
Report no. 95/20
A parallel framework for unstructured grid solvers

D. A. Burgess P. I. Crumpton M. B. GilesThe aim of this work is the parallel solution of large two andthree dimensional CFD problems using unstructured grids. A generalframework has been formulated to enable both parallel and sequentialexecution of a single source FORTRAN code. This is achieved viathe straightforward insertion of OPlus (Oxford Parallel Library forUnstructured Solvers) subroutine calls. Hence, the user's code can bedeveloped, debugged and maintained on a sequential machine and ex-ecuted in parallel when required. The generality is achieved throughthe speci�cation by the programmer of certain key aspects of the datastructure used in the computation. However, the programmer neednot be aware of the underlying details of the parallel execution of theapplication and therefore the development of the parallel applicationis greatly simpli�ed.This work was presented at the ECCOMAS 1994 conference andappears in the proceedings (Computational Fluid Dynamics '94, Wi-ley, editors: S.Wagner, J.Periaux, E.H.Hirschel, pages 391{400).This work was performed within Oxford Parallel. We gratefully acknowledge�nancial support from Rolls-Royce plc, DTI and SERC.Oxford University Computing LaboratoryNumerical Analysis GroupWolfson BuildingParks RoadOxford, England OX1 3QD April, 1997

21 IntroductionAlgorithms for unstructured grids are becoming increasingly popular, especiallywithin the CFD community where the geometrical exibility of unstructuredgrids enables whole aircraft to be modelled. The resulting calculations are oftenhuge and so there is a need to fully exploit modern parallel hardware.Writing an individual, machine-speci�c parallel program is time consuming,expensive and di�cult to maintain. Therefore there is a need for tools to simplifythe task and generate very e�cient parallel implementations. There have beenseveral authors who have pursued the idea of constructing a library for parallelis-ing programs for MIMD machines. These are mainly aimed at structured grids.De Keyser developed a software tool called LOCO [7] for structured grids withre�ned regions. Dellagiacoma et al constructed PARAGRID [5] which uses over-lapping domain decomposition techniques on block{structured grids. Williamscreated DIME (Distributed Irregular Mesh Environment) [8] and Das et al devel-oped PARTI (Parallel Automated Runtime Toolkit at ICASE) [3, 4] for unstruc-tured mesh algorithms on distributed machines. However, DIME restricts theuser to two dimensional triangular grid calculations. PARTI parallelises prob-lems in any number of dimensions, and is the prior research which is closestin nature to the work reported here. There are a number of detailed di�er-ences between PARTI and OPlus, the library to be presented in this paper, butthe principal di�erence is that with OPlus the programmer is not aware of themessage-passing required for the parallel execution. This greatly simpli�es theprogrammer's task. PARTI has the same objective but the aim is to achieve itthrough the incorporation of PARTI within an automatic parallelising compiler.At present, the programmer must still explicitly specify the message-passing tobe performed.The OPlus framework has been formulated to enable parallelisation of a largeclass of applications using unstructured grids. The present implementation isfor distributed memory RISC machines. However, the user interface is designedto accommodate vector processors and/or shared memory machines. To utilisethe library the application code needs to be written in a certain style whichaccommodates OPlus library calls. Thus a single source FORTRAN code canbe developed, debugged and maintained on a sequential machine and then ex-ecuted in parallel. This is of great bene�t since parallelising unstructured gridcodes is a time consuming and tedious process. Furthermore, considerable ef-fort can be devoted to optimising the OPlus library for a variety of machines,using machine-speci�c low-level communications libraries as necessary. The per-formance bene�ts can then be realised by applications built using OPlus.This paper will �rst describe the concepts behind the OPlus framework, thenvarious aspects of the implementation and �nally some results for a applicationcode calculating the inviscid ow over an aircraft.

