon the performance of aligned formats by
introducing a new variant of regular ELLPACK.

Baskaran and Bordawekar [2] improve GPU performance
using the CSR storage format by exploiting memory co-
alescing and synchronisation-free parallelism, and show a
speedup of 2 to 8 times over the NVIDIA CUDPP library
and segmented scan implementations, and achieve up to 15%
improvement over NVIDIA’s SpMV library [16]. Several pa-
pers [6] [10] [14] discuss special matrix formats like blocked
compressed sparse row (BCSR) and blocked ELLPACK to
decrease the amount of index data stored and thereby in-
crease data reuse and performance. It has been shown in [8]
how problem-specific knowledge can be used to design an
efficient sparse matrix storage format that can exploit ma-
trix structure to improve data reuse. Because the structure
of different sparse matrices may be very different, any algo-
rithm with a set of fixed parameters can perform well for
one matrix and worse for an other. Tuning algorithm and
storage format parameters are discussed in [6] for special
blocked matrices. A more general library is discussed in [9]
to accelerate CPU applications that use sparse matrix-vector
products; it presents both a tuning algorithm and a heuris-
tic decision method for choosing multiplication algorithms
for different matrices. Their results however include in the
total performance the conversion from doubles to floats and
the movement of data between the host and the GPU. Espe-
cially for small matrices this overhead is significant, and for
algorithms implemented entirely on the GPU this overhead
would not apply.

This paper aims to demonstrate the design procedure of
sparse matrix-vector multiplication algorithms on the latest
cache-based NVIDIA Fermi GPUs. Our goal is to implement
efficient general purpose code that provides adequate perfor-
mance for any given sparse matrix. We focus our attention
on the most commonly used storage format, the compressed
sparse row (CSR) format, and show how different properties
of matrices and values of algorithm-specific parameters im-
pact performance, with special attention on caching mech-
anisms. We demonstrate that with the proper parameters
our algorithm can closely match the performance of more
“GPU-friendly” formats and algorithms presented in [3], but
without the expensive conversion from one format to an-
other. Through a specific example of solving finite element
problems, we also compare the performance of ELLPACK
and CSR storage formats and demonstrate how problem-
specific knowledge enables us to implement a fundamentally
different sparse-matrix vector multiplication algorithm.

The key contributions of this work are the following:

1. We highlight the very limited size of the Fermi L1
cache relative to the number of threads that are typi-
cally used on each streaming multiprocessor. Based on
this observation we present a parametrised algorithm
for performing sparse matrix-vector multiplication us-
ing the CSR storage format.

2. We analyse the effects of different parameters and ma-
trix structures on performance and propose a constant-
time method for deciding algorithm parameters for any
given matrix.

3. We propose a dynamic run-time parameter tuning al-
gorithm that improves performance to within 2% of
the optimal setting of parameters found by exhaustive
search.

4. We compare the performance of the CSR and ELL-
PACK/HYB formats and demonstrate the cost of format
conversion.

5. We show the importance of problem-specific knowledge
and analyse SpMV performance during the solution of
a finite element problem.

The rest of the paper is organised as follows: section 2
briefly describes the GPU architecture and programming
methodology, section 3 discusses the different aspects of the
problem of performing sparse matrix-vector multiplication
on GPUs. Section 4 describes the parameter space of the
multiplication algorithm and section 5 demonstrates the ef-
fects of these parameters on performance, and introduces a
fixed rule to decide upon the parameters of the algorithm for
any given matrix in constant time. Section 6 introduces a
dynamic run-time parameter tuning algorithm that aims to
improve the performance of the multiplication over repeated
evaluations with the same matrix. Section 7 compares the
CSR format to the ELLPACK/HYB format, analyses the
difference in performance and the cost of conversion. Sec-
tion 8 discusses the performance of SpMV using different
storage formats and algorithms when solving a finite ele-
ment problem. Finally, section 9 summarises our results.

2. GPU ARCHITECTURE AND PROGRAM-
MING MODEL

The GPU is a massively parallel architecture with a multi-
level hierarchy for both memory and computations. Differ-
ent manufacturers have slightly different architectures; in
this paper we focus on NVIDIA GPUs. As a computa-
tional unit, the GPU comprises of a set of streaming mul-
tiprocessors (SMs) each with a number of streaming pro-
cessors (SPs) which execute instructions in a single instruc-
tion multiple data (SIMD) fashion. Groups of 32 threads
called warps are executed in lockstep on the SPs using one
instruction counter, thus any branch divergence within a
warp results in inactive threads and a loss of parallelism.
Groups of warps called blocks are assigned to SMs and at
the same time each SM can hold up to 8 blocks (depending
on the amount of resources they require), but no more than
1536 threads (for compute capability 2.x). If there are more
thread blocks than can be processed simultaneously by the
SMs, then some blocks will start executing only after others
have finished executing.



Each thread uses a number of registers, and each block
can use an explicitly managed, low-latency, on-chip shared
memory that can be accessed only by the threads within
that block. GPUs have a large off-chip global memory (0.5-6
GBytes) that is accessed with a high latency (300-500 cy-
cles). Prior to Fermi, only the caching of texture memory
and constant memory was enabled, but Fermi introduced a
16kB/48kB L1 cache for each SM, and a global 768kB L2
cache. To provide the highest possible bandwidth to global
memory, a very wide bus is used, and this leads to a cache
line of size 128 bytes, which is significantly larger than the
32 byte cache lines in Intel CPUs.

