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21 IntroductionOne motivation for the analysis in this paper was the observation by Wigton ofinstabilities in Navier-Stokes calculations on structured grids [1]. It appearedthat the instabilities might be connected to large variations in the level of tur-bulent viscosity arising quite properly in certain physical situations. A possiblecause of the instability was thought to be the timestep de�nition which wasbased on Fourier stability theory assuming constant coe�cients. Therefore, anobjective of this analysis was to determine su�cient conditions for the stabilityof discretisations of the Navier-Stokes equations with nonuniform viscosity.The second motivation was the requirement for timestep stability limits forviscous calculations on unstructured grids. Inviscid calculations are now beingperformed almost routinely on unstructured grids for complete aircraft geome-tries (e.g. [2, 3, 4, 5]). Using energy analysis methods, Giles developed su�cientglobal and local timestep stability limits for a Galerkin discretisation of the Eulerequations on a tetrahedral grid with two particular Runge-Kutta time integrationschemes [6]; this has been used on an ad hoc basis for calculations using otheralgorithms including various upwinding and numerical smoothing formulations[3, 5]. Through parallel computing and e�cient multigrid algorithms for unstruc-tured grids [5], there is now the computational power to perform extremely largeNavier-Stokes calculations on unstructured grids, and so there is a need for thesupporting numerical analysis to give accurate global and local timestep stabilitylimits.Fourier stability analysis can only be applied to linear �nite di�erence equa-tions with constant coe�cients on structured grids, and so it is not appropri-ate for this application. There are two other well-documented stability analysismethods which can be used with linear discretisations with variable coe�cientson unstructured grids. One is the energy method [7] which relies on the carefulconstruction of a suitably de�ned `energy' which can be proven to monotonicallydecrease. The di�culty is usually in constructing an appropriate de�nition forthe energy, but when this method can be applied it is very powerful in giving avery strong form of stability. It is used in this paper to prove the stability of theoriginal linearised form of the Navier-Stokes partial di�erential equations, andthe semi-discretised system of coupled o.d.e.'s that is produced by the Galerkinspatial discretisation.The other stability analysis technique involves consideration of the eigen-values of the matrix representing the discretisation of the spatial di�erentialoperator. This leads to su�cient conditions for asymptotic stability, as t!1for unsteady calculations or as n ! 1 for calculations using local timesteps.Unfortunately, there are well-documented examples such as the �rst order up-winding of the convection equation on a �nite 1D domain (e.g. [8, 9, 10]) forwhich this is not a practical stability criterion because it allows an unacceptablylarge transient growth before the eventual exponential decay. The next section



3reviews this theory showing that the problem of large transient growth can arisewhenever the spatial discretisation matrix is non-normal. It then presents re-cent results on algebraic and generalised stability for such applications givingsu�cient conditions for stability. It is these new stability conditions which areused to construct su�cient stability limits for the full Galerkin/Runge-KuttaNavier-Stokes discretisation.The analysis is performed for linear perturbations to a steady ow in which allow variables are uniform with the exception of the three viscosity coe�cients,�, the shear viscosity, �, the second coe�cient of viscosity, and k, the thermaldi�usivity. This choice of model problem is critical in several ways. Althoughit is the linearisation of the laminar Navier-Stokes equations that is used, theviscosity coe�cients can each be interpreted as the sum of the laminar valueplus a turbulent value arising from some turbulence model. Accordingly, thereis no assumption of any �xed relationship between the three quantities, eitherthe Stokes hypothesis linking � and �, or the assumption of a constant Prandtlnumber linking � and k. The uniformity of the other ow variables is essential forkey parts of the analysis. However, a more fundamental aspect of the uniformityis that it gives a physical situation in which ow perturbations are naturallydamped, and so the ow is stable. Therefore, an instability of the semi-discreteor fully discrete equations can be viewed justi�ably as an incorrect behaviour.The timestep limit which gives the onset of this instability can then be de�nedas the maximum stable timestep. In contrast, if a vortex sheet were taken as thesteady ow and then linear perturbations were analysed, it would be determinedthat both the analytic and discrete equations were unstable. Even worse, thetimescale of the most unstable discrete mode would be proportional to �x sothat it would be impossible to distinguish between a `numerical instability' andthe natural Helmholtz instability of the vortex sheet. It would not therefore bepossible to use this alternative model problem to make any deductions aboutstable timestep limits.After the following section reviewing numerical stability theory, there areseparate sections for the analysis of the di�erential, semi-discrete and fully dis-crete Navier-Stokes equations. To focus attention on the important features ofthe stability analysis, many of the supporting details are presented in the threeappendices.2 Review of stability theory for Runge-KuttamethodsDiscretisation of the scalar o.d.e. dudt = �u; (2.1)



