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ABSTRACT
We present a performance analysis and benchmarking study
of the OP2 “active” library, which provides an abstraction
framework for the solution of parallel unstructured mesh ap-
plications. OP2 aims to decouple the scientific specification
of the application from its parallel implementation, achiev-
ing code longevity and near-optimal performance through
re-targeting the back-end to different hardware.

Runtime performance results are presented for a repre-
sentative unstructured mesh application written using OP2
on a variety of many-core processor systems, including the
traditional X86 architectures from Intel (Xeon based on the
older Penryn and current Nehalem micro-architectures) and
GPU offerings from NVIDIA (GTX260, Tesla C2050). Our
analysis demonstrates the contrasting performance between
the use of CPU (OpenMP) and GPU (CUDA) parallel im-
plementations for the solution on an industrial sized unstruc-
tured mesh consisting of about 1.5 million edges.

Results show the significance of choosing the correct par-
tition and thread-block configuration, the factors limiting
the GPU performance and insights into optimizations for
improved performance.

Keywords
CFD, Performance, GPU, OpenMP, CUDA, OP2, Unstruc-
tured mesh applications

1. INTRODUCTION
Most scientific parallel programs have been and continue to
be written by exclusively targeting a parallel programming
model or a parallel architecture using extensions to tradi-
tional sequential languages such as Fortran, C or C++. This
approach increases the cognitive load on programmers and
has persisted primarily due to its good performance and the
existence of legacy application software that remains criti-
cal to the production workloads of scientific organizations.
However, the future of such a programming model’s use in an
environment of increasingly complex hardware architecture
is unsustainable. This problem is becoming compounded as
the High Performance Computing (HPC) industry focuses
on delivering exa-scale systems in the next decade. Thus the
current situation is both distracting scientists from invest-
ing their full intellectual ability in understanding the phys-
ical systems they model, while also hindering them from
exploring the capacity of available hardware. It is therefore
clear that a level of abstraction must be achieved so that
computational scientists can increase productivity without

learning the intricate details of new architectures.
Such an abstraction enables users to focus on solving prob-

lems at a higher level and not worry about architecture spe-
cific optimizations. This splits the problem space into (1) a
higher application level where scientists and engineers focus
on solving domain specific problems and write efficient code
that remains unchanged for different underlying hardware
architectures and (2) a lower implementation level, that fo-
cuses on how a computation can be made faster on a given
architecture by analyzing the data access patterns. This
paves the way for integrating support for future hardware.

OPlus (Oxford Parallel Library for Unstructured Solvers)
[10], which originated in research at the University of Ox-
ford in 1993, provided such an abstraction framework for
performing unstructured mesh based computations across a
distributed-memory cluster of processors [6]. OPlus is used
as the underlying parallelization library for Hydra [12, 7,
19, 15] a production-grade CFD application used in turbo-
machinery design at Rolls Royce plc. OP2 is the second
iteration, and builds on features through an “active” library
approach with code generation to exploit parallelism on het-
erogeneous many-core architectures.

The “active” library approach uses program transforma-
tion tools, so that the user code is transformed into the
appropriate form to be linked against the required paral-
lel implementation (e.g. MPI, OpenMP, CUDA, OpenCL,
AVX etc.) enabling execution on different back-end hard-
ware platforms [14]. OP2 includes support for developing
unstructured mesh applications for multi-core and/or multi-
threaded (OpenMP) CPUs and CUDA capable GPUs.

