Report no. 95/20

A parallel framework for unstructured grid solvers

D. A. Burgess P. I. Crumpton M. B. Giles

The aim of this work is the parallel solution of large two and
three dimensional CFD problems using unstructured grids. A general
framework has been formulated to enable both parallel and sequential
execution of a single source FORTRAN code. This is achieved via
the straightforward insertion of OPlus (Oxford Parallel Library for
Unstructured Solvers) subroutine calls. Hence, the user’s code can be
developed, debugged and maintained on a sequential machine and ex-
ecuted in parallel when required. The generality is achieved through
the specification by the programmer of certain key aspects of the data
structure used in the computation. However, the programmer need
not be aware of the underlying details of the parallel execution of the
application and therefore the development of the parallel application
is greatly simplified.

This work was presented at the ECCOMAS 1994 conference and
appears in the proceedings (Computational Fluid Dynamics 94, Wi-
ley, editors: S.Wagner, J.Periaux, E.H.Hirschel, pages 391-400).

This work was performed within Oxford Parallel. We gratefully acknowledge
financial support from Rolls-Royce plc, DTT and SERC.

Oxford University Computing Laboratory

Numerical Analysis Group

Wolfson Building

Parks Road

Oxford, England OX1 3QD April, 1997

1 Introduction

Algorithms for unstructured grids are becoming increasingly popular, especially
within the CFD community where the geometrical flexibility of unstructured
grids enables whole aircraft to be modelled. The resulting calculations are often
huge and so there is a need to fully exploit modern parallel hardware.

Writing an individual, machine-specific parallel program is time consuming,
expensive and difficult to maintain. Therefore there is a need for tools to simplify
the task and generate very efficient parallel implementations. There have been
several authors who have pursued the idea of constructing a library for parallelis-
ing programs for MIMD machines. These are mainly aimed at structured grids.
De Keyser developed a software tool called LOCO [7] for structured grids with
refined regions. Dellagiacoma et al constructed PARAGRID [5] which uses over-
lapping domain decomposition techniques on block—structured grids. Williams
created DIME (Distributed Irregular Mesh Environment) [8] and Das et al devel-
oped PARTT (Parallel Automated Runtime Toolkit at ICASE) [3, 4] for unstruc-
tured mesh algorithms on distributed machines. However, DIME restricts the
user to two dimensional triangular grid calculations. PARTT parallelises prob-
lems in any number of dimensions, and is the prior research which is closest
in nature to the work reported here. There are a number of detailed differ-
ences between PARTI and OPlus, the library to be presented in this paper, but
the principal difference is that with OPlus the programmer is not aware of the
message-passing required for the parallel execution. This greatly simplifies the
programmer’s task. PARTT has the same objective but the aim is to achieve it
through the incorporation of PARTT within an automatic parallelising compiler.
At present, the programmer must still explicitly specify the message-passing to
be performed.

The OPlus framework has been formulated to enable parallelisation of a large
class of applications using unstructured grids. The present implementation is
for distributed memory RISC machines. However, the user interface is designed
to accommodate vector processors and/or shared memory machines. To utilise
the library the application code needs to be written in a certain style which
accommodates OPlus library calls. Thus a single source FORTRAN code can
be developed, debugged and maintained on a sequential machine and then ex-
ecuted in parallel. This is of great benefit since parallelising unstructured grid
codes is a time consuming and tedious process. Furthermore, considerable ef-
fort can be devoted to optimising the OPlus library for a variety of machines,
using machine-specific low-level communications libraries as necessary. The per-
formance benefits can then be realised by applications built using OPlus.

This paper will first describe the concepts behind the OPlus framework, then
various aspects of the implementation and finally some results for a application
code calculating the inviscid flow over an aircraft.

2 OPlus Library

The purpose of the OPlus library is to remove the parallelisation burden from
the application programmer [1]. Emphasis is put on the following:

generality: OPlus uses general data structures. For example in a CFD appli-
cation it allows cell, edge and/or face data structures. The cells can be of
any type, such as triangles or quadrilaterals in 2D or tetrahedra, prisms or
hexahedra in 3D.

performance: Messages are sent only when data has been modified, are con-
catenated to reduce latency, and communication is overlapped with com-
putation whenever possible.

portability: OPlus is interfaced to general message-passing libraries such as
PVM and MPI, or the native message passing library of the machine.

single source: A single source code can be executed either sequentially or in
parallel. This greatly simplifies development and maintenance of parallel
code.