4using an explicit Runge-Kutta method with timestep k yields a di�erence equa-tion of the form u(n+1) = L(�k) u(n) (2.2)where L(z) is a polynomial function of degree pL(z) = pXm=0 amzm; (2.3)with a0 = a1 = 1; ap 6= 0. Discrete solutions of this di�erence equation on a�nite time interval 0� t� t0 will converge to the analytic solution as k! 0. Inaddition, the discretisation is said to be absolutely stable for a particular value ofk if it does not allow exponentially growing solutions as t!1; this is satis�edprovided �k lies within the stability region S in the complex plane de�ned byS = fz : jL(z)j�1g : (2.4)Examples of stability regions for di�erent polynomials are given in Appendix A.Suppose now that a real square matrix C has a complete set of eigenvectorsand can thus be diagonalised, C = T�T�1; (2.5)with � being the diagonal matrix of eigenvalues of C, and the columns of Tbeing the associated eigenvectors. The Runge-Kutta discretisation of the coupledsystem of o.d.e.'s, dUdt = CU; (2.6)can be written as U (n+1) = L(kC)U (n) = T L(k�)T�1 U (n); (2.7)since Cm = �T�T�1�m = T�mT�1: (2.8)Hence U (n) = T (L(k�))n T�1 U (0): (2.9)The necessary and su�cient condition for absolute stability as n!1, re-quiring that there are no discrete solutions which grow exponentially with n, istherefore that jL(k�)j � 1, or equivalently k� lies in S, for all eigenvalues � ofC. If this condition is satis�ed, then using L2 vector and matrix norms it followsthat kU (n)k � kTk kL(k�)kn kT�1k kU (0)k � �(T ) kU (0)k; (2.10)where �(T ) is the condition number of the eigenvector matrix T .



5If the matrix C is normal, meaning that it has an orthogonal set of eigen-vectors then the eigenvectors can be normalised so that �(T )= 1. In this case,kU (n)k is a non-increasing function of n and kU (n)k2 represents a non-increasing`energy' which could be used in an energy stability analysis.If C is not normal, then the growth in kU (n)k is bounded by the conditionnumber of the eigenvector matrix, �(T ). Unfortunately, this can be very largeindeed, allowing a very large transient growth in the solution even when foreach eigenvalue k� lies strictly inside the stability region S and so kU (n)k musteventually decay exponentially. This problem can be particularly acute when thematrix C comes from the spatial discretisation of a p.d.e. in which case there isthen a family of discretisations arising from a sequence of computational grids ofdecreasing mesh spacing h. It is possible in such circumstances for the sequenceof condition numbers �(T ) to grow exponentially, with an exponent inverselyproportional to the mesh spacing [8]. There are two practical consequences of thisexponential growth. In applications concerned with the behaviour of the solutionas t!1, it produces an unacceptably large ampli�cation of machine roundingerrors in linear computations and complete failure of the discrete computation innonlinear cases. In applications concerned with a �nite time interval, 0� t� t0, itprevents convergence of the discrete solution to the analytic solution as h; k!0except in certain exceptional situations using spectral spatial discretisations.The stability of discretisations of systems of o.d.e.'s with non-normal matriceshas been a major research topic in the numerical analysis community in recentyears [8, 9, 11, 12, 13, 14, 15]; A recent review article by van Dorsselaer et al [10]provides an excellent overview of these and many other references. The applica-tion is often to families of non-normal matrices arising from spatial discretisationsof p.d.e.'s. Ideally, one would hope to prove strong stability,kU (n)k �  kU (0)k; (2.11)with  being a constant which is not only independent of n but is also a uniformbound applying to all matrices in the family of spatial discretisations for di�erentmesh spacings h but with the timestep k being a function of h. One reason whystrong stability is very desirable is that the Lax Equivalence Theorem proves thatit is a necessary and su�cient condition for convergence of discrete solutions tothe analytic solution on a �nite time interval for all possible initial data, providedthat the discretisation of the p.d.e. is consistent for su�ciently smooth initial data[7]. At present, the conditions under which strong stability can be proved aretoo restrictive to be useful in practical computations. Instead, attention hasfocussed on weaker de�nitions of stability which are more easily achieved andare still useful for practical computations. One is algebraic stability [8, 11, 12]which allows a linear growth in the transient solution of the formkU (n)k �  n kU (0)k; (2.12)



6where  is again a uniform constant. Another, due to Kreiss and Wu [9], isgeneralised stability which is based on exponentially weighted integrals over timefor a inhomogeneous di�erence equation with homogeneous initial conditions.For both of these de�nitions, a su�cient condition for stability is that�(kC) � S; (2.13)where the numerical range �(kC) is a subset of the complex domain de�ned by�(kC) = �k W �CWW �W : W 6=0� (2.14)where W can be any non-zero complex vector of the required dimension and W �is its Hermitian, the complex conjugate transpose. The proof of su�ciency foralgebraic stability is given by Lenferink and Spijker [12]. It proceeds in two parts,�rst showing that a certain resolvent condition is su�cient for algebraic stabil-ity, and then showing that this resolvent condition is satis�ed if the numericalrange lies inside S. Reddy and Trefethen [8] prove that the resolvent conditionis necessary as well as su�cient for algebraic stability, and the equivalence togeneralised stability follows almost immediately given the resolvent conditionrequired by Kreiss and Wu [9].By considering W to be an eigenvector of C, it can be seen that k� 2 �(kC)for each eigenvalue of C and so the requirement that �(kC) � S is a tighterrestriction on the maximum allowable timestep than asymptotic stability. Incomparison to strong stability, algebraic and generalised stability allow greatergrowth in transients when considering the solution behaviour as t ! 1. Onthe �nite time interval, it can be shown that under some very mild technicalconditions they are su�cient for convergence of discrete solutions to the analyticsolution as h; k! 0 provided the initial data is smooth and the discretisationis consistent. It thus appears that these stability de�nitions are useful tools inanalysing numerical discretisations, but additional research is still required.In the Navier-Stokes application in this paper we will need to consider a slightgeneralisation to a system of o.d.e.'s of the formMdUdt = CU; (2.15)in which M is a real symmetric positive-de�nite matrix. The `energy' is de�nedas U�MU which suggests the de�nition of new variables,V = M1=2U; (2.16)so that kV k2 = U�MU . IfM is diagonal thenM1=2 is the diagonal matrix whoseelements are the positive square root of the corresponding elements of M . If Mis not diagonal then M1=2 is equal to T�1�1=2T where � is the diagonal matrix of