The L1 cache size is comparable to the cache on the CPU
(32k in an Intel Core i7), however a CPU core executes only
a few threads while the GPU executes up to 1536 threads
per SM. This results in a very constrained cache size per
thread: since a cache line is 128 bytes long, even when using
48k L1 cache, only 384 lines can be stored. If all threads
read or write to different cache lines, at most 384 of them
can get cache hits when accessing their cache line; the others
get a cache miss. Cache hits can greatly improve data reuse
and thus performance, but misses cause new cache lines to
be loaded from L2 cache or global memory, resulting in high
latency and increased traffic to/from the global memory. It
is therefore very important for threads in the same block to
work on the same cache lines, to have so called“cache spatial
locality”. This is the key observation behind the improved
performance achieved in this paper.

Any problem to be solved on the GPU has to be decom-
posed into fairly independent tasks because collaboration
is very limited. Threads in a block can communicate via
on-chip shared memory. Synchronisation during execution
is only possible between threads in the same block. For
threads that are not in the same thread block, communi-
cation is only possible indirectly via expensive operations
through global memory, and synchronization is only feasible
by starting a new kernel.

3. PROBLEM STATEMENT
Our test hardware, the NVIDIA Tesla C2070, has a the-

oretical peak performance of 1.0 TFlops in single precision
and off-chip memory bandwidth of up to 144 GBytes/second.
Thus, to balance computations and memory movement the
number of operations for every floating point number loaded
from memory would have to be about 30. SpMV being a
heavily bandwidth-limited operation, our goal is to minimise
the amount of data transferred to/from the global memory,
and maximise the bandwidth achieved by our kernels; com-
putation operations are considered to be “free” as long as
there are enough threads to hide instruction and memory
latency.

Our main focus is to minimise data transfer by maximis-
ing data reuse. When performing the sparse matrix-vector
product, each non-zero element of the matrix is only used
once, and their column and row indices are used to address
the multiplicand and result vectors. Depending on the stor-
age format these indices can be reused to an extent. More
importantly, the access pattern to the multiplicand vector
depends on the structure of the matrix and, in the general
case, very few assumptions can be made about it. This is
why caching mechanisms can greatly improve performance
- or in some extreme cases decrease it. Due to the relatively
small amount of cache per thread it is essential to under-
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Figure 1: Data layout of the CSR storage format.

stand and optimise for these caching mechanisms.
In general, sparse matrices can greatly differ in the num-

ber of rows and columns, in the average and variance of
the length of the rows, and in the distribution of non-zeros
within individual rows. Therefore there is no “best” storage
format or fixed algorithm for SpMV multiplication. CSR
has widespread usage in the scientific community and it is
the most commonly used format in CPU based algorithms.
It is one of the most efficient formats in terms of storing
non-zero values because no padding is required. Blocked
matrix formats store small parts of the matrix in a dense
format, thereby cutting back on the amount of indexing data
required. However, their use is limited to the blocked sub-
class of sparse matrices, otherwise the fraction of zeros in
the dense submatrices would make the storage inefficient.
Aligned formats like ELLPACK which are better suited for
data access in vector architectures do not require the ex-
plicit storage of row indices, because all rows have the same
length. This results in having to pad shorter rows with ze-
ros up to the size of the longest row, which means that the
memory required for storing both the column indices and
non-zero values is higher than absolutely necessary. In case
of matrices with a high standard deviation in the length of
the rows this would be infeasible; to tackle this problem the
hybrid format stores rows up to a certain length in the ELL-
PACK format, and the rest of the non-zeros are stored along
with their row and column indices in the coordinate (COO)
format. However, it is difficult to handle matrices in the
hybrid format, especially when trying to access structural
properties of the matrix. Because of these compromises and
the fact that only CSR has widespread support by other
libraries we chose the CSR format for our SpMV code.

Many scientific algorithms require repeated execution of
sparse matrix-vector products using either the same matrix
or matrices with a very similar structure. A well-known ex-
ample is the iterative solution of a system of linear equations
where the number of equations make the use of direct solvers
infeasible. During Newton-Raphson iterations, a matrix is
constructed then a linear system is solved, but the matrix
itself has the same structure in each iteration, just different
values. In these cases, a sub-optimal multiplication algo-
rithm can be tuned, and we will see that the overall perfor-
mance can be greatly improved.

4. SPARSE MATRIX-VECTOR MULTIPLI-
CATION ALGORITHM

During the multiplication of a sparse matrix with a vector,
each element of a given row has to be multiplied with the
corresponding element from the multiplicand vector, these
products are added up and written to the result vector. The
CSR format stores matrix data in three vectors as shown in
figure 1. The first vector rowPtrs points to the first element



of each row, and its last element is the total number of non-
zeros. The second and third vectors, colIdxs and values,
store the column indices and the values for each non-zero
element in the matrix. The total number of rows is dimRow

and the total number of non-zeros is nnz. The simplest serial
version of the multiplication y = Ax using the CSR format
is described by algorithm 1.

Algorithm 1 Element by element assembly of the stiffness
matrix and the load vector.

for i = 0 to dimRow-1 do
row = rowPtrs[i]
y[i] = 0
for j = 0 to rowPtrs[i+1]-row-1 do
y[i] + = values[row + j]∗x[colIdxs[row + j]]

end for
end for

Based on algorithm 1 a multiplication and addition is per-
formed for each non-zero in the matrix, thus the total num-
ber of floating-point operations is:

2 ∗ nnz. (1)

This formula will be used throughout the paper to calculate
the instruction throughput.