2.1 Top level concepts

The concept behind the OPlus framework is that unstructured grid applications
can be decomposed into four distinct parts.

sets Examples of sets are nodes, edges, triangular faces, quadrilateral faces, cells
of a variety of types, far-field boundary nodes, wall boundary faces, etc.

data on sets Associated with these sets are data, for example the grid coordi-
nates at nodes, the volumes of cells and the normals on faces.

pointers between sets In addition to data on sets there are pointers between
sets, for example the cell to node connectivity which defines tetrahedra, the
face to node connectivity which defines each face and the list of boundary
nodes.

operations over sets All of the numerically-intensive parts of unstructured ap-
plications can be described as operations over sets. For example: looping
over the set of cells using cell-node pointers and nodal data to calculate a
residual and scatter an update to the nodes; or looping over the nonzeros
of a sparse matrix accumulating a matrix-vector product.

The OPlus framework makes the important restriction that an operation over
a set can be applied in any order without affecting the final result. Consequently,
the OPlus routines can choose an ordering to achieve maximum parallel efficiency.

This restriction negates the use of OPlus for certain numerical algorithms such as
Gauss—Seidel iteration or globally implicit ADI time-marching procedures. How-
ever, most numerical algorithms on unstructured grids in current use in CFD, and
many other application areas, satisfy this restriction. Specific examples include
explicit time-marching methods, multigrid calculations using explicit smoothing
operators and conjugate gradient methods using local preconditioning.

Another restriction is that the sets and pointers must currently be declared
at the start of the program execution and must then remain unaltered through-
out the computation. Therefore, dynamic grid refinement cannot be treated at
present. This is an area for future development.

2.2 Implementation Overview

The implementation uses a standard data-parallel approach. The computational
domain is partitioned into a number of regions. Each partition is treated by a
separate process, usually on a separate processor. A later section will discuss the
handling of disk and terminal i/o through a master process.

Each member of a distributed set, and its associated data, is “owned” by
a unique partition process. Other partitions may have temporary copies of the
data, as needed. The key rule in performing parallel computations is that each
partition performs all operations which cause modifications to data owned by
it. Because of the restriction that operations can be performed in any order
the different partitions can compute in parallel. At the partition interfaces, it
is possible that an operation on a single set member (such as a cell) will affect
data owned by more than one partition (such as data at the nodes). In this
circumstance, the operation is performed on all of the affected partitions. This
leads to redundant computations being performed. The alternative approach,
adopted by PARTI, is to perform the computation on a single partition and
subsequently communicate changes to the other partitions. This leads to more
communication and a more complex programming interface.

To use the OPlus library the application programmer must

1. at the start of the code declare all the sets to be used within the code,
through a simple OPlus subroutine call;

2. at the start of the code declare all the pointers to be used within the code,
through another simple OPlus subroutine call;

3. adopt the OPlus loop syntax for loops over declared sets, see section 2.5;
4. use the OPlus i/o routines, see section 2.4.

The above is all that the application programmer need be concerned about. In
particular, the programmer does not need to be aware of the partitioning of the
sets performed by the OPlus library, or the message-passing that this generates.

2.3 Initialisation

At the beginning of the parallel execution there are three main initialisation
phases:

partitioning All sets are partitioned and each partition is assigned an owner
process. At present, the method adopted is to use a simple recursive in-
ertial bisection algorithm to partition one or more sets. The other sets
are partitioned consistently using the connectivity information contained
in the pointers. It is also possible to read in partitions generated by other
packages. This is a very active research area and general graph-based par-
titioning packages are becoming available.

construction of import/export lists If an operation on a member of a set
requires data which is not locally owned then a copy of that data will
need to be ‘imported’ from another partition. The initialisation phase
constructs, for each partition, lists of the set members which may need
to be imported during the main execution phase. Correspondingly, each
partition also has export lists of the owned data which may need to be
imported by other partitions.

local renumbering Each partition should only need to allocate sufficient mem-
ory to store the small fraction of each set which it either owns or imports.
To enable this, it is necessary to locally renumber the set members. On
each partition, each set is divided into a number of subgroups which are
then numbered sequentially, and thus stored contiguously. The primary
groups are the owned and imported data. Within these two groups there
are further subgroups which depend on whether the set member needs to
be executed (because its execution will affect owned data) and whether it
requires imported data.

owned, interior The member is owned and all of its pointers are to other
members which are also owned. Thus, operations can be performed
without reference to any imported data.

owned, halo The member is owned, but at least one of the pointers is to
imported data.

imported, executed The member is imported, but at least one of its
pointers is to an owned member so operations must be performed
because it will affect the owned data.

imported, not executed The member is imported, and none of the point-
ers are to owned members so there is no need for operations to be
performed on this member.