7eigenvalues ofM and T is the corresponding matrix of orthonormal eigenvectors.T�1=T � and hence both M1=2 and M�1=2 are symmetric and positive de�nite.Under the change of variables, the system of o.d.e.'s becomesdVdt = M�1=2CM�1=2 V; (2.17)which is algebraically stable provided �(kM�1=2CM�1=2) � S. If C is either sym-metric or anti-symmetric then so too is M�1=2CM�1=2 because of the symmetryof M�1=2. Therefore, as discussed earlier the condition that the numerical rangelies inside S also ensures that the energy, kV k2 = U�MU , will be non-increasing.3 Analytic equationsThe starting point for the analysis is the nonlinear Navier-Stokes equations,@U@t + @Fx@x + @Fy@y + @Fz@z = 0: (3.1)U is the vector of conservation variables (�; �u; �v; �w; �E)T and the ux termsare all de�ned in Appendix B together with the equation of state for an idealgas and the de�nitions of the stress tensor and the viscous heat ux vector. Theequations are to be solved on a unit cubic domain 
 with periodic boundaryconditions. The choice of periodic b.c.'s avoids the complication of analysing theinuence of di�erent analytic and discrete boundary conditions.The �rst step is to linearise the Navier-Stokes equations by considering per-turbations to a steady ow which is uniform apart from spatial variations in theviscosity parameters �; �; k. Perturbations to the conserved variables are relatedto the vector of primitive perturbations, V = (~�; ~u; ~v; ~w; ~p)T , by the equationeU = RV: (3.2)The uniform transformation matrix R is given in Appendix B. Together, thelinearisation and the change of variables yields@V@t +A0x@V@x +A0y @V@y +A0z @V@y = @@x  D0xx@V@x +D0xy @V@y +D0xz @V@z !+ @@y  D0yx@V@x +D0yy @V@y +D0yz @V@z ! (3.3)+ @@z  D0zx@V@x +D0zy @V@y +D0zz @V@z ! :All matrices in this equation are listed in Appendix B. The second step is tode�ne a further transformation of variables,V = S W: (3.4)



8The transformation matrix S, also given in Appendix B, is due to Abarbanel andGottlieb [16]. It has the property that the corresponding transformed equations,@W@t +Ax@W@x +Ay @W@y +Az @W@y = @@x Dxx@W@x +Dxy @W@y +Dxz @W@z !+ @@y Dyx@W@x +Dyy @W@y +Dyz @W@z !+ @@z Dzx@W@x +Dzy @W@y +Dzz @W@z ! ;(3.5)are such that the matrices Ax; Ay; Az and the combined dissipation matrix0BBB@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CCCAare all symmetric. The matrices are listed in detail in Appendix B and it is alsoproved that the combined dissipation matrix is positive semi{de�nite providedthat �� 0, 2�+3�� 0 and k � 0. These three conditions are satis�ed by thelaminar viscosity coe�cients; it will be assumed that they are also satis�ed bythe coe�cients de�ned by the turbulence modelling.The perturbation `energy' is de�ned asE = Z
 12W �W dV; (3.6)where W � again denotes the Hermitian of W , and its rate of change isdEdt = Z
 12  W �@W@t + @W@t �W! dV = Z
 12  W �@W@t +  W �@W@t !�! dV: (3.7)Using the fact that Ax is real and symmetric, and then integrating by partsusing the periodic boundary conditions,Z
  W �Ax@W@x !� dV = Z
 @W@x �AxW dV = � Z
W �Ax@W@x dV=) Z
W �Ax@W@x +  W �Ax@W@x !� dV = 0: (3.8)Similarly, Z
W �Ay @W@y +  W �Ay @W@y !� dV = 0;Z
W �Az @W@z +  W �Az @W@z !� dV = 0: (3.9)