Similarly, the number of bytes moved to and from off-chip
memory without considering caching, is for each non-zero
its value, column index and corresponding value from the
multiplicand vector x and for every row the pointer to its
first element and the write of the row sum to the result vector
y. If there are no empty rows and columns, the amount of
data to be moved:

nnz ∗ (2 ∗ sizeof(float|double) + sizeof(int)) +

dimRow ∗ (sizeof(float|double) + sizeof(int)).
(2)

Dividing this quantity by the execution time gives what is
called the effective bandwidth, and this is the formula the
figures in [3] are based on, thus for the purpose of com-
parability we use it throughout the paper. On a caching
architecture this corresponds to each value on each cache
line being read while it is in the cache, but only once.

The worst case scenario occurs when only one value of
each cache line is used, thus in fact a lot more data is moved
to the chip, but most of it is not read. In single precision a
cache line holds 32 floats or integers, thus if each memory
access loads an entire cache line, but reads or writes only
one value on it before removing it from the cache, the actual
amount of data moved to and from global memory:

32 ∗ ( nnz ∗ (2 ∗ sizeof(float) + sizeof(int)) +

dimRow ∗ (sizeof(float) + sizeof(int)) ).
(3)

In the best case scenario, with 100% data reuse, each ele-
ment of the multiplicand vector has to be loaded from global
memory only once, thus the lower bound on all data trans-
fers considering perfect cache efficiency is:

nnz ∗ (sizeof(float|double) + sizeof(int)) +

dimRow ∗ (2 ∗ sizeof(float|double) + sizeof(int)).
(4)

4.1 The naive CUDA implementation
The simplest implementation of the CSR SpMV kernel in

CUDA assigns one thread to each row, defines the block size

int i = blockIdx.x*blockSize + threadIdx.x;
�oat rowSum = 0;
int rowPtr = rowPtrs[i];
for (int j = 0; j<rowPtrs[i+1]-rowPtr; j+=1) {
 rowSum += values[rowPtr+j] * x[colIdxs[rowPtr+j]];
}
y[i] = rowSum;

Figure 2: Naive CUDA kernel for performing the
SpMV.

(blockSize) to be a multiple of the warp size (currently 32),
e.g. 128, and calculates the number of blocks (gridSize)
accordingly. Since the maximum number of blocks is 65535,
this particular kernel can only handle matrices with less than
65535 ∗ 128 = 8388480 rows. The sketch of the CUDA code
is described by figure 2.

If the matrix has several elements per row, this implemen-
tation suffers from a high cache miss rate because the cache
is not big enough to hold all of the cache lines being used.
Moreover, if the number of non-zeros per row has a high
variance over adjacent rows, some threads run for more iter-
ations than others in the same warp, thus warp divergence
may also become an issue.

4.2 Thread cooperation
To reduce the number of cache lines used when accessing

the arrays values and colIdxs, multiple threads can be as-
signed to work on the same row [3]. The cooperating threads
access adjacent elements of the row, perform the multipli-
cation with the elements of the multiplicand vector x then
add up their results in shared memory using parallel reduc-
tion. Finally, the first thread of the group writes the result
to the vector y. Because threads in the same warp are exe-
cuted in lockstep, the synchronisation between cooperating
threads is implicit - as long as their number is a power of 2,
and no more than the warp size. From here on, the number
of cooperating threads assigned to each row is indicated by
coop.

This technique can greatly improve the efficiency of caching;
the same cache lines from the values and colIdxs arrays are
used by the cooperating threads, thus there are more cache
lines left for storing the values of the multiplicand vector. If
the length of the rows is not a factor of the 32 then this algo-
rithm may also suffer from branch divergence, the resulting
loss in parallelism decreasing performance.

Because of the assignment of subsequent rows to subse-
quent groups of threads, the worst case scenario data trans-
fer described by formula (3) can not happen, because either
reading non-zeros or writing to the result vector uses the
same cache line. With coop=1 and long rows, the cache
lines storing non-zeros and their column indices may be re-
moved from the cache after just one read, however writing
to the elements of the result vector will use the same cache
line. On the other hand, with coop=32, the cache lines stor-
ing non-zeros and column indices are fully utilised (unless
row length is not a factor of 32), but writing to the elements
of the result vector may force loading a new cache line ev-
ery time. The effects of this trade-off will be seen in the
performance evaluation.



4.3 Granularity
As shown earlier, if a group of cooperating threads is

assigned to only one row, then the number of blocks re-
quired to process the entire matrix may be more than than
65535. To tackle this problem, a two dimensional grid may
be used, which would extend the maximum number of blocks
to 655352. To complement this approach more than one row
per cooperating thread group can be processed. Thus, a
thread block processes repeat∗blockSize/coop contiguous
rows.

For a fixed value of repeat, blockSize and coop, the total
number of blocks is the following:

gridSize = 1 + (dimRow ∗ coop− 1)/(repeat ∗ blockSize).
(5)

If repeat is small, the algorithm is fine grained and if
repeat is big, the algorithm is coarse grained. To have
sufficient occupancy and load balancing on the GPU, the
gridSize should be at least a few hundred, which may limit
small matrices to execute in a fine grained way. However,
for larger matrices, the difference in the number of blocks
using the two approaches may be large.

Granularity is closely related to the efficiency of caching,
or cache blocking ; if for example the matrix has a diagonal
structure, i.e. the rows access a contiguous block of the mul-
tiplicand vector, then the data reuse is improved by coarse
grain processing because most of the values used are already
in the cache. The optimal granularity depends on the struc-
ture of the matrix, which is not known in the general case.