This paper presents an early performance evaluation of
the current OP2 library. Our objective is to provide a con-
trasting benchmarking and performance analysis study of a
representative unstructured mesh application (Airfoil [16])
written using OP2 on a range of systems. These consist of
representative currently prevalent multi-core hardware (In-
tel Penryn and Nehalem) and GPU offerings from NVIDIA.
This paper makes the following contributions:

1. We present a performance analysis of the Airfoil un-
structured mesh application written using OP2 on a
number of multi-core CPU systems. OP2’s code trans-
formation framework is used to generate back-end code
based on OpenMP for exploiting CPU multi-threading
for two current multi-core processor systems: an In-
tel Xeon E5462 based on the older “Penryn” micro-
architecture and an Intel Xeon E5540 based on the
current Intel “Nehalem” micro-architecture. The end-
to-end run times reported in this study are for the



execution on an industrial-size problem using an un-
structured mesh consisting of about 1.5 million edges.

2. The multi-core, multi-threaded CPU performance of
Airfoil is compared against equivalent GPU solutions
executing back-end code generated by OP2 based on
NVIDIA CUDA. Performance on a number of CUDA
capable GPUs are presented, including a GTX260 con-
sumer card and a Tesla C2050 based on the new Fermi
architecture - NVIDIA’s flagship GPU offering.

3. Our analysis demonstrates the merits and weaknesses
related to the use of CPU and GPU architectures and
related parallel implementations for the Airfoil compu-
tation. These include the significance of choosing the
correct partition and thread-block configuration, the
factors limiting GPU performance and insights into
optimizations for near optimal performance.

The paper is organized as follows: Section 2 details re-
lated work in developing abstraction frameworks for multi-
architecture platforms; Section 3 describes the class of ap-
plications supported by OP2 and its API; Section 4 details
the OP2 framework and issues related to parallelizing un-
structured mesh applications; Sections 5 and 6 present per-
formance figures for the execution of Airfoil on CPU and
GPU systems respectively, including comparisons between
the two architectures. Section 7 concludes the paper.

2. RELATED WORK
Although OPlus predates it, OPlus and OP2 can be viewed
as an instantiation of the AEcute (access-execute descrip-
tor) [17] programming model that separates the specifica-
tion of a computational kernel with its parallel iteration
space, from a declarative specification of how each itera-
tion accesses its data. The decoupled Access/Execute spec-
ification in turn creates the opportunity to apply powerful
optimizations targeting the underlying hardware. A number
of related research projects have implemented similar pro-
gramming frameworks including LISZT [8] and the Hybrid
Multi-core Parallel Programming (HMPP) [1] workbench.

HMPP allows the user to annotate codelets with HMPP
directives. The program is then processed through the tool-
chain which uses the hardware vendor specific SDKs to trans-
late it into platform specific code. The resulting executable
is run under the “HMPP Runtime” which manages the re-
sources and makes it possible to run a single binary on var-
ious heterogeneous hardware platforms.

While HMPP has no specific support for unstructured
meshes, LISZT is a domain-specific language aimed at very
similar applications to OP2. Domain specific languages,
in contrast to general purpose languages, can infer a large
amount of information about the structure of data and/or
the nature of the algorithms in the code. Thus aggressive
and platform specific optimizations can be applied.

To our knowledge, performance figures for the execution of
full scale applications, particularly industrial strength codes
related to unstructured mesh applications developed using
the HMPP workbench, have not been published. Prelimi-
nary performance figures from the LISZT framework have
been presented in [11]. The authors reports the performance
of Joe, a fluid flow unstructured mesh application solving
a mesh of 750K cells. Joe is first ported to the LISZT
framework and the resulting code compared to the origi-
nal code running on a cluster of 4-socket 6-core 2.66GHz
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Figure 1: An example mesh

Xeon CPUs each with 36GB RAM per node using MPI.
Both codes demonstrate equivalent performance (LISZT is
in fact, faster with better scalability) illustrating that no
performance loss has resulted due to the use of the LISZT
framework. Speed-up figures for the above code running on
a Tesla C2050 (implemented using CUDA) against an Intel
Core 2 Quad, 2.66GHz processor is provided next, with re-
sults showing a speed-up of about 30× in single precision
arithmetic and 28× in double precision.