9Integrating the di�usion terms by parts and noting that26640BB@ @W@x@W@y@W@z 1CCA�0BB@Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz1CCA0BB@ @W@x@W@y@W@z 1CCA3775� = 0BB@ @W@x@W@y@W@z 1CCA�0BB@Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz1CCA0BB@ @W@x@W@y@W@z 1CCA(3.10)since the combined dissipation matrix is real and symmetric, yields the �nalresult, dEdt = � Z
0BBB@ @W@x@W@y@W@z 1CCCA�0BBB@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CCCA0BBB@ @W@x@W@y@W@z 1CCCA dV: (3.11)Since the combined dissipation matrix is positive semi{de�nite, the perturbation`energy' is non-increasing thereby proving stability in the energy norm.4 Semi{discrete equationsUsing an unstructured grid of tetrahedral cells with W de�ned by linear interpo-lation between nodal values, the standard Galerkin spatial discretisation of thetransformed p.d.e. is MGdWdt + AW = �DW; (4.1)where mGij = Z
NiNj I dVaij = Z
Ni  Ax@Nj@x + Ay @Nj@y + Az @Nj@x ! dVdij = Z
  Dxx@Ni@x @Nj@x +Dxy @Ni@x @Nj@y +Dxz @Ni@x @Nj@z (4.2)+Dyx@Ni@y @Nj@x +Dyy @Ni@y @Nj@y +Dyz @Ni@y @Nj@z+Dzx@Ni@z @Nj@x +Dzy @Ni@z @Nj@y +Dzz @Ni@z @Nj@z ! dV:The vector W of discrete nodal variables has 5-component subvectors wi at eachnode i. For a particular pair of nodes i; j, mGij , aij and dij denote the corre-sponding 5� 5 submatrices of the matrices MG, A and D, respectively. Ni is thepiecewise linear function which is equal to unity at node i and zero at all othernodes, and the viscosity parameters �, � and k within the dissipation matricesare de�ned to be constant on each tetrahedron.



10 A standard modi�cation is to `mass-lump' the matrix MG, turning it into adiagonal matrix M withmii =Xj mGij = Z
Ni I dV = Vi I; (4.3)where Vi is the volume associated with node i, de�ned as one quarter of the sumof the volumes of the surrounding tetrahedra.Another standard modi�cation when interested in accelerating convergenceto a steady-state solution, is to precondition the `mass-lumped' matrix so thatmii = Vi�ti I: (4.4)The objective of this preconditioning is to use local timesteps, �ti, which arelarger in large computational cells than in small ones, so that fewer iterationsof the fully-discrete equations will be needed to converge to the steady-statesolution to within some speci�ed tolerance.The matrix A is antisymmetric since, integrating by parts,aij = � Z Ax@Ni@x Nj + Ay @Ni@y Nj + Az @Ni@z Nj dV= � Z Nj(ATx @Ni@x + ATy @Ni@y + ATz @Ni@z ) dV= �(aji)T : (4.5)The matrix D is clearly symmetric. Furthermore, for any vector W ,W �DW = Z
0BB@ @W@x@W@y@W@z 1CCA�0BB@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CCA0BB@ @W@x@W@y@W@z 1CCA dV; (4.6)where @W@x = Xi @Ni@x wi@W@y = Xi @Ni@y wi (4.7)@W@z = Xi @Ni@z wi:Since the combined dissipation matrix is positive semi-de�nite, it follows there-fore that D is also positive semi-de�nite.



11De�ning the `energy' for arbitrary complex W as either E = 12W �MGW orE= 12W �MW , depending whether or not mass-lumping is used,dEdt = �12 (W �(A+D)W +W �(A+D)�W )= �12 (W �(A+D)W +W �(�A+D)W )= �W �DW � 0 (4.8)and so the energy is non-increasing. Since both MG and M are symmetric andpositive de�nite this in turn implies stability for the semi-discrete equations.Note that other discretisations of the Navier-Stokes equations will result inequations of the form, MdUdt = CU; (4.9)whereM is a symmetric positive de�nite `mass' matrix and C can be decomposedinto its symmetric and anti{symmetric components,C = �(A+D); A = �12(C�CT ); D = �12(C+CT ): (4.10)In general A will now contain some terms due to the viscous discretisation,and D will contain some terms due to the numerical smoothing associated withthe convective discretisation. D must still be positive semi{de�nite to ensurestability.5 Fully discrete equationsUsing Runge-Kutta time integration the fully discrete equations using one of thetwo diagonal mass matrices areW (n+1) = L(kM�1C)W (n) (5.1)where L(z) is the Runge-Kutta polynomial with stability region S as de�ned inSection 2 and C=�(A+D). As explained in Section 2, su�cient conditions foralgebraic and generalised stability are that�(kM�1=2CM�1=2) � S (5.2)where �(kM�1=2CM�1=2) = (�k W �M�1=2CM�1=2WW �W :W 6= 0) : (5.3)For unsteady calculations with the diagonal mass-lumped matrix, the aimis simply to �nd the largest k such that the constraint, Eq. (5.2), is satis�ed.For steady-state calculations using the pre-conditioned mass matrix, one uses