4.4 The fully parametrised algorithm
The full parameter space of the algorithm is described by

the following parameters: the number of threads per block
(blockSize), the number of cooperating threads per row
(coop) and the number of rows processed by each cooper-
ating thread group (repeat). The total number of blocks
(gridSize) is uniquely defined by these parameters accord-
ing to equation (5). The complete algorithm is described
by figure 3. For the sake of brevity, the parallel reduction
is also parametrised with coop, whereas in our real imple-
mentation there is a different kernel for each different value
of coop, thus the reduction is unrolled. Note that there is
no use of syncthreads() thread synchronisation due to the
implicit warp synchronisation discussed in section 4.2.

5. PERFORMANCE EVALUATION
The performance measurements were obtained on a work-

station with two Intel Xeon X5650 6-core processors, 24GBytes
of system memory running Linux kernel 2.6.35. The sys-
tem has 2 NVIDIA Tesla C2070 GPUs, both with 6GB
global memory clocked at 1.5GHz and 384-bit bus width, 448
CUDA cores in 14 streaming multiprocessors (SMs) clocked
at 1.15GHz. The GPU codes were compiled with NVIDIA’s
nvcc compiler with the CUDA 4.0 framework with the
−−use fast math flag. The L1 cache size was set to 48kB,
turning it off or reducing its size to 16kB decreased perfor-
mance in all cases.

The test matrices were taken from the University of Florida
Sparse Matrix Collection [7] based on the test cases of the
CUSPARSE 4.0 library [16]. 15 of these matrices were used
to train and tune our algorithms, and a total of 44 matrices
were used to evaluate them and calculate performance fig-

__global__ void csrmv(�oat *values, int *rowPtrs, 

       int *colIdxs, �oat *x, �oat *y, 

       int dimRow, int repeat, int coop) {

 int i = (repeat*blockIdx.x*blockDim.x + threadIdx.x)/coop;

 int coopIdx = threadIdx.x%coop;

              int tid = threadIdx.x;

 extern __shared__ volatile  �oat sdata[];

 for (int r = 0; r<repeat; r++) {

  �oat localSum = 0;

  if (i<dimRow) {

   // do multiplication

   int rowPtr = rowPtrs[i];

   for (int j = coopIdx; j<rowPtrs[i+1]-rowPtr; j+=coop) {

    localSum += values[rowPtr+j] * x[colIdxs[rowPtr+j]];

   }

   // do reduction in shared mem

   sdata[tid] = localSum;

   for(unsigned int s=coop/2; s>0; s>>=1) {

    if (coopIdx < s) sdata[tid] += sdata[tid + s];

   }

   if (coopIdx == 0) y[i] = sdata[tid];

   i += blockDim.x/coop;

  }

 } 

}

Figure 3: Parametrised algorithm for sparse matrix-
vector multiplication.

ures 2. A short summary of the training matrices is shown
in table 1. These matrices represent a range of structured
and unstructured matrices with different sizes, different av-
erages and standard deviations in the length of the rows and
different distributions of non-zeros.

In the following sections we describe the performance of
the sparse matrix-vector multiplications when adjusting the
parameters of the multiplication algorithm. These perfor-
mance results are interpreted in light of the matrix struc-
ture to describe the underlying bottlenecks. For the sake of
clarity, these parameters are discussed one by one, however
it is shown that they are not independent.

5.1 Number of cooperating threads
The number of cooperating threads (coop) can be a power

of 2, up to the warp size. Figure 4 shows the performance
on different test matrices for different values of coop, with
blockSize = 128 and repeat = 8. The performance differ-
ence between the best and worst choice can be more than
an order of magnitude. The figure also shows the square
root of the average row length of the matrices; note how the
optimal value of coop is close to this value. Table 2 lists
the L1 cache hit rates and warp divergence reported by the
CUDA Visual Profiler as a function of the number of co-
operating threads. It is important to note that the cache
hit rate usually increases with the increasing number of co-
operating threads because multiple threads access the same
cache lines for the matrix data leaving space for more cache
lines to store the values of the multiplicand vector. However
too high a value of coop results in a high fraction of inactive

2List of matrices not shown in table 1: amazon0505, cont1 l,
filter3D, msdoor, troll, ct20stif, halfb, parabolic fem,
shipsec1, vanbody, BenElechi1, dc1, pkustk12, StocF-1465,
bmw3 2, delaunay n22, largebasis, poisson3Db, stomach,
xenon2, boneS01, mc2depi, qcd5 4, tmt sym, consph, F2,
memchip, rma10, torso3



Table 1: Description of test matrices.
Name dimRow nnz avg std. dev. Description
atmosmodd 1270432 8814880 6.9 0.24 diagonal, CFD problem
cage14 1505785 27130349 18 5.36 wide, directed weighted graph
cant 62451 4007383 64.2 14.05 narrow diagonal, FEM
cop20k A 121192 2624331 21.6 13.8 very wide, 2D problem
F1 343791 26837113 39.5 40.86 very wide, FEM - AUDI engine
mac econ fwd500 206500 1273389 6.2 4.43 narrow, macroeconomics problem
pdb1HYS 36417 4344765 60.2 31.93 narrow, sporadic off-diagonals, protein 1HYS
scircuit 170998 958936 5.6 4.39 wide, circuit simulation
shallow water1 81920 327680 4 0 narrow, some off-diagonals, CFD problem
webbase-1M 1000005 3105536 3.1 25.34 somewhat random, web connectivity
nd24k 72000 28715634 398 76.9 wide, sporadic, ND problem set
crankseg 2 63838 14148858 221 95.8 wide, structural problem
pwtk 217918 11524432 52.8 5.44 narrow, FEM - pressurised wind tunnel
ldoor 952203 42493817 44.6 14.7 very wide, structural problem
2cubes sphere 101492 1647264 16.2 2.65 wide, sporadic, electromagnetics simulation