The local renumbering of each set forces a consistent renumbering of all of
the pointer information. The local-global mapping is also maintained for
i/o purposes.

It is important to note again that all of the above phases are performed
automatically by the OPlus library, not the application code. In all applications
performed to date, the CPU time taken for these initialisation phases has been
significantly less than the time required for the disk i/o, and so is considered to
be negligible.

2.4 Input/Output

One of the important goals of the framework is to allow users to write a single
source code which will execute either sequentially or in parallel depending on
how the executable is linked. To achieve this it is necessary for the program to
handle all disk and terminal i/o via appropriate subroutines.

1. For sequential execution the user’s main program is linked to user—written
subroutines which handle all i/o. This will enable the user to develop,
debug and maintain their sequential code without any parallel message
passing libraries.

2. For parallel execution the OPlus framework creates master and slave pro-
grams from the user’s single source, Fig. 1. The master program is formed
by linking the OPlus master process to the user’s i/o routines, while the
slave program is created by linking the user’s compute process to OPlus
slave routines.

Thus, when the slaves request data from a file on disk, the master process will
read the global data and send each slave the data owned by the particular parti-
tion. Similarly for a slave write request, each slave will send the master its owned
data, the master will concatenate and renumber the data and then call the user’s
subroutine to write it to the disk. Hence, i/o in this parallel environment is
transparent to the user. This i/o is sequential in nature, but it is assumed that
the parallel application will require very little i/o and so this will not become a
bottleneck.

Although conceptually a master/slave paradigm is used, OPlus is imple-
mented using a SPMD (single program multiple data) concept, to further sim-
plify the interface to the user. Thus a Makefile produces two executables, one
for sequential execution and one for parallel execution.

2.5 Loop Syntax

The following example is given to illustrate how a loop is parallelised. Suppose
that for a set of triangular cells, the area of each cell, AREAC, is to be distributed

to the cell’s nodes using a pointer, NCELL, which points from the cell to its three
nodes. This operation corresponds to the following FORTRAN DO-loop:

FORTRAN loop

DO IC = 1, NCELLS

I1 = NCELL(1,IC)

I2 = NCELL(2,IC)

I3 = NCELL(3,IC)

AREAN(I1) = AREAN(I1) + AREAC(IC)/3.0

AREAN(I2) = AREAN(I2) + AREAC(IC)/3.0

AREAN(I3) = AREAN(I3) + AREAC(IC)/3.0
ENDDO

Using the OPlus framework, this becomes:

FORTRAN OPlus loop

DO WHILE(OP_PAR_LOOP(NCELLS,ISTART,IFINISH))
CALL OP_ACCESS_R8(’r’,AREAC,1,NCELLS,NULL

& ,0,0,1,1)
CALL OP_ACCESS_R8(’u’,AREAN,1,NNODES,NCELL
& ,1,1,1,3)

DO IC = ISTART, IFINISH
I1 = NCELL(1,IC)

I2 = NCELL(2,IC)
I3 = NCELL(3,IC)
AREAN(I1) = AREAN(I1) + AREAC(IC)/3.0
AREAN(I2) = AREAN(I2) + AREAC(IC)/3.0
AREAN(I3) = AREAN(I3) + AREAC(IC)/3.0
ENDDO
END WHILE

The following comments discuss the transformation.

1. Firstly, note that there are no sends or receives in this parallel loop and the
structure of the inner code remains unchanged. Thus all of the low level
message-passing details are completely hidden from the user.

2. Essentially, the DO WHILE loop is similar to a colouring loop that would be
necessary for vectorisation due to the inherent data dependencies. Indeed,
future versions of the library for vector processors will automatically reorder
the sets to enable a compiler directive asserting no data dependency to be
safely inserted in front of the inner loop.