Related work in the solution of unstructured mesh ap-
plications on GPUs, particularly in the CFD domain have
also appeared elsewhere. In [9], techniques to implement
an unstructured mesh solver on GPUs are described. Im-
plementing three-dimensional Euler equations for inviscid,
compressible flow are considered. Average speed-ups of about
9.5× is observed during the execution of the GPU implemen-
tation on an NVIDIA Tesla 10 series card against an equiva-
lent optimized OpenMP implementation on a four-core Intel
Core2 Quad Q9450 running 4 threads.

Similarly in [5, 18], GPU performance of a Navier-Stokes
solver for steady and unsteady turbulent flows on unstruc-
tured/hybrid grids are detailed. The computations were car-
ried out on NVIDIA’s GeForce GTX 285 graphics cards (in
double precision arithmetic) and speed-ups up to 46× (vs
two Quad Core Intel Xeon CPUs at 2.00 GHz) are reported.

Research in GPU acceleration often cites speed-ups rela-
tive to hand-coded CPU implementations - sometimes com-
pared to a single-core. Here we compare performance on
contemporary platforms (NVIDIA C2050, Intel 8-core Pen-
rhyn and Nehalem). Our goal is to generate highly-optimized
code for X86 multi-core platforms (via OpenMP and the In-
tel compiler), as well for GPUs, from the same code.

3. BACKGROUND
The geometric flexibility of unstructured grids has proved in-
valuable over a wide area of computational science for solv-
ing PDE’s (partial differential equations) including: CFD
(computational fluid dynamics); CEM (computational elec-
tro magnetics); structural mechanics; and general finite el-
ement methods. In three dimensions often millions of ele-
ments are needed for the required solution accuracy, con-
sequently, a large computational expense is incurred. The
OPlus approach to the solution of such unstructured mesh
problems involves breaking down the unstructured grid algo-
rithms into four distinct parts: (1) sets, (2) data on sets, (3)
mappings between sets and (4) operations over sets regard-
less of the application. These lead to an API through which
one can completely and abstractly define any mesh/graph.



Unstructured meshes, unlike structured meshes, use con-
nectivity information to specify the mesh topology. Depend-
ing on the application, a set can consist of nodes, edges,
triangular faces, or other elements. Associated with these
sets are data (e.g. node coordinates, edge weights) and map-
pings between sets which define how elements of one set con-
nect with the elements of another set. Figure 1 illustrates
a simple triangular mesh that we will use as an example to
describe the OP2 API. The mesh illustrated in Figure 1 can
be defined as two sets, nodes (vertices) and edges, each with
their sizes, using the API as follows:

op_set nodes;

op_decl_set(6, nodes, "nodes");

op_set edges;

op_decl_set(10, edges, "edges");

The connectivity is declared through mappings between the
sets. The integer type array edge map can be used to repre-
sent how an edge is connected to two different vertices.

int edge_map[20] = {1, 2, 2, 3, 3, 4, 3, 6,

2, 4, 1, 4, 4, 5, 6, 5, 4, 6, 1, 5};

op_map pedge;

op_decl_map(edges,nodes,2,edge_map,pedge,"pedge");

Each element of edges is mapped to two different elements
in nodes. In our example, an edge map entry has a dimension
of 2 and thus for example its index 0 and 1 maps an edge
to the vertices 1 and 2. Thus the edge map array define
the connectivity between the two sets. When declaring a
mapping we first pass the source (e.g. set edges) then the
destination (e.g. set nodes). We then pass the dimension
of each element (e.g. 2; as each edge map array entry maps
2 nodes). Once the sets are defined, various data can be
associated with them; the following are some arrays that
contain data associated with edges and vertices respectively.

float dEdge[10] = {1.2, 3.2, 2.6, 5.2, 5.7, 1.3,

1.3, 4.3, 4.7, 3.3};

float dNode[6] = {0.7, 0.5, 0.9, 2.5, 1.9, 6.7};

float *dNode_u = (float *)malloc(sizeof(float)*6);

op_dat data_edges;

op_decl_dat(edges, 1, "float",

dEdge, data_edges, "data_edges");

op_dat data_nodes;

op_decl_set(nodes, 1, "float",

dNode, data_nodes, "data_nodes");

op_dat data_nodes_u;

op_decl_dat(nodes,1,"float",

dNode_u, data_nodes_u,"data_nodes_u");

Note that here a single float per set element is declared in
this example. A vector of a number of values per set element
could also be declared (e.g. a vector with three floats per
vertex to store the vertex coordinates).