12a pseudo-timestep k= 1 and then the objective is to de�ne the local timesteps�ti to be as large as possible, again subject to the su�cient stability constraint,Eq. (5.2).The di�culty is that direct evaluation of �(kM�1=2CM�1=2) is not possible.Instead, a bounding set is constructed to enclose the numerical range and suf-�cient conditions are determined for this bounding set to lie inside S. Thereare two choices of bounding set which are relatively easily constructed, a half-disk and a rectangle. The construction of the bounding half-disk starts with theobservation that �����W �M�1=2CM�1=2WW �W ����� � kM�1=2CM�1=2k: (5.4)Let the variable r be de�ned byr = maxi 8<:m�1i max8<:Xj kcijk;Xj kcjik9=;9=; (5.5)where mi = 8>><>>: Vi; mass-lumped matrixVi�ti ; preconditioned mass-lumped matrix (5.6)Considering an arbitrary vector V , with subvector vi at each node i,kM�1=2CM�1=2V k2 = Xi m�1i ������Xj cij(m�1=2j vj)������2� Xi;j;km�1i kcijkm�1=2j kvjkkcikkm�1=2k kvkk� Xi;j;km�1i m�1j kvjk2kcijkkcikk� rXi;j m�1j kvjk2kcijk� r2kV k2;=) kM�1=2CM�1=2k � r: (5.7)The third line in the above derivation uses the inequalitym�1=2j kvjk m�1=2k kvkk � 12 �m�1j kvjk2 +m�1k kvkk2� ; (5.8)followed by an interchange of subscripts to replace m�1k kvkk2 by m�1j kvjk2 giventhat kcijkkcikk is symmetric in j and k.Also, for an arbitrary vector W ,W �CW + (W �CW )� = W �(C+C�)W = �2W �DW � 0 (5.9)



13and so the real component of W �CW must be zero or negative. Combined withthe previous bound, this means that �(kM�1=2CM�1=2) must therefore lie in thehalf-disk fz=x+iy : x�0; jzj�krg :For unsteady calculations, the necessary and su�cient condition for the half-disk to lie inside S, and thus a su�cient condition for algebraic and generalisedstability is kr � rc; (5.10)where rc is the radius of the half-disk inscribing S, as de�ned and illustrated inAppendix A.For preconditioned steady-state calculations with local timesteps, k=1 andso the largest value for r for which the half-disk lies inside S is rc. For each nodei, �ti is then maximised subject to the de�nition of r by�ti = rcVimax8<:Xj kcijk;Xj kcjik9=; : (5.11)These stability limits require knowledge of kcijk. Appendix C evaluates kaijkexactly, using the fact that it is a symmetric matrix. Since aji=�aTij =�aij, itfollows that kajik= kaijk. Appendix C also constructs a tight upper bound forkdijk and kdjik. From these, an upper bound for kcijk is obtained. Replacingkcijk by this upper bound in the above stability limits gives a new slightly morerestrictive su�cient stability condition which can be easily evaluated.This completes the use of the half-disk as a bounding set for the numericalrange. The rectangular bounding set is obtained by considering separately thenumerical ranges of D and A.Since D is symmetric positive semide�nite, x = �W �M�1=2DM�1=2WW �W isreal and negative with �xd�x�0 and xd de�ned byxd = maxi 8<:m�1i max8<:Xj kdijk;Xj kdjik9=;9=; : (5.12)Similarly, since A is anti-symmetric, y = i W �M�1=2AM�1=2WW �W is real andjyj�ya with ya de�ned byya = maxi 8<:m�1i max8<:Xj kaijk;Xj kajik9=;9=; = maxi 8<:m�1i Xj kaijk9=; : (5.13)Thus the numerical range �(kM�1=2CM�1=2) must lie inside the rectangleR = fx+iy : �kxd�x�0; jyj�kyag : (5.14)



14 For unsteady calculations, a su�cient stability limit is obtained by requiringthat R�S. If the boundary of S can be represented by z= r exp(i�) with r(�)being a single-valued function for �2 � � � 3�2 then this can written askqx2d + y2a � r(�); tan(�) = �yaxd : (5.15)For preconditioned steady-state calculations, we again let k = 1 and can thenchoose any rectangle R which inscribes S. Appendix A shows the particularexample of a half-square for which xd = ya. The maximum local timestep �tisubject to the de�nitions of both xD and yA is then�ti = min8>>><>>>: xdVimaxfXj kdijk;Xj kdjikg ; yaViXj kaijk9>>>=>>>; : (5.16)The �nal form of the stability limit is again obtained by using the results ofAppendix C to evaluate kaijk and place an upper bound on kdijk and kdjik.It is di�cult to predict a priori which bounding set will give the least restric-tive su�cient stability conditions. It depends in part on the particular Runge-Kutta method which is used. Appendix A shows that for some methods theinscribing half-disk almost contains the inscribing half-square and other rectan-gles lying inside S; in this case the half-disk su�cient stability conditions willprobably be less restrictive. With other methods, the half-square almost con-tains the inscribing half-disk and for these the half-square stability conditionswill probably be less restrictive.In either case, the timestep limits are su�cient conditions for algebraic andgeneralised stability, but will almost certainly not be necessary. This point iswell illustrated by considering the stability limits in the hyperbolic and parabolicextremes. In the hyperbolic case in whichD=0, corresponding to a discretisationof the inviscid Euler equations, the best stability condition obtained from theanalysis in this paper comes from an extreme limit of the rectangular boundingset. Setting xd = 0 and ya = ra, where ra is de�ned in Appendix A to be thelength of the positive imaginary axis lying inside the stability region S, gives thelocal timestep stability limit �ti � raViXj kaijk : (5.17)As explained in Section 2, because A is anti-symmetric, this will also ensure thatthe `energy' W �MW will be non-increasing. This represents a generalisation toarbitrary Runge-Kutta methods of the earlier energy analysis by Giles for twospeci�c Runge-Kutta methods [6]. In that earlier work, the su�cient stability