32 OPlus LibraryThe purpose of the OPlus library is to remove the parallelisation burden fromthe application programmer [1]. Emphasis is put on the following:generality: OPlus uses general data structures. For example in a CFD appli-cation it allows cell, edge and/or face data structures. The cells can be ofany type, such as triangles or quadrilaterals in 2D or tetrahedra, prisms orhexahedra in 3D.performance: Messages are sent only when data has been modi�ed, are con-catenated to reduce latency, and communication is overlapped with com-putation whenever possible.portability: OPlus is interfaced to general message-passing libraries such asPVM and MPI, or the native message passing library of the machine.single source: A single source code can be executed either sequentially or inparallel. This greatly simpli�es development and maintenance of parallelcode.2.1 Top level conceptsThe concept behind the OPlus framework is that unstructured grid applicationscan be decomposed into four distinct parts.sets Examples of sets are nodes, edges, triangular faces, quadrilateral faces, cellsof a variety of types, far-�eld boundary nodes, wall boundary faces, etc.data on sets Associated with these sets are data, for example the grid coordi-nates at nodes, the volumes of cells and the normals on faces.pointers between sets In addition to data on sets there are pointers betweensets, for example the cell to node connectivity which de�nes tetrahedra, theface to node connectivity which de�nes each face and the list of boundarynodes.operations over sets All of the numerically-intensive parts of unstructured ap-plications can be described as operations over sets. For example: loopingover the set of cells using cell{node pointers and nodal data to calculate aresidual and scatter an update to the nodes; or looping over the nonzerosof a sparse matrix accumulating a matrix-vector product.The OPlus framework makes the important restriction that an operation overa set can be applied in any order without a�ecting the �nal result. Consequently,the OPlus routines can choose an ordering to achieve maximum parallel e�ciency.

4This restriction negates the use of OPlus for certain numerical algorithms such asGauss{Seidel iteration or globally implicit ADI time-marching procedures. How-ever, most numerical algorithms on unstructured grids in current use in CFD, andmany other application areas, satisfy this restriction. Speci�c examples includeexplicit time-marching methods, multigrid calculations using explicit smoothingoperators and conjugate gradient methods using local preconditioning.Another restriction is that the sets and pointers must currently be declaredat the start of the program execution and must then remain unaltered through-out the computation. Therefore, dynamic grid re�nement cannot be treated atpresent. This is an area for future development.2.2 Implementation OverviewThe implementation uses a standard data-parallel approach. The computationaldomain is partitioned into a number of regions. Each partition is treated by aseparate process, usually on a separate processor. A later section will discuss thehandling of disk and terminal i/o through a master process.Each member of a distributed set, and its associated data, is \owned" bya unique partition process. Other partitions may have temporary copies of thedata, as needed. The key rule in performing parallel computations is that eachpartition performs all operations which cause modi�cations to data owned byit. Because of the restriction that operations can be performed in any orderthe di�erent partitions can compute in parallel. At the partition interfaces, itis possible that an operation on a single set member (such as a cell) will a�ectdata owned by more than one partition (such as data at the nodes). In thiscircumstance, the operation is performed on all of the a�ected partitions. Thisleads to redundant computations being performed. The alternative approach,adopted by PARTI, is to perform the computation on a single partition andsubsequently communicate changes to the other partitions. This leads to morecommunication and a more complex programming interface.To use the OPlus library the application programmer must1. at the start of the code declare all the sets to be used within the code,through a simple OPlus subroutine call;2. at the start of the code declare all the pointers to be used within the code,through another simple OPlus subroutine call;3. adopt the OPlus loop syntax for loops over declared sets, see section 2.5;4. use the OPlus i/o routines, see section 2.4.The above is all that the application programmer need be concerned about. Inparticular, the programmer does not need to be aware of the partitioning of thesets performed by the OPlus library, or the message-passing that this generates.

52.3 InitialisationAt the beginning of the parallel execution there are three main initialisationphases:partitioning All sets are partitioned and each partition is assigned an ownerprocess. At present, the method adopted is to use a simple recursive in-ertial bisection algorithm to partition one or more sets. The other setsare partitioned consistently using the connectivity information containedin the pointers. It is also possible to read in partitions generated by otherpackages. This is a very active research area and general graph-based par-titioning packages are becoming available.construction of import/export lists If an operation on a member of a setrequires data which is not locally owned then a copy of that data willneed to be `imported' from another partition. The initialisation phaseconstructs, for each partition, lists of the set members which may needto be imported during the main execution phase. Correspondingly, eachpartition also has export lists of the owned data which may need to beimported by other partitions.local renumbering Each partition should only need to allocate su�cient mem-ory to store the small fraction of each set which it either owns or imports.To enable this, it is necessary to locally renumber the set members. Oneach partition, each set is divided into a number of subgroups which arethen numbered sequentially, and thus stored contiguously. The primarygroups are the owned and imported data. Within these two groups thereare further subgroups which depend on whether the set member needs tobe executed (because its execution will a�ect owned data) and whether itrequires imported data.owned, interior The member is owned and all of its pointers are to othermembers which are also owned. Thus, operations can be performedwithout reference to any imported data.owned, halo The member is owned, but at least one of the pointers is toimported data.imported, executed The member is imported, but at least one of itspointers is to an owned member so operations must be performedbecause it will a�ect the owned data.imported, not executed The member is imported, and none of the point-ers are to owned members so there is no need for operations to beperformed on this member.