All the numerically intensive parts of an unstructured
mesh application can be described as operations over sets.
Within a code this corresponds to a loop over a given set,
accessing data through the mapping arrays (i.e. one level of
indirection) performing some arithmetic, then writing (pos-
sibly through the mappings) back to data arrays. The for-
mer type of loop is called an indirect loop, while the latter
is called a direct loop. The OP2 library provides a parallel
loop declaration syntax which allows the user to declare the
computation over the sets in these loops [13]. For the mesh
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Figure 2: Rendering of a 120x60 mesh in Airfoil

illustrated in Figure 1 a loop over all the edges (where num-
ber of edges, nedge = 10) which updates the nodes can be
written in the following sequential execution loop:

void kernel(int nedge, int *edge_map, float *dEdge,

float *dNode, float *dNode_u) {

for (int e=0; e<nedge; e++)

dNode_u[edge_map[2e]] +=

dEdge[e] * dNode[edge_map[2e+1]];

}

A user declares this loop using the API as follows, with the
library handling the architecture parallelization.

op_par_loop_3(kernel,"kernel", set_edges,

dEdge, -1,OP_ID, 1,"float",OP_READ,

dNode, 1,pedge, 2,"float", OP_READ,

dNode_u, 0,pedge, 2,"float", OP_INC);

This general decomposition of unstructured algorithms
imposes no restriction on the actual algorithms, just sep-
arates the components of a code. However OP2 makes an
important restriction that the order in which the elements
are processed must not affect the final results. This con-
straint allows the implementation to choose its own order to
obtain maximum parallelism. Moreover the sets and map-
pings between sets must be static and the operands in the
set operations cannot be referenced through a double level
of mapping indirection (i.e. a mapping to another set which
in turn uses another mapping to data in a third set).

Although it might appear that these restrictions are quite
severe, the straightforward programming interface and sup-
port for parallel file I/O, combined with efficient parallel
execution makes it an attractive prospect, if the algorithm
to be developed falls within the scope of OP2. For example
the API could be used for explicit relaxation methods such
as Jacobi iteration; pseudo-time-stepping methods; multi-
grid methods which use explicit smoothers; Krylov subspace
methods with explicit preconditioning; semi-implicit meth-
ods were the implicit solve is performed within a set mem-
ber, for example performing block Jacobi where the block is
across a number of PDE’s at each vertex of a mesh. How-
ever, algorithms based on order dependent relaxation meth-
ods such as Gauss-Seidel or ILU (incomplete LU decompo-
sition), falls beyond the capabilities of the API. These are
not fundamental restrictions, but we believe they help limit
the complexity of the API, and encourage programmers to
code in a way that can be made efficient.



 

 

 

 

 

 

 

 

Figure 3: An example coloring of edges

The example application used in our analysis, Airfoil, is
a non-linear 2D inviscid airfoil code that uses an unstruc-
tured grid [16]. It is a much simpler application than the
production Hydra [12] CFD application used at Rolls Royce
plc., for the simulation of turbomachinery design, but acts
as a forerunner for testing the OP2 library for many-core
architectures. A rendering of a smaller (120×60) unstruc-
tured mesh similar to the one used in Airfoil is illustrated
in Figure 2. The actual mesh used in our experiments is of
size 1200×600, which is too dense to be reproduced here.
This consists of over 720K nodes, 720K cells and about 1.5
million edges. The code consists of five parallel loops, two
direct loops: save soln, update and three indirect loops:
adt calc, res calc and bres calc. The most compute in-
tensive loop res calc has about 100 floating-point opera-
tions performed per mesh edge and is called 2000 times dur-
ing total execution of the application.