15limit derived by energy analysis was compared to the necessary and su�cientFourier stability limit for a uniform mesh. At worst, when the Mach number iszero and the grid spacing is the same in each direction, the timestep limit fromthe energy analysis is 40% less than that from the Fourier analysis. At best,at high Mach numbers or on stretched grids, the two timestep limits are almostequal.In the parabolic case in which A = 0, which would correspond to a simpledi�usion problem, or the incompressible Navier-Stokes equations at a very lowReynolds number, the corresponding stability limit comes from setting ya = 0and xd= rd, where rd is de�ned in Appendix A to be the length of the negativereal axis lying inside the stability region S. The su�cient timestep stability limitis then �ti � rdVimaxfXj kdijk;Xj kdjikg : (5.18)An ad hoc timestep limit which could perhaps be used comes from combiningthese last two limits to give 1�t2i = 1�t2a i + 1�t2d i ; (5.19)where �ta i and �td i are the hyperbolic and parabolic timestep limits given byEq. (5.17) and Eq. (5.18). It is possible to rigorously justify this combined limitif the grid is uniform, the viscous coe�cients are uniform, and the stability regionS contains the half-ellipse passing through the points ira;�rd;�ira. However, ingeneral this timestep formulation can not be justi�ed and so should only be usedwith care. Its advantage over the rigorous stability limits using the half-disk andthe rectangle is that it will give a larger timestep which is hopefully still stable.6 ConclusionsThis paper has analysed the stability of one class of discretisations of the Navier-Stokes equations on a tetrahedral grid. The su�cient stability limits for bothglobal and local timesteps are based on recent advances in numerical analysis.Additional research is needed to validate the usefulness of these limits, whetherthey are close enough to the necessary stability limits to be a valuable practicalcriterion on which to base the timestep in actual computations.Another direction for future research is the extension of the analysis to otherdiscretisations. Upwind approximations of the inviscid uxes would be a particu-larly interesting topic for study. As indicated at the end of Section 4, this wouldchange the de�nition of the dissipation matrix D, but the overall approach tothe stability analysis would remain valid. It may also be possible to investigatethe stability of di�erent Navier-Stokes boundary condition implementations byincorporating these within the coupled system of o.d.e.'s.
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18 Appendix A Runge-Kutta stability curvesAn example of a Runge-Kutta type of approximation of the o.d.e.dudt = �u; (A.1)is the following two-stage predictor-corrector method,u(1) = un + k� unun+1 = un + k� u(1): (A.2)Combining these two equations givesun+1 = L(k�) un; (A.3)where the Runge-Kutta polynomial function is L(z) = 1 + z + z2. Figure 1a)shows the stability region S within which jLj � 1. It also shows the largesthalf-disk, fz=x+iy : x�0; jzj�rcg ;and the largest half-square,(z=x+iy : � rsp2�x�0; jyj� rsp2) ;which lie inside S. If the boundary of S is de�ned as z = r exp(i�) then rc andrs can be de�ned as rc = min�2��� 3�2 r(�); rs = r( 34�): (A.4)The values of rc and rs are listed to the right of the �gure along with those oftwo other important parameters, ra= r( 12�), which is the length of the positiveimaginary axis segment within S, and rd=r(�), which is the length of the nega-tive real axis segment within S. The importance of all four of these parametersis discussed in the main text in Section 5.Figures 1b) and 1c) show the corresponding curves and data for two otherpopular multistage integration schemes.
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0.5-0.5-1.5 -1.5-0.50.51.5 a) Predictor-correctoru(1) = un + ��t unun+1 = un + ��t u(1)rc = 1:0rs = 1:414ra = 1:0rd = 1:0
1.0-1.0-3.0 -3.0-1.01.03.0 b) Three-stage schemeu(1) = un + 13��t unu(2) = un + 12��t u(1)un+1 = un + ��t u(2)rc = 1:731rs = 2:375ra = 1:731rd = 2:513
1.0-1.0-3.0 -3.0-1.01.03.0 c) Four-stage schemeu(1) = un + 14��t unu(2) = un + 13��t u(1)u(3) = un + 12��t u(2)un+1 = un + ��t u(3)rc = 2:616rs = 2:704ra = 2:828rd = 2:785Figure 1: Stability boundary and inscribing half-disk and half-square for threeRunge-Kutta methods



20 Appendix B vectors, matrices and positivityStarting with the conservative form of the Navier-Stokes equations, the statevector and ux vectors areU = 0BBBBBB@ ��u�v�w�E
1CCCCCCA ;

Fx = 0BBBBBB@ �u�u2 + p � �xx�uv � �yx�uw � �zx�u(E + p�) � u�xx � v�yw � w�zx + qx
1CCCCCCA