Table 2: Cache hit rates and warp divergence for
test matrices at different values of coop, based on
the CUDA Visual Profiler.
coop 1 2 4 8 16 32
atmosmodd
L1 hit rate (%) 54.5 77.5 79.1 75.3 86.0 90.6
Divergence (%) 2.6 13.3 13.79 15.9 16 16
crankseg 2
L1 hit rate (%) 20.4 48.4 56.1 62.0 60.6 64.4
Divergence (%) 1.8 4.1 5.6 4.8 5.1 5.3
shallow water1
L1 hit rate (%) 71.8 60.8 59.0 75.7 87.0 92.1
Divergence (%) 0.0 0.0 0.0 16.0 16.0 16.0
webbase-1M
L1 hit rate (%) 72.8 81.2 73.6 80.6 86.9 92.1
Divergence (%) 9.5 9.2 16.8 16.55 16.1 15.9
cant
L1 hit rate (%) 19.56 50.9 60.9 66.9 74.7 78.6
Divergence (%) 8 12.8 7.2 9.9 5.1 6.7

threads: e.g. shallow water has four non-zeros in every line,
thus assigning 8 threads to process each row would result in
half of the threads being inactive all the time.

5.2 Level of granularity
The number of rows processed by each cooperating thread

group is the most important factor in determining the to-
tal number of blocks (gridSize). As figure 5 shows, for
larger matrices the difference in performance is relatively
small (around 10%), however for smaller matrices like shal-
low water1 high values of repeat results in low occupancy
- in this case at repeat = 32 there are only 20 blocks. In
CUDA, the user is not in control of the execution scheduling
of blocks, thus for larger structured matrices higher values
of repeat offer marginally better data reuse. On the other
hand, fine grained processing (more blocks) offers better load
balancing across the SMs.

1 2 4 8 16 32

10
−4

10
−3

10
−2

Number of cooperating threads

R
u

n
 t

im
e 

(s
ec

o
n

d
s)

 

 

atmosmodd (2.63)

crankseg_2 (14.89)

shallow_water1 (2.00)

webbase−1M (1.76)

cant (8.01)

Figure 4: Performance as a function of the number
of cooperating threads. blockSize = 128 and repeat

= 8. The square root of the average row length is
displayed in brackets after the name of the matrix.
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Figure 5: Performance as a function of the num-
ber of rows processed per cooperating thread group.
blockSize = 128 and coop is fixed at its optimal value
according to figure 4.
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Figure 6: Performance as a function of the number
of threads in a block. repeat = 4 and coop is fixed at
its optimal value according to figure 4.

5.3 Number of threads in a block
The number of threads in a block (blockSize) plays an

important role in determining occupancy: the maximum
number of threads per SM (in Fermi) is 1536, and the maxi-
mum number of blocks per SM is 8. Thus a small block size
leads to low occupancy, 33% with blockSize=64 (64 ∗ 8 =
512). Our algorithm also uses shared memory, storing one
floating point number for each thread, which does not limit
occupancy; since a double precision number is 8 bytes long,
with 100% occupancy the total amount of shared memory
used is 12.2kB. The optimal block size however is usually
smaller than what is required for full occupancy to balance
parallelism and cache size per thread. Double precision stor-
age also effectively halves the number of values held in the
L1 cache. For this reason the optimal value of the parameter
is often even smaller in double precision. Figure 6 shows the
impact of blockSize on performance.

5.4 The fixed rule
For general-purpose SpMV code, a constant time fixed rule

is required to decide the input parameters for the multiplica-
tion algorithm. For this purpose we first implemented an ex-
haustive search algorithm that tests a wide range of parame-
ters and ran the training matrices through it. Based on this
data, we fine-tuned our fixed rule to find the optimal param-
eter values that provide the highest average performance.
Since this rule is intended for use by a general-purpose li-
brary, this average is not a weighted average, performance
is equally important for smaller and larger matrices.

The fixed rule defines the parameters as follows:

1. blockSize = 128

2. coop is the smallest power of two which is larger than
the square root of the average row length, up to a
maximum limit of the warp size (32).

3. gridSize and repeat is calculated in a way that en-
sures there are at least 1500 blocks.

The calculation of these parameters incurs virtually no over-
head, since only the number of rows and the number of non-
zeros is required.

Figures 7 and 8 describe performance in single precision
and figures 9 and 10 in double precision. All bandwidth
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Figure 7: Single precision floating point operation
throughput of the sparse matrix-vector multiplica-
tion.

numbers show effective bandwidth as described by equation
(2). Since instruction throughput is directly proportional
to the number of non-zeros processed per second (equation
(1)), it accurately describes the relative efficiency of data
reuse. Note that the bandwidth of the matrix (the distance
of non-zeros from the diagonal) is not directly related to
throughput. For example crankseg 2 has non-zeros every-
where in the matrix but the non-zeros in pwtk lie very close
to the diagonal, and yet their performance is very similar be-
cause they are both structured matrices, thus non-zeros in
consecutive rows have similar column indices which enables
efficient caching. The average row length and the relative
value of the standard deviation of the length of the rows has
some effect on the performance, however the most important
factor is the “structuredness” of the matrix which is difficult
to describe.