4. OP2
The original OPlus library [10], was developed for MPI/PVM
based distributed memory execution of unstructured mesh
algorithms written in Fortran. Its second iteration OP2 is
designed to leverage emerging many-core hardware (GPUs,
AVX etc.) on top of distributed memory parallelism allow-
ing the user to execute on either a single multi-core/many-
core node (including large shared memory systems), or a
cluster of multi-core/many-core nodes. Currently the OP2
library only supports code development in C/C++. A For-
tran API will be developed later with similar functionality.

Since the OP2 specification provides no description of
the low-level implementation, re-targeting to future archi-
tectures only requires the development of a new code-gene-
ration back-end. The current implementation focuses on
CUDA and OpenMP and will later include code genera-
tion for OpenCL and AVX, thus supporting a wide range of
CPU and GPU hardware. OP2 will also include support for
distributed memory CPU and GPU clusters in conjunction
with MPI. The OP2 strategy for building executables for dif-
ferent back-end hardware consists of firstly generating the
architecture specific code by parsing the user code (which
is written using the OP2 API) through a pre-processor and
then secondly linking the generated code with the appro-
priate parallel implementation library. The pre-processor is
currently implemented as a source to source translator using
the ROSE compiler framework [4].

4.1 Unstructured Mesh Applications
A key technical difficulty of solving unstructured mesh appli-
cations is the data dependency issue encountered when in-

crementing indirectly-referenced arrays.Thus, for example,
a potential problem arises when two edges update the same
node. A solution at a coarse-grained level would be to parti-
tion the nodes such that the owner of the nodal data would
do the computation. The drawback in this case is redun-
dant computation when the two nodes for a particular edge
have different owners. At the finer-grained level, we could
assign a “color” for the edges so that no two edges of the
same color update the same node. This allows for parallel
execution for each color followed by a synchronization. The
disadvantage in this case is a possible loss of data reuse and
loss of some parallelism. A third method would be to use
atomics which combines read/add/write into a single oper-
ation. Although atomics can be competitive on some hard-
ware, coloring avoids the need at minimal cost, and avoids
relying on features specific to particular hardware. We plan
to explore the use of atomics in the future.

The OP2 design attempts to resolve the data dependency
problems using the above methods, at three levels of par-
allelism. Method 1 will be used in the future for partition-
ing a mesh on a number of MPI processes. Thus, given a
global mesh with sets and data, at this level, OP2 will parti-
tion the data so that the partition within each MPI process
owns some of the set elements i.e. some of the nodes and
edges. These partitions only execute on their own elements.
However, it is possible that one partition may need to ac-
cess data which belongs to another partition; in that case a
copy of the required data is provided by the other partition.
This follows the standard “halo” exchange mechanism used
in distributed memory message passing parallel implemen-
tations. As the partition size becomes larger, the proportion
of “halo” data becomes very small.

For distributed memory architectures the partition size is
large. However, within a CPU or a GPU, operations are
to be performed on a finer granularity. On a single GPU,
OP2 further segments the mesh assigned to it, into a set of
“mini” partitions. NVIDIA GPUs consists of a number of
relatively low powered stream multiprocessors (SMs) each
in turn consisting of a number of stream processors (SPs)
that share control logic, an instruction cache and a block
of shared memory. Thus, each of these mini-partitions is
assigned to be solved by an SM, where each is loaded into
a shared memory block and are executed utilizing a number
of threads (called a thread-block).