Fy = 0BBBBBB@ �v�uv � �xy�v2 + p � �yy�vw � �zy�v(E + p�) � u�xy � v�yy � w�zy + qy
1CCCCCCA

Fz = 0BBBBBB@ �w�uw � �xz�vw � �yz�w2 + p � �zz�w(E + p�) � u�xz � v�yz � w�zz + qz
1CCCCCCA : (B.1)�; u; v; w; p; E are the density, three Cartesian velocity components, pressure andtotal internal energy, respectively. To complete the system of equations requiresan equation of state for an ideal gas,p = �RT = (�1) � (E � 12(u2+v2+w2)); (B.2)in which R; T;  are the gas constant, temperature and uniform speci�c heatratio, respectively, as well as equations de�ning the heat uxes,qx = �k@T@x ; qy = �k@T@y ; qz = �k@T@z ; (B.3)



21and the viscous stress terms,�xx = 2�@u@x + � @u@x + @v@y + @w@z ! ; �xy = �yx = � @u@y + @v@x! ;�yy = 2�@v@y + � @u@x + @v@y + @w@z ! ; �xz = �zx = � @u@z + @w@x ! ;�zz = 2�@w@z + � @u@x + @v@y + @w@z ! ; �yz = �zy = � @v@z + @w@y ! : (B.4)The transformation from conservative to primitive variables, (� u v w p)T , isaccomplished by the matrixR = 0BBBBBB@ 1 0 0 0 0u � 0 0 0v 0 � 0 0w 0 0 � 0u2+v2+w22 �u �v �w 1�1
1CCCCCCA : (B.5)The linearised, transformed equations are@V@t + A0x@V@x + A0y @V@y + A0z @V@z = @@x D0xx@V@x +D0xy @V@y +D0xz@V@z !+ @@y D0yx@V@x +D0yy @V@y +D0yz @V@z !+ @@z D0zx@U@x +D0zy @V@y +D0zz @V@z ! (B.6)where A0x = 0BBBBBB@ u � 0 0 00 u 0 0 1�0 0 u 0 00 0 0 u 00 p 0 0 u

1CCCCCCA ; A0y = 0BBBBBB@ v 0 � 0 00 v 0 0 00 0 v 0 1�0 0 0 v 00 0 p 0 v
1CCCCCCA

A0z = 0BBBBBB@ w 0 0 � 00 w 0 0 00 0 w 0 00 0 0 w 1�0 0 0 p w
1CCCCCCA (B.7)



22andD0xx = 0BBBBBBBB@ 0 0 0 0 00 2�+�� 0 0 00 0 �� 0 00 0 0 �� 0� �pPr �2 0 0 0 �Pr �
1CCCCCCCCA ; D0xy = D0Tyx = 0BBBBBBBB@ 0 0 0 0 00 0 �� 0 00 �� 0 0 00 0 0 0 00 0 0 0 0

1CCCCCCCCA
D0yy = 0BBBBBBBB@ 0 0 0 0 00 �� 0 0 00 0 2�+�� 0 00 0 0 �� 0� �pPr �2 0 0 0 �Pr �

1CCCCCCCCA ; D0xz = D0Tzx = 0BBBBBBBB@ 0 0 0 0 00 0 0 �� 00 0 0 0 00 �� 0 0 00 0 0 0 0
1CCCCCCCCA

D0zz = 0BBBBBBBB@ 0 0 0 0 00 �� 0 0 00 0 �� 0 00 0 0 2�+�� 0� �pPr �2 0 0 0 �Pr �
1CCCCCCCCA ; D0yz = D0Tzy = 0BBBBBBBB@ 0 0 0 0 00 0 0 0 00 0 0 �� 00 0 �� 0 00 0 0 0 0

1CCCCCCCCA(B.8)The Prandtl number is de�ned asPr = �cpk = �R(�1)k ; (B.9)but is not assumed to be uniform since � and k in general represent combinationsof laminar and turbulent viscosities, each with their own Prandtl number.The second transformation matrix isS = 0BBBBBBBB@
p �c 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 01p�c 0 0 0 q�1 �c

1CCCCCCCCA (B.10)
and the transformed matrices are
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Ax = S�1A0xS = 0BBBBBBBBB@

u 1p c 0 0 01p c u 0 0 q�1 c0 0 u 0 00 0 0 u 00 q�1 c 0 0 u
1CCCCCCCCCA ;

Ay = S�1A0yS = 0BBBBBBBBB@
v 0 1p c 0 00 v 0 0 01p c 0 v 0 q�1 c0 0 0 v 00 0 q�1 c 0 v

1CCCCCCCCCA ;
Az = S�1A0zS = 0BBBBBBBBB@

w 0 0 1p c 00 w 0 0 00 0 w 0 01p c 0 0 w q �1 c0 0 0 q �1 c w
1CCCCCCCCCA ; (B.11)

andDxx = 0BBBBBBBB@ 0 0 0 0 00 2�+�� 0 0 00 0 �� 0 00 0 0 �� 00 0 0 0 �Pr �
1CCCCCCCCA ; Dxy = DTyx = 0BBBBBBBB@ 0 0 0 0 00 0 �� 0 00 �� 0 0 00 0 0 0 00 0 0 0 0