5.5 Estimating bandwidth and caching
Block and warp scheduling on GPUs is out of the control

of the programmer, and the exact parameters of Fermi’s L1
cache, like associativity, are not public knowledge, thus ex-
act modelling of the cache is extremely difficult and out of
the scope of this paper. It is however possible to estimate
the number of cache lines loaded by each block. We make
the following assumptions: (1) cache lines are not shared
between blocks, (2) all cache lines loaded by a block stay in
the cache until the execution of that block finishes. These
assumptions only affect the caching of the multiplicand vec-
tor significantly, because the access pattern to other data
structures does not depend on matrix structure. Due to
the semi-random assignment of thread blocks to SMs and
because the L1 cache is probably not fully associative, we
argue that the first assumption does not overestimate actual
amount of data moved by too much. The second assumption
however implies unconstrained cache size per block, thus un-
derestimates the actual amount of data moved. We argue
that this error is only significant if the temporal difference
between accesses to same cache lines is high; for structural
matrices this is usually low, for non-structural matrices data
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Figure 8: Effective bandwidth of the sparse matrix-
vector multiplication in single precision.
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Figure 9: Double precision floating point operation
throughput of the sparse matrix-vector multiplica-
tion.
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Figure 10: Effective bandwidth of the sparse matrix-
vector multiplication in double precision.
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Figure 11: Values of the minimum, the effective and
the caching bandwidth in single precision.

reuse is low anyway. The effects of the L2 cache are ignored.
Figure 11 shows calculated bandwidth estimates when us-

ing the fixed rule, according to formulas (2) and (4), and
based on the number of cache lines touched by each thread
block. Note that bandwidth in some cases is over 80 GB/s
even according to the minimum formula that assumes per-
fect data reuse. This is a very high fraction of the theoretical
peak (144 GB/s) considering that in practice a bandwidth
over 100 GB/s is rarely achieved. It is important to ob-
serve that for structured matrices data reuse between subse-
quent rows is high, thus caching bandwidth falls between the
minimum and the effective bandwidth. In the case of non-
structural matrices, several values of the cache lines holding
elements of the multiplicand vector are not read by that
block at all, thus caching bandwidth is even higher than the
effective bandwidth, because part of the data moved is not
used. Caching bandwidth has a mean of 83 GB/s with a rel-
atively low variation compared to other bandwidth figures,
which hints at the average hardware utilisation for the prob-
lem of sparse matrix-vector multiplication. In some extreme
cases, caching bandwidth exceeds 120 GB/s, probably due
to cache lines being in fact shared between blocks.

5.6 Reducing matrix bandwidth
Several matrices in our test collection have very wide band-

width, which implies that during the SpMV, a wide range
of memory locations are accessed in the multiplicand vector.
This can potentially decrease performance because cache lo-
cality may be low. To evaluate what the performance of
SpMV on narrower-band matrices is, we converted the test
matrices using Matlab’s reverse Cuthill-McKee renumber-
ing algorithm. Timing results show that for most matrices
the performance difference was negligible, though for a few
test cases (e.g. webbase-1M) performance increased by up
to 50%. However, the average speed-up over the 15 test
matrices is below 5% for both CUSPARSE and the fixed
rule because the performance was negatively affected by the
renumbering in some test cases.



6. RUN-TIME PARAMETER TUNING
The performance of the SpMV multiplication using the

fixed rule is in many cases close to the optimal, however
there is room for improvement in some other cases. An
extreme example is webbase-1M, where the fixed rule only
achieves 50% of the optimal performance, but matrices like
atmosmodd, cage14, F1 and ldoor can also benefit from im-
proved parameters. In a general-purpose library it is not
feasible to perform off-line parameter tuning because it may
have a significant overhead. It is also unknown how many
times a sparse matrix-vector multiplication routine is called
from the user’s code, and whether those calls use the same
matrix or different matrices.

We argue that if subsequent calls to the SpMV routine use
the same pointers to matrix data and have the same amount
of rows and non-zeros then the matrix structure is not chang-
ing significantly across multiple executions. This hypothesis
enables the library to test slightly different parameters when
performing the multiplication in order to find the best set
of parameters. This of course may result in having to run a
few multiplications with worse performance than the fixed
rule, but if the number of iterations is large enough, then
this overhead is compensated by the improved overall per-
formance. It is important to note that in such situations
there is no statistical data available, thus system noise may
affect measured performance.

We propose an empirical algorithm that is based on our
experience with different parameter settings and the param-
eters found by exhaustive search. The main concepts of the
algorithm are the following:

1. As the first step, double the number of blocks by halv-
ing repeat. If the change is higher than 5%, proceed
optimising repeat (step 3). If the change is less than
5%, double coop and increase blockSize to 192 (step
2).

2. If doubling coop increased performance then try in-
creasing it further, if it did not, start decreasing it.

3. Depending on whether halving repeat increased or de-
creased performance, further decrease or increase it.

4. Finally the value of blockSize is changed in incre-
ments (or decrements) of 32, but no more than 512
and no less than 96 in single and 64 in double preci-
sion.

Figure 12 shows the impact of tuning on performance in
the single precision case. The fixed rule achieves 84% of the
optimal performance on average over the 15 training matri-
ces, and 73% over all 44 test matrices. Figure 13 shows the
improvement of performance over subsequent iterations due
to the run-time tuning. The performance surpasses the 95%
threshold after just 5 iterations, and 98% after 8 iterations.
Similar figures apply in double precision.

6.1 Performance analysis on the full test set
To provide a fair assessment of our algorithm we ran it

through a set of 44 test matrices and calculated average in-
struction throughput, bandwidth and speedup figures. We
found one matrix for which the CSR format and the stan-
dard multiplication algorithm proved unsuitable (dc1 ): not
even the exhaustive search found parameters that would
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Figure 12: Single precision floating point instruction
throughput after 10 iterations of run-time tuning.
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Figure 13: Relative performance during iterations
compared to optimal, averaged over the 44 test ma-
trices.
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Figure 14: Speedup over CUSPARSE 4.0 CSR in
single precision using the fixed rule and run-time
tuning.
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Figure 15: Speedup over CUSPARSE 4.0 CSR in
double precision using the fixed rule and run-time
tuning.