On the GPU, updating the same node could occur either
(1) by multiple threads executed by a single processing unit
(an SM) updating data held in its shared memory or (2)
when the results in shared memory are written back to the
main graphics memory which is used by other processing
units. In OP2, thread coloring is used for the former and
a block coloring is used for the latter. Edges are colored so
that two edges with the same color never update the same
node (see Figure 3). As a result, the edges with the same
color can be processed in parallel by different threads. The
coloring is performed very efficiently in a runtime initializa-
tion using a bitwise operation on a 32 bit integer for each of
the edges [13]. Similarly, a mini-partition coloring scheme is
used so that results from shared memory, after processing a
mini-partition, are not used by any other mini-partition be-
ing processed simultaneously. On a production-grade CFD
application such as Hydra a single run would consist of over
100K mini-partitions each needing to fit into the shared-
memory of a GPU. 10 colors might be needed to avoid data



Table 1: CPU node system specifications
Processor Cores Clock Memory

/node rate /node
Intel Xeon E5462 8 2.8GHz 16GB

(Penryn)
Intel Xeon E5540 8 2.5GHz 24GB

(Nehalem) (16 SMT)

conflicts, suggesting up to 10K mini-partitions per color.
A similar technique is used for multi-core processors. The

difference is that each mini-partition is executed by a sin-
gle OpenMP thread. The mini-partition are colored to stop
multiple mini-partitions trying to update the same data in
the main memory simultaneously. This technique is sim-
pler than the GPU version as there is no need for global-
local renumbering (for GPU main memory to shared mem-
ory transfer) and no need for low level thread coloring.

5. MULTI-CORE CPU PERFORMANCE
Our first set of experiments is directed at comparing the
performance of Airfoil using OpenMP on a single node com-
prising of multi-core, multi-threaded CPUs. This section
presents the results for single precision performance on the
CPUs. Double precision performance is detailed in Sec-
tion 6. Table 1 details briefly the specifications of each CPU
system node. The Intel Xeon E5462 (based on the older Intel
Penryn micro-architecture) node consist of two Intel Xeon
E5462 quad-core (total of 8 cores) processors operating at
2.8GHz clock rate per core and has access to 16GB of main
memory. The Intel Xeon E5540 processor based node, con-
sist of two Intel Xeon E5540 quad-core (total of 8 cores) pro-
cessors consisting of 2.5GHz per core clock rate and access
to 25GB of main memory. These processors are based on In-
tel’s current flagship Nehalem micro-architecture and have
simultaneous multi-threading (SMT) enabled for the execu-
tion of 16 SMT threads. For brevity and to avoid confusion
for the rest of this paper, the Xeon E5462 will be referred to
as the Penryn and the Xeon E5540 as the Nehalem. For our
experiments we use the Intel ICC 11.1 compiler for generat-
ing OpenMP enabled executables on the above two systems.
For ICC we use -O3-fast -parallel compiler flags.

As mentioned previously OpenMP parallelism is achieved
by OP2 on multi-core processors by partitioning the unstruc-
tured mesh assigned to the multi-core node and using one
OpenMP thread for each mini-partition. Coloring is used
to stop multiple mini-partitions interfering with the same
data. Thus, a key parameter in our study will be to investi-
gate the mini-partition size that provides the best runtime
for the Airfoil application for a given unstructured mesh.
Figure 4 presents the total runtime of Airfoil on the Penryn
and Nehalem based nodes, compiled using the ICC compiler,
for a range of partition sizes on up to 16 OpenMP threads.
There is only a marginal difference between the performance
of the two systems. Due to the higher clock rate on the
Penryn, it exhibits better single core (single thread) perfor-
mance. However when using all 8 cores we see about 30%
better performance from the Nehalem. The best runtime is
given by a partition size of 512 using 8 OpenMP threads on
the Nehalem (41 seconds). On the Nehalem the 16 thread
run uses SMT and provides as expected a much smaller per-
formance improvement than the improvement gained by in-
creasing the thread count from 4 to 8 for all partition sizes
except 1024. Regardless of the partition size, increasing the
number of threads from 1 to 8 provides diminishing returns.