6 The local renumbering of each set forces a consistent renumbering of all ofthe pointer information. The local-global mapping is also maintained fori/o purposes.It is important to note again that all of the above phases are performedautomatically by the OPlus library, not the application code. In all applicationsperformed to date, the CPU time taken for these initialisation phases has beensigni�cantly less than the time required for the disk i/o, and so is considered tobe negligible.2.4 Input/OutputOne of the important goals of the framework is to allow users to write a singlesource code which will execute either sequentially or in parallel depending onhow the executable is linked. To achieve this it is necessary for the program tohandle all disk and terminal i/o via appropriate subroutines.1. For sequential execution the user's main program is linked to user{writtensubroutines which handle all i/o. This will enable the user to develop,debug and maintain their sequential code without any parallel messagepassing libraries.2. For parallel execution the OPlus framework creates master and slave pro-grams from the user's single source, Fig. 1. The master program is formedby linking the OPlus master process to the user's i/o routines, while theslave program is created by linking the user's compute process to OPlusslave routines.Thus, when the slaves request data from a �le on disk, the master process willread the global data and send each slave the data owned by the particular parti-tion. Similarly for a slave write request, each slave will send the master its owneddata, the master will concatenate and renumber the data and then call the user'ssubroutine to write it to the disk. Hence, i/o in this parallel environment istransparent to the user. This i/o is sequential in nature, but it is assumed thatthe parallel application will require very little i/o and so this will not become abottleneck.Although conceptually a master/slave paradigm is used, OPlus is imple-mented using a SPMD (single program multiple data) concept, to further sim-plify the interface to the user. Thus a Make�le produces two executables, onefor sequential execution and one for parallel execution.2.5 Loop SyntaxThe following example is given to illustrate how a loop is parallelised. Supposethat for a set of triangular cells, the area of each cell, AREAC, is to be distributed

7to the cell's nodes using a pointer, NCELL, which points from the cell to its threenodes. This operation corresponds to the following FORTRAN DO{loop:FORTRAN loopDO IC = 1, NCELLSI1 = NCELL(1,IC)I2 = NCELL(2,IC)I3 = NCELL(3,IC)AREAN(I1) = AREAN(I1) + AREAC(IC)/3.0AREAN(I2) = AREAN(I2) + AREAC(IC)/3.0AREAN(I3) = AREAN(I3) + AREAC(IC)/3.0ENDDOUsing the OPlus framework, this becomes:FORTRAN OPlus loopDO WHILE(OP_PAR_LOOP(NCELLS,ISTART,IFINISH))CALL OP_ACCESS_R8('r',AREAC,1,NCELLS,NULL& ,0,0,1,1)CALL OP_ACCESS_R8('u',AREAN,1,NNODES,NCELL& ,1,1,1,3)DO IC = ISTART, IFINISHI1 = NCELL(1,IC)I2 = NCELL(2,IC)I3 = NCELL(3,IC)AREAN(I1) = AREAN(I1) + AREAC(IC)/3.0AREAN(I2) = AREAN(I2) + AREAC(IC)/3.0AREAN(I3) = AREAN(I3) + AREAC(IC)/3.0ENDDOEND WHILEThe following comments discuss the transformation.1. Firstly, note that there are no sends or receives in this parallel loop and thestructure of the inner code remains unchanged. Thus all of the low levelmessage-passing details are completely hidden from the user.