Table 3: Performance metrics on the test set.

CUSPARSE Fixed rule Tuned
Throughput single
GFLOPS/s 7.0 14.5 15.6
Throughput double
GFLOPS/s 6.3 8.8 9.2
Min Bandwidth single
GB/s 28.4 58.9 63.7
Min Bandwidth double
GB/s 38.7 54.0 56.8
Speedup single
over CUSPARSE 1.0 2.14 2.33
Speedup double
over CUSPARSE 1.0 1.42 1.50

have brought performance above 4 GFLOPS/s. This par-
ticular matrix has an average row length of 6.5, however
there are two very long adjacent rows (114200 and 47190
nonzeros) which results in severe load imbalance that radi-
cally decreases performance. Using the standard SpMV al-
gorithm would be clearly inappropriate in this case; the sim-
plest solution is to process those two rows separately with
multiple blocks performing two parallel reductions and the
rest is processed by the standard algorithm. Results from
the standard algorithm on dc1 are omitted. Performance
metrics in table 3 clearly indicate that there is a wider per-
formance gap between the fixed rule and the tuned version,
since the fixed rule itself was trained on the first 15 matrices.

7. COMPARISON WITH THE ELLPACK
FORMAT

With the release of CUDA 4.1, NVIDIA enables the users
of the CUSPARSE library to convert their matrices to the
ELLPACK/HYB format then use it to perform matrix op-
erations. Their library enables conversion from the dense,
CSR and COO formats, however the data structure of the
new matrix is hidden from the user, thus if a value of the
matrix has to be changed the conversion has to be repeated.
This not only incurs the overhead of the conversion itself
but requires more than twice as much memory since two
copies of the same matrix are stored in two different stor-
age formats. Thus, the real question is whether it is worth
converting a matrix to the ELLPACK format or not.

To test the performance of the ELLPACK/HYB format,
we ran the 44 matrix test set through the conversion pro-
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single precision

double precision

Figure 16: Number of iterations required to be
worth converting to ELLPACK/HYB.

cess and tested the sparse matrix-vector multiplication itself.
The speedup of the multiplication itself over CUSPARSE
CSR in single precision on all 43 matrices (without dc1 ) is
1.88 times which is somewhat worse than our fixed rule. In
case of dc1, the speedup over the standard algorithm was 50
times, which means that the standard ELLPACK algorithm
can handle matrices with a few very long rows. Because of
the necessity of conversion it is important to see the mini-
mum number of sparse matrix-vector products after which it
is worth doing. Since in this case the same matrix has to be
used to perform the multiplications we compared it to our
tuned multiplication algorithm. In most of the cases it is ei-
ther not worth the conversion at all (because our algorithm
is faster) or thousands of iterations are required. There are
6 matrices in single precision and seven more in double pre-
cision where the number of iterations is reasonable (below
100), they are shown on figure 16. Even though the multi-
plication may be significantly faster, the time the conversion
takes may be equivalent to up to a hundred multiplications.

8. FINITE ELEMENT PROBLEM
As a final test of the CSR storage format, we present an

application - the solution of finite element equations - to
compare CSR to ELLPACK and a problem specific storage
format.

8.1 Mathematical background
The finite element method (FEM ) is a powerful numerical

method for approximating the solution of partial differential
equations (PDEs) [11]. The method is based on the polygo-
nal discretisation of the domain Ω over which the PDE is to
be solved. Equation (6) describes a simple elliptic problem
with a Dirichlet boundary condition:

−∇ · (κ∇u) = f in Ω, (6)

u = 0 on ∂Ω. (7)

The solution is sought in the form of u : Ω → <, with u =
0 on ∂Ω. The standard finite element method constructs a
finite dimensional space Vh of functions over Ω, and searches
for an approximate solution uh ∈ Vh. If the number of



vertices in the discretisation of Ω is Ne, then let {φ1...Nv}
be a basis for Vh, then:

uh =
∑
i

ūiφi (8)

To find the best approximation to u, it is necessary to
solve the system:

Kū = l̄, (9)

where K is the Nv ×Nv matrix, usually called the stiffness
matrix, defined by:

Kij =

∫
Ω

κ∇φi · ∇φj dV , ∀i, j = 1, 2, . . . , Nv, (10)

and l̄ ∈ <n, usually called the load vector, is defined by:

l̄i =

∫
Ω

f · φi dV, ∀i, j = 1, 2, . . . , Nv. (11)

If the underlying discretisation mesh has nodes x̄i, it is
possible to choose a finite element space Vh with basis func-
tions such that φi(x̄j) = δi,j . In this case uh is determined
by its values at x̄i, i = 1, 2, . . . Nv. The mesh is a polygonal
partitioning of the domain Ω into a set of disjoint elements
ei ∈ E, i = 1 . . . Ne. The basis functions are constructed so
that φi is nonzero only over those elements e which have x̄i
as a vertex. This means that finite element basis functions
φi have their support restricted to neighbouring elements,
thus the integral in equation (10) is non-zero only if the two
vertices belong to the same element.

8.2 Storage formats
In our GPU implementation the stiffness matrix described

by equation (10) is stored in three formats:

1. CSR, as described above, uses three vectors, one for
pointers to the first element of each row, one storing
the values of the non-zeros and one storing their col-
umn indices.