Table 2: GPU node system specifications
GPU Cores Clock Global Shared Driver

GHz Mem Mem /Comp.
/SM Cap.

GeForce 216 1.4 0.8GB 16kB 3.2/1.3
GTX260

Tesla 448 1.15 3.0GB 48kB 3.2/2.0
C2050

Thus it appears that other factors of multi-core chips may
be limiting their scalability. We have observed a bandwidth
utilization of over 20 GB/s on the Nehalem system during
the execution of Airfoil. Given that the maximum available
bandwidth of these processors is 25.6GB/s [2] the code ap-
pears to be saturating the processor’s bandwidth capacity.
Thus we suspect that memory bandwidth in a single node
may become the bottleneck in future thread scalability.

6. GPU PERFORMANCE
Next, we explore the performance of the Airfoil code on
two NVIDIA GPUs - the consumer grade GTX260 and the
HPC-capable Tesla C2050 based on NVIDIA’s current Fermi
GPU architecture. The OP2 code transformation framework
in this case generates CUDA to be executed on the GPUs.
Table 2 details the specifications of each system. The host
CPUs used in the GTX260 is an AMD Athlon X2 dual core
processor at 2GHz, while for the Tesla the host is a quad-
core Intel Xeon E5530 processor operating at 2.4GHz. In
both GPU systems NVIDIA’s CUDA/C compiler nvcc was
built using the GNU C compiler 4.4.5.

Figure 5 presents the total runtime of Airfoil (executing
single precision mathematics) on the two NVIDIA cards.
For these runs the number of CUDA threads allocated per
mini-partition provides an additional configuration param-
eter. The GTX260 could only execute partition sizes up to
256 due to its limited memory. The GTX260 performs only
about two times slower than the Tesla C2050 due to their
comparable single precision floating-point performance. The
best performance – just over 12 seconds - on the C2050 is
achieved at a partition size of 128 running a thread-block
size of 128. This is a speed-up of just under 3.5× com-
pared to the best performance achieved on the 8-core Intel
Nehalem processor system’s performance.

Given the mesh size, we can approximately compute the
single precision floating point performance achieved on both
the Nehalem and the C2050 during the most compute inten-
sive loop, res calc. The mesh consists of approximately 1.5
million edges each responsible for 100 floating-point opera-
tions in res calc. This routine is in turn called 2000 times
giving 30 × 1010 floating-point operations in total. This
translates to 15 GFlops per second on the Intel Nehalem
processor based system and about 35 GFlops per second on
the Tesla C2050. Thus we see only a fraction of GPU peak
single-precision floating-point performance is achieved [3].

A key concern in determining whether GPUs are suitable
for main-stream HPC and production scientific work is how
its performance compares against the traditional processors
when executing double precision floating-point codes. Be-
cause this has been an increasing concern for the adoption
of GPUs, NVIDIA has invested heavily in improved double-
precision floating-point performance on their current Fermi
based GPUs. The final benchmarking study for us therefore
is to investigate the Airfoil execution in double-precision.
Figure 6 details the double precision performance of Airfoil
on the Intel Nehalem and Tesla C2050. The runtime on the



0

100

200

300

400

500

64 128 256 512 1024

Ti
m

e
(s

ec
on

ds
)

Partition size

OMP Threads 1
OMP Threads 2
OMP Threads 4
OMP Threads 8

OMP Threads 16

(a) Intel Xeon E5462 (Penryn)

0

100

200

300

400

500

64 128 256 512 1024

Ti
m

e
(s

ec
on

ds
)

Partition size

OMP Threads 1
OMP Threads 2
OMP Threads 4
OMP Threads 8

OMP Threads 16

(b) Intel Xeon E5540 (Nehalem)

Figure 4: Airfoil runtime; Intel processors, Intel CC 11.1, up to 16 OpenMP threads, single prec. (1000 its.)