8 2. Essentially, the DO WHILE loop is similar to a colouring loop that would benecessary for vectorisation due to the inherent data dependencies. Indeed,future versions of the library for vector processors will automatically reorderthe sets to enable a compiler directive asserting no data dependency to besafely inserted in front of the inner loop.3. OP ACCESS tells the library how the arrays in the main loop are to beaccessed. Which distributed arrays need to be communicated is decidedfrom the arguments of this routine. The �rst argument is a characterstring that can be legally set to r,w,b,u indicating read, write, both orupdate. This states how the second argument, the distributed array, isto be accessed in the loop. When the loop is executed sequentially theOP ACCESS calls perform no function.4. OP PAR LOOP is a logical function which returns as arguments the startand �nish indices of the inner loop. In the sequential library ISTART andIFINISH are set to 1 and NCELLS respectively, to mimic the original FOR-TRAN loop. In the parallel library, this routine controls many passesthrough the inner loop:pass 1 analyse OP ACCESS calls, �ll a bu�er with all data to be exportedand bypass the inner loop by setting ISTART=1 and IFINISH=-1.pass 2 Export all data in the bu�er to neighbouring partitions, and per-form the inner loop computation for those cells which do not requireimported data.pass 3 Receive imported data from neighbouring partitions and performcomputations for the remaining cells.At the conclusion of these three passes, all owned members of AREAN arecorrect, but imported values may not be.Full details of the arguments and other routines can be found in [2].3 Parallel PerformanceTo demonstrate the library a realistic industrial application has been chosen.This models the 3D steady inviscid ow past an aircraft, which is discretisedusing an unstructured tetrahedral grid, see Figure 2. A Lax{Wendro� pseudotimestepping algorithm is used as the solver. This can be expressed asWj := Wj + !jNj(W) 8 nodes j (3.1)where Nj(W) := P�2Cj V� [D�;jR� + A�;j]P�2Cj V� : (3.2)

9Table 1: Sets and pointers for Lax-Wendro� algorithmset size of setnodes 137094tetrahedral cells 746286boundary faces 31536boundary nodes 16123pointer: from to lengthtetrahedral cells nodes 4boundary faces nodes 3boundary nodes nodes 1Roman subscripts are used for nodal quantities, Greek subscripts for cell quan-tities and the other variables are:!j is a relaxation factor.Cj is the set of cells surrounding node j.V� is the cell volume.R� is the cell residual (H F:nds) corresponding to the inviscid Euler ux F =(f; g; h)T .D�;j are distribution matrices mapping the cell residual R� to node j.A�;j is an arti�cial dissipation term de�ned byA�;j = �4(�2W0 � �2Wj) + �2(W0 �Wj)where subscript 0 refers to a cell averaged quantity, �4; �2 are constantsbased on the timestep and �2Wj is an undivided Laplacian operator.There are two computationally intensive loops for each timestep:1. a loop over cells, scattering (W0�Wj) to nodes in order to construct �2Wat the nodes; this loop \reads" a W array and \updates" a �2W array, sothe read causes values of W to be imported at partition boundaries.2. a loop over cells scattering D�;jR�+A�;j to the nodes; this loop \reads" theW array, which is up-to-date from the previous loop, and the �2W array,which is not up-to-date after the previous loop and so must be imported.