3. OP_ACCESS tells the library how the arrays in the main loop are to be
accessed. Which distributed arrays need to be communicated is decided
from the arguments of this routine. The first argument is a character
string that can be legally set to r,w,b,u indicating read, write, both or
update. This states how the second argument, the distributed array, is
to be accessed in the loop. When the loop is executed sequentially the
OP_ACCESS calls perform no function.

4. OP_PAR_LOOP is a logical function which returns as arguments the start
and finish indices of the inner loop. In the sequential library ISTART and
IFINISH are set to 1 and NCELLS respectively, to mimic the original FOR-
TRAN loop. In the parallel library, this routine controls many passes
through the inner loop:

pass 1 analyse OP_ACCESS calls, fill a buffer with all data to be exported
and bypass the inner loop by setting ISTART=1 and IFINISH=-1.

pass 2 Export all data in the buffer to neighbouring partitions, and per-
form the inner loop computation for those cells which do not require
imported data.

pass 3 Receive imported data from neighbouring partitions and perform
computations for the remaining cells.

At the conclusion of these three passes, all owned members of AREAN are
correct, but imported values may not be.

Full details of the arguments and other routines can be found in [2].

3 Parallel Performance

To demonstrate the library a realistic industrial application has been chosen.
This models the 3D steady inviscid flow past an aircraft, which is discretised
using an unstructured tetrahedral grid, see Figure 2. A Lax-Wendroff pseudo
timestepping algorithm is used as the solver. This can be expressed as

W; =W, +w;N;(W) V nodes j (3.1)

where

ZCMEC]‘ Va [Da,jROé + Aa,j]
ZCMEC]‘ VOé ‘

N;(W) = (3.2)

Table 1: Sets and pointers for Lax-Wendroff algorithm

set size of set
nodes 137094
tetrahedral cells 746286
boundary faces 31536
boundary nodes 16123
pointer: from to length
tetrahedral cells | nodes 4
boundary faces | nodes 3
boundary nodes | nodes 1

Roman subscripts are used for nodal quantities, Greek subscripts for cell quan-
tities and the other variables are:

a,j

is a relaxation factor.
is the set of cells surrounding node j.
is the cell volume.

is the cell residual (§ F.nds) corresponding to the inviscid Euler flux F' =
(f,9.0)"

are distribution matrices mapping the cell residual R, to node j.
is an artificial dissipation term defined by
Aa,j = 7'4(62W0 - 62WJ) + TQ(WO - WJ)

where subscript 0 refers to a cell averaged quantity, 74,7 are constants
based on the timestep and 6%¥¥; is an undivided Laplacian operator.

There are two computationally intensive loops for each timestep:

1.

a loop over cells, scattering (Wy — W;) to nodes in order to construct 6*W
at the nodes; this loop “reads” a W array and “updates” a 6%V array, so
the read causes values of W to be imported at partition boundaries.

. aloop over cells scattering D, ;R,+ A, ; to the nodes; this loop “reads” the

W array, which is up-to-date from the previous loop, and the 62 array,
which is not up-to-date after the previous loop and so must be imported.

10

Table 2: Execution time per iteration and speed-up factor (S U) on IBM SP1
and SGI Challenge

IBM(Enet) | IBM(switch) SGI

E | time | S U | time SU | time| SU
0.0 23.4 1.0 234 1.0 | 45.3 | 1.00
201 12.3 1.9 12.3 1.9 23.0| 1.97
3.8 93| 25| 9.0 2.5 159 2.85
5.4 7.6 3.1 7.1 3.3 12.4 | 3.65
66| 71| 33| 6.4 3.6 — —
7.9 7.5 3.1 5.5 4.2 — —
80| 77| 3.0| 5.0 4.7 — —
9.7 8.0 2.9 4.5 5.2 — —

0~ O U W N =T

There are also less important loops over boundary nodes to impose boundary
conditions, and over nodes updating W to the next timestep.

The Lax-Wendroff algorithm requires four sets and three pointers, as given in
Table 1. The surface grid and pressure contours for an airplane calculation are
shown in Figure 2. The sizes of the four sets for this application are also given
in Table 1. Execution times are given in Table 2 for the following two machines:

e an 8-processor distributed-memory IBM SP1,
e a 4-processor shared-memory SGI Challenge.