2. ELLPACK stores non-zeros and column indices in a
dimRow by K matrix, where K is the maximum row
length. This matrix is transposed in GPU memory
so that the nth non-zero of each row is in one con-
tiguous block of memory, enabling coalesced memory
transfers.

3. LMA stands for Local Matrix Approach which exploits
the fact that during the iterative solution of the linear
system Kū = l̄ the stiffness matrix K is not required
explicitly. During matrix assembly an m ∗ m local
matrix is calculated for each element. In the global
matrix approach these values are scattered according
to the vertex indices, but the local matrix approach
stores them as they are, and calculates the matrix-
vector product in the following way [5, 13]:

ȳ = AT (Ke(Ax̄)), (12)

where Ke is the matrix containing the local matrices
in its diagonal and A is the local-to-global mapping
from the local matrix indices to the global matrix in-
dices. In a similar way to ELLPACK the values of the
local matrices are stored in a way that the nth value of
each one is in one contiguous block of memory. This
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Figure 17: Number of CG iterations per second as a
function of the degree of polynomials used, in single
precision.
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Figure 18: Number of CG iterations per second as a
function of the degree of polynomials used, in double
precision.

approach stores stiffness data redundantly, however it
does not have to store row and column indices explic-
itly as it is available in the structural description of
the underlying mesh.

8.3 Performance of the solution
For the solution of the linear system Kū = l̄, the conju-

gate gradient algorithm was used. The underlying problem
to be solved is a simple elliptic Poisson problem. The dis-
cretisation uses four million degrees of freedom, thus the
matrix K has four million rows. The degree of polynomials
used as basis functions ranges from 1 to 4 making the row
length 9 in the first degree case and up to 81 in the fourth
order case.

Because of its data-scatter nature, LMA has to avoid race
conditions when incrementing the result vector. In single
precision, atomic operations are used, however in double
precision these are not available and so colouring and ex-
plicit synchronisation is employed.

Figures 17 and 18 show the advantage of the LMA ap-
proach which has to move significantly less index data. It
is important to observe, that the performance difference be-
tween CSR and ELLPACK is small compared to the aver-
age difference presented in [3]. In double precision the LMA
performs worse because of expensive synchronisation opera-
tions required to avoid write conflicts. However, its relative
performance increases with the increasing degree of polyno-
mials.

9. CONCLUSION
In this paper we thoroughly analysed the factors that im-

pact the performance of sparse-matrix vector multiplication
algorithms using the CSR format. We demonstrated the ef-
fects of parameters on caching efficiency, and showed that



proper use of Fermi’s caching mechanisms can lead to signif-
icant improvements in performance. Based on these exper-
iments, we proposed a fixed rule to determine a set of pa-
rameters for any given input matrix. Furthermore, we intro-
duced a dynamic run-time parameter tuning algorithm that
detects if a matrix is used repeatedly to calculate matrix-
vector products and improves its performance by tuning its
parameters with virtually no overhead.

We demonstrate an average speedup of 2.1 times over
CUSPARSE 4.0 CSR in single precision and 1.4 times in
double precision using the fixed rule. The run-time tuning
algorithm further improves this speedup by 10-15%.

We compared the performance of our CSR algorithms
to the ELLPACK/HYB format that was introduced with
CUSPARSE 4.1. We found that in most cases the difference
was negligible but in a very few cases it was significant (for
one matrix in our test set). Taking the cost of conversion
into account we showed that for about 75% of the matrices it
was not worth the conversion and in the rest of the cases 30
to 90 SpMV products with the same matrices are required
before it is worth doing.

Through the solution of finite element problems we com-
pared the performance of different sparse storage formats.
We demonstrated that for a problem-specific algorithm, the
local matrix approach, can provide more than 50% better
performance provided atomic operations are available.

Comparing our bandwidth and instruction throughput fig-
ures to those in [3] (off-chip bandwidth is the same on both
test cards), and based on our own experiments, we think
our implementation effectively closes the performance gap
between ELLPACK and CSR, more so if we consider the
cost of conversion from CSR to ELLPACK. This has impor-
tant implications for the development of high performance
applications, as the use of the traditional CSR format is no
longer penalised severely.
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Sparse matrix solvers on the GPU: Conjugate
gradients and multigrid. ACM Transactions on
Graphics, 22(3):917–924, 2003.

[5] C. Cantwell, S. Sherwin, R. Kirby, and P. Kelly. From
h to p efficiently: Strategy selection for operator

evaluation on hexahedral and tetrahedral elements.
Computers & Fluids, 43(1):23 – 28, 2011.

[6] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven
autotuning of sparse matrix-vector multiply on GPUs.
In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, PPoPP ’10, pages 115–126, 2010.

[7] T. A. Davis and Y. Hu. The University of Florida
Sparse Matrix Collection. ACM Transactions on
Mathematical Software, 38(1):1–25, 2011.

[8] A. Dziekonski, A. Lamecki, and M. Mrozowski. A
memory efficient and fast sparse matrix vector
product on a GPU. Progress In Electromagnetics
Research, 116:49–63, 2011.

[9] A. H. El Zein and A. P. Rendell. Generating optimal
CUDA sparse matrix-vector product implementations
for evolving GPU hardware. Concurrency and
Computation: Practice and Experience, 24(1):3–13,
2012.

[10] M. R. Hugues and S. G. Petiton. Optimized sparse
matrix formats on GT200 and Fermi GPUs. In 7th
International Conference On Preconditioning
Techniques For Scientific And Industrial Applications,
2011.

[11] C. Johnson. Numerical Solution of Partial Differential
Equations by the Finite Element Method. Cambridge
University Press, 1987.
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