10Table 2: Execution time per iteration and speed-up factor (S U) on IBM SP1and SGI Challenge IBM(Enet) IBM(switch) SGIp E time S U time S U time S U1 0.0 23.4 1.0 23.4 1.0 45.3 1.002 2.0 12.3 1.9 12.3 1.9 23.0 1.973 3.8 9.3 2.5 9.0 2.5 15.9 2.854 5.4 7.6 3.1 7.1 3.3 12.4 3.655 6.6 7.1 3.3 6.4 3.6 | |6 7.9 7.5 3.1 5.5 4.2 | |7 8.0 7.7 3.0 5.0 4.7 | |8 9.7 8.0 2.9 4.5 5.2 | |There are also less important loops over boundary nodes to impose boundaryconditions, and over nodes updating W to the next timestep.The Lax-Wendro� algorithm requires four sets and three pointers, as given inTable 1. The surface grid and pressure contours for an airplane calculation areshown in Figure 2. The sizes of the four sets for this application are also givenin Table 1. Execution times are given in Table 2 for the following two machines:� an 8-processor distributed-memory IBM SP1,� a 4-processor shared-memory SGI Challenge.E is the percentage of redundant calculation being performed at partition inter-faces, as described earlier. The elapsed times are per iteration; many thousandsof iterations are actually required for numerical convergence. The columns la-belled `S U' give the speed-up relative to the single-processor execution. Twotimings are quoted for the SP1, one using Ethernet for communication (Enet) theother using the switch. The Ethernet timings are equivalent to using a clusterof workstations. All timings use the PVM 3.2.6 software. Improvements in theswitch and SGI timings are likely using native message passing routines and thisis being investigated.The percentage of redundant computation, increases with the number of pro-cessors, giving about 10% more work for eight processors. At �rst sight this mightindicate a lack of scalability to a large number of processors. However, scalabil-ity for a �xed problem size is not the objective. The aim instead is to utiliseparallel computers for large and complex industrial applications. The problemsize for this example is only 0.75 Million cells; it is expected that future viscouscalculations will have 10 Million cells. In this case the proportion of redundantcalculations will remain small even when using more processors.

114 VisualisationFor such large applications it becomes prohibitive to rely on graphics work-stations to manipulate and render the complete solution. To remedy this, thecompute intensive part of the visualisation is performed on the parallel machine,along with the ow solver, while all the rendering is performed on the graph-ics workstation. This uses the pV3 software [6] which �ts easily in the OPlusframework.5 ConclusionsA exible and general approach has been demonstrated to parallelise unstruc-tured grid applications. This involves the programmer adopting the OPlus loopstyle of programming and all i/o being sent through speci�c subroutine calls.The resulting code will execute on a sequential machine (without the need forany parallel libraries) or in parallel on a MIMD architecture. This single sourceis of major bene�t for development and maintenance of the code.The OPlus parallel execution is fully optimised to concatenate messages, min-imise the number of messages sent and overlap communication with computation.This library is intended for large applications, which warrant the use of parallelmachines, and has been demonstrated by a 3D Euler solver for a complete aircraftcon�guration. For this realistic industrial application a worthwhile speed-up hasbeen achieved with very little e�ort from the application programmer.AcknowledgementsThis work was performed within Oxford Parallel. We gratefully acknowledge�nancial support from Rolls-Royce plc, DTI and SERC.References[1] D. A. Burgess, P. I. Crumpton, and M. B. Giles. A parallel framework for un-structured mesh solvers. IFIP WG10.3 Working Conference on ProgrammingEnvironments for Massively Parallel Disributed Systems, 1994.[2] P.I. Crumpton and M.B. Giles. OPlus programmer's manual. Oxford Uni-versity computing laboratory, 1993.[3] R. Das, J. Saltz, and H. Berryman. A Manual for PARTI Runtime Primitives,Revision 1. ICASE, NASA Lagley Research Centre, Hampton, USA, May1993.

12[4] R. Das, J. Saltz, J. Mavriplis, and R. Ponnusamy. The incremental schedular.In P. Mehrotra, J. Saltz, and R. Voigt, editors, Unstructured scienti�c com-putation on scalable multiprocessors, pages 81{105. MIT Press, Cambridge,MA, USA, 1992.[5] F. Dellagiacoma, S. Paoletti, F. Poggi, and M. Vitaletti. PARAGRID: aparallel multi{block environment for Computational Fluid Dynamics. IBMECSEC,Viale Oceano Paci�co 173, 00144 Rome, Italy.[6] R. Haimes. pV3: A distributed system for large scale unsteady CFD visuali-sation. AIAA Paper 94{0321, 1994.[7] J.De Keyser. LOCO1.0: a library supporting data parallelism on MIMDcomputers. Department of Computer Science, Katholieke Universiteit Leuven,Leuven, Belgium, March 1993.[8] R. D. Williams. DIME Distributed Irregular Mesh Environment. CaliforniaInstitute of Technology, 1990.

13
Sequentialuser'scomputeprocessuser'si/oroutines

MasterOPlusmasterprocessuser'si/oroutines

Slaves
user'scomputeprocessOPlusslaveroutinesFigure 1: Sequential and parallel versions of user's program

(a) (b)Figure 2: (a) contours of pressure, (b) surface grid