E is the percentage of redundant calculation being performed at partition inter-
faces, as described earlier. The elapsed times are per iteration; many thousands
of iterations are actually required for numerical convergence. The columns la-
belled ‘S U’ give the speed-up relative to the single-processor execution. Two
timings are quoted for the SP1, one using Ethernet for communication (Enet) the
other using the switch. The Ethernet timings are equivalent to using a cluster
of workstations. All timings use the PVM 3.2.6 software. Improvements in the
switch and SGI timings are likely using native message passing routines and this
is being investigated.

The percentage of redundant computation, increases with the number of pro-
cessors, giving about 10% more work for eight processors. At first sight this might
indicate a lack of scalability to a large number of processors. However, scalabil-
ity for a fixed problem size is not the objective. The aim instead is to utilise
parallel computers for large and complex industrial applications. The problem
size for this example is only 0.75 Million cells; it is expected that future viscous
calculations will have 10 Million cells. In this case the proportion of redundant
calculations will remain small even when using more processors.

11

4 Visualisation

For such large applications it becomes prohibitive to rely on graphics work-
stations to manipulate and render the complete solution. To remedy this, the
compute intensive part of the visualisation is performed on the parallel machine,
along with the flow solver, while all the rendering is performed on the graph-
ics workstation. This uses the pV3 software [6] which fits easily in the OPlus
framework.

5 Conclusions

A flexible and general approach has been demonstrated to parallelise unstruc-
tured grid applications. This involves the programmer adopting the OPlus loop
style of programming and all i/o being sent through specific subroutine calls.
The resulting code will execute on a sequential machine (without the need for
any parallel libraries) or in parallel on a MIMD architecture. This single source
is of major benefit for development and maintenance of the code.

The OPlus parallel execution is fully optimised to concatenate messages, min-
imise the number of messages sent and overlap communication with computation.
This library is intended for large applications, which warrant the use of parallel
machines, and has been demonstrated by a 3D Euler solver for a complete aircraft
configuration. For this realistic industrial application a worthwhile speed-up has
been achieved with very little effort from the application programmer.

Acknowledgements

This work was performed within Oxford Parallel. We gratefully acknowledge
financial support from Rolls-Royce ple, DTI and SERC.

References

[1] D. A. Burgess, P. I. Crumpton, and M. B. Giles. A parallel framework for un-
structured mesh solvers. IFTP W(G10.3 Working Conference on Programming
Environments for Massively Parallel Disributed Systems, 1994.

[2] P.I. Crumpton and M.B. Giles. OPlus programmer’s manual. Oxford Uni-
versity computing laboratory, 1993.

[3] R.Das, J. Saltz, and H. Berryman. A Manual for PARTI Runtime Primitives,
Revision 1. TCASE, NASA Lagley Research Centre, Hampton, USA, May
1993.

12

[4]

R. Das, J. Saltz, J. Mavriplis, and R. Ponnusamy. The incremental schedular.
In P. Mehrotra, J. Saltz, and R. Voigt, editors, Unstructured scientific com-
putation on scalable multiprocessors, pages 81-105. MIT Press, Cambridge,
MA, USA, 1992.

F. Dellagiacoma, S. Paoletti, F. Poggi, and M. Vitaletti. PARAGRID: a
parallel multi-block environment for Computational Fluid Dynamics. TBM
ECSEC,Viale Oceano Pacifico 173, 00144 Rome, Ttaly.

R. Haimes. pV3: A distributed system for large scale unsteady CFD visuali-
sation. ATAA Paper 9/-0321, 1994.

J.De Keyser. LOCO1.0: a library supporting data parallelism on MIMD
computers. Department of Computer Science, Katholieke Universiteit Leuven,
Leuven, Belgium, March 1993.

R. D. Williams. DIME Distributed Irreqular Mesh Environment. California
Institute of Technology, 1990.

13

Slaves

Master

Sequential

E = 1) &
- = L g
g 2 < =
Z 2 2 mnw.l.su

: = :

wn
2 5 ¢ % oo &
SO IS ¢ > E
© £ = = S

@ 0
:SM% 0 <
ar.up% ar.uom
w g 9 Sv..m
= 2 B = 3

S & =

Figure 1: Sequential and parallel versions of user’s program

)

a

(

Figure 2: (a) contours of pressure, (b) surface grid