1CCCCCCCCA ;
Dyy = 0BBBBBBBB@ 0 0 0 0 00 �� 0 0 00 0 2�+�� 0 00 0 0 �� 00 0 0 0 �Pr �

1CCCCCCCCA ; Dxz = DTzx = 0BBBBBBBB@ 0 0 0 0 00 0 0 �� 00 0 0 0 00 �� 0 0 00 0 0 0 0
1CCCCCCCCA ;
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Dzz = 0BBBBBBBB@ 0 0 0 0 00 �� 0 0 00 0 �� 0 00 0 0 2�+�� 00 0 0 0 �Pr �

1CCCCCCCCA ; Dyz = DTzy = 0BBBBBBBB@ 0 0 0 0 00 0 0 0 00 0 0 �� 00 0 �� 0 00 0 0 0 0
1CCCCCCCCA :(B.12)An important feature of the transformed equations is that the combined dis-sipation matrix, 0BBB@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CCCAis both symmetric and positive semi-de�nite. The symmetry is clear from theabove de�nitions of the component matrices, and the positivity comes from not-ing thatxT 0B@ Dxx Dxy DxzDyx Dyy DyzDzx Dzy Dzz 1CAx = �� (x3+x7)2 + �� (x4+x12)2 + �� (x9+x13)2+ 1� 0B@ x2x8x141CAT 0B@ 2�+� � �� 2�+� �� � 2�+� 1CA0B@ x2x8x141CA+ �Pr�(x25 + x210 + x215): (B.13)The eigenvalues of 0B@ 2�+� � �� 2�+� �� � 2�+� 1CAare 2�; 2�; 2�+3� and hence the combined dissipation matrix is positive semi-de�nite provided ��0, 2�+3��0 and k�0.



25Appendix C L2 norms of component matricesDe�ning Z
NirNj dV = S ~n; (C.1)then aij = S(nxAx + nyAy + nzAz)
= S 0BBBBBBBBB@

~u:~n 1p cnx 1p cny 1p cnz 01p cnx ~u:~n 0 0 q�1 cnx1p cny 0 ~u:~n 0 q�1 cny1p cnz 0 0 ~u:~n q�1 cnz0 q�1 cnx q�1 cny q�1 cnz ~u:~n
1CCCCCCCCCA : (C.2)

Three of the eigenvalues of S�1aij are equal to ~u:~n and the other two are ~u:~n� c.Hence, kaijk = S(j~u:~nj+ c) (C.3)using the fact that for symmetric matrices the L2 norm is the magnitude of thelargest eigenvalue.The quantity S~n can be interpreted geometrically. First note that rNj isnon-zero only on tetrahedra surrounding node j, and that on such a tetrahedron,labelled �, rNj = 13V � ~S�j (C.4)where ~S�j is the inward-pointing area vector of the face of � opposite node j,and V � is the volume of the tetrahedron. Summing over all tetrahedra for whichboth i and j are corner nodes, givesS ~n = 112X� ~S�j (C.5)De�ne d�ij to be the contribution to dij from the integration over tetrahedron�. Therefore, dij =X� d�ij =) kdijk2 �X� kd�ijk2 (C.6)where again the summation is over tetrahedra common to both i and j. On



26tetrahedron �;rNi and rNj are both uniform and so
d�ij = V �

0BBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 00 �+�� @Ni@x @Nj@x �+�� @Ni@x @Nj@y �+�� @Ni@x @Nj@z 0+��rNi �rNj0 �+�� @Ni@y @Nj@x �+�� @Ni@y @Nj@y �+�� @Ni@y @Nj@z 0+��rNi �rNj0 �+�� @Ni@z @Nj@x �+�� @Ni@z @Nj@y �+�� @Ni@z @Nj@z 0+��rNi �rNj0 0 0 0 �Pr�rNi �rNj

1CCCCCCCCCCCCCCCCCCCCCCCCCA(C.7)Hence,kd�ijk � V �max(�� jrNi �rNjj+ �+�� jrNij jrNjj; �Pr� jrNi �rNjj) (C.8)which can be re-expressed using the values for rNi and rNj askd�ijk � 19V � max(�� j~S�i � ~S�j j+ �+�� j~S�i j j~S�j j; �Pr� j~S�i � ~S�j j) ; (C.9)where ~S�i and ~S�j are as de�ned previously. Note that the upper bound on theright-hand-side of Eq. (C.9) is unchanged if i and j are interchanged, and so itis also an upper bound for kd�jik. Hence,maxfkdijk; kdjikg �X� 19V � max(�� j~S�i � ~S�j j+ �+�� j~S�i j j~S�j j; �Pr� j~S�i � ~S�j j) :(C.10)The exact value for kaijk and the upper bounds for kdijk; kdjik can then becombined by the triangle inequality,kcijk = kaij + dijk � kaijk+ kdijk; (C.11)to get upper bounds for kcijk and kcjik for use in the su�cient stability limitsderived in Section 5 in the main text.