0

10

20

30

40

50

60

70

64 128 256

Ti
m

e
(s

ec
on

ds
)

Partition size

Block Size 64
128
192
256
384
512

(a) GTX260

0

10

20

30

40

50

60

70

64 128 256 512 1024

Ti
m

e
(s

ec
on

ds
)

Partition size

Block Size 64
128
192
256
384
512

(b) Tesla C2050
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Nehalem with 1, 2 and 4 OpenMP threads takes over 100
seconds while all configurations on the C2050 runs faster.
The results demonstrate a speed-up of approximately 2.3×
on the Tesla C2050 (about 24 seconds) compared to the best
runtime on the Intel Nehalem (about 57 seconds). The ob-
served memory bandwidth utilization is close to 90 GB/s for
some of the routines; this is a > 60% utilization of available
memory bandwidth (144 GB/sec) on the Tesla C2050 [3].

Given that each element on the unstructured mesh could
be computed independently, it is not surprising that the
GPU architecture out-performs the traditional multi-core
processors. But it is interesting that only about a factor of
3.5× speed-up is achieved in single precision and only about
2.3× speed-up gained in double precision. We believe that
several factors might be responsible for this. The use of in-
teger pointer arithmetic in computing indirect references in
unstructured mesh computations increases the GPU execu-
tion time as there is no separate integer pipeline on these
simple cores, unlike mainstream CPUs. Thus an integer op-
eration costs as much as a floating-point operation (at least
in single precision). Similarly, memory bandwidth limita-
tions will be hindering performance as all routines in the
Airfoil code have at least 30% bandwidth utilization and
some even close to the available upper limit.

Breaking down the runtime into the time taken by the
five parallel loops reveals that the optimum partition size
and the thread-block size differs for each loop. For exam-

ple, in double precision, res calc routine runs best when
configured with a partition size of 64 and a thread-block
size of 128 on the C2050, while adt is optimized at a parti-
tion size of 256 and a thread-block of 256. Similar behavior
can be observed for the Nehalem runs. Thus it is appar-
ent that further runtime improvements could be gained by
simply configuring each parallel loop to be executed on its
optimum partition size and thread-block size settings. The
ability to infer the optimum configuration could be gained
through historical runtime observation, through a perfor-
mance model or utilizing an auto-tuning mechanism. We
are currently investigating the implementation of an auto-
tuning mechanism within OP2.

7. CONCLUSIONS
This paper presented an early performance analysis of the
OP2 “active” library, which provides an abstraction frame-
work for the solution of unstructured mesh applications.
OP2 aims to decouple the scientific specification of the ap-
plication from its parallel implementation to achieve code
longevity and near-optimal performance through re-targeting
the back-end to different hardware. OP2’s code transforma-
tion framework was used to generate back-end code for a
significant CFD application, targeting multi-threaded exe-
cutables based on OpenMP and NVIDIA CUDA. The per-
formance of this code was benchmarked during its solution
of a mesh consisting of 1.5 million edges on Intel multi-
core/multi-threaded CPUs (based on Penryn and Nehalem)
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Figure 6: Airfoil runtime; Intel Xeon E5540 (Nehalem), Tesla C2050, double prec. (1000 its.)

and NVIDIA GPUs (GTX260 and Tesla C2050).
Performance results show that for this application the

Tesla C2050 performs about 3.5× and 2.3× better in sin-
gle precision and double precision mathematics respectively
compared to two high end Intel multi-core processors execut-
ing up to 16 OpenMP threads. These results suggest com-
petitive performance by the GPUs for this class of applica-
tions at a production level, but we have also highlighted key
concerns, such as memory bandwidth limitations on multi-
core/many-core architectures at increasing scale, which can
limit the achievable performance.

The OP2 source and Airfoil test case are available at [14];
the developers welcome new participants in the OP2 project.
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