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Abstract

This dissertation explores the remarkable variance reduction effects that

can be achieved combining Multilevel Monte Carlo and Importance Sam-

pling. The analysis is conducted within a Black-Scholes framework, fo-

cusing on pricing deep out-of-the-money options. Particular attention is

addressed to the choice of the Importance Sampling measure and to the

optimisation of its parameters. Numerical results show that the combi-

nation of the two methods significantly outperforms both techniques if

applied separately.

Key words: Monte Carlo, Multilevel Monte Carlo, Option Pricing, Impor-

tance Sampling, Variance Reduction
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Chapter 1

Introduction

Monte Carlo methods are a flexible approach to approximating expectations in a

stochastic framework, and are widely employed in the financial industry in order

to price a variety of securities. Among the advantages of this technique, we can

mention relative simplicity of implementation, lower computational cost when dealing

with high dimension problems (e.g. compared to Finite Difference methods) and

predisposition towards parallel computing.

1.1 The essence of Monte Carlo methods

Let us consider an arbitrage-free complete market, where it is possible to define the so

called Risk-Neutral probability measure Q, under which the discounted price process

(e−rt St) 0≤t≤T of an underlying is a martingale. By the Feynman-Kac lemma and

non-arbitrage arguments, the price V of a European derivative whose payoff is P can

be computed as:

V (t, s) = EQ [e−r(T−t)P (ST ) |St = s
]

(1.1)

Monte Carlo methods approximate the price V̂ of the option by simulating a

set of N independent samples {Ŝ(i)
T }Ni=1 drawn from the distribution of the underly-

ing price process ST under the measure Q and computing the average of the payoff

corresponding to each sample. Namely:

V̂ =
1

N

N∑
i=0

e−r(T−t)P
(
Ŝ

(i)
T

)
,

1

N

N∑
i=0

P̂ (i) (1.2)

The simple arithmetic average V̂ is an unbiased estimator of V (t, s) whose variance

is ν2/N , where ν2 = VQ[P̂ ]
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The validity of Monte Carlo methods relies on the Central Limit Theorem, which

states that:
√
n

(
1

n

n∑
i=0

P̂ (i) − EQ
[
P̂
])

D−−−→
n→∞

N
(
0, ν2

)
(1.3)

provided that ν2 <∞. Therefore, it is possible to produce an asymptotically valid

confidence interval for the Monte Carlo estimate:

Q
{
EQ[P̂ ] ∈ I

}
, Q

{
V̂ − 3 ν/

√
N ≤ EQ [X] ≤ V̂ + 3 ν/

√
N
}
≈ 99.7% (1.4)

It is evident then that the accuracy of the Monte Carlo estimate depends on the

width of the confidence interval I, which scales as O(1/
√
N). As well as increasing

the number of samples N , it is possible to achieve greater accuracy by reducing the

variance of the estimator V̂ . It is not surprising then that most part of the research

in Monte Carlo simulations is addressed to the problem of reducing the variance.

1.2 Financial Background

Throughout the whole dissertation, we will consider a complete and arbitrage-free

Black-Scholes market. Let r > 0 the risk-free interest rate and σ the volatility, which

we will assume to be constant throughout time. Let S(t) be the price process of the

underlying risky asset, whose evolution is described by the following SDE under the

risk-neutral measure Q:

dSt = rStdt + σStdW
Q
t , S0 = s (1.5)

where WQ
t is a Q-Brownian motion. For each Monte Carlo sample, we will simulate

a path of the SDE (1.5). We will discretise the time interval [0;T ] with a uniform

time grid. M will denote the number of time-steps and h , T/M . We will make use

of two different schemes to approximate the SDE (1.5):

1. Euler-Maruyama: Ŝn+1 = Ŝn (1 + rh+ σ∆Wn) , Ŝ0 = s (1.6)

1. Milstein: Ŝn+1 = Ŝn

(
1 + rh+ σ∆Wn +

σ2

2

(
∆W 2

n − h
))

, Ŝ0 = s (1.7)

where the Brownian increments are distributed as:

∆Wn i.i.d. ∼ N (0, h) (1.8)

2



1.2.1 Accuracy of the discretisation

Three key quantities to assess the accuracy of the approximation are defined as follows:

Strong Error: SE [ŜM ] =

√
E
[
‖ŜM − ST‖2

]
(1.9)

Weak Error: WE [P̂ ] = E[P̂ ] − E [P ] (1.10)

Root Mean Square Error: RMSE [V̂ ] =

√
E
[(
V̂ − V

)2
]

(1.11)

Since the drift and diffusion coefficients of the SDE (1.5) respect Lipschitz continu-

ity and linear growth conditions, it is known that WE = O(h), whereas SE = O(
√
h)

for the Euler-Maruyama approximation and SE = O(h) for the Milstein approxima-

tion (please refer to [KP92], chapters 9-10 and [Gla04], pp. 344-347 for proofs and

further details).

On the other hand, it requires a simple piece of algebra to show that:

E
[(
V̂ − V

)2
]

= V[V̂ ] + WE [P̂ ] 2 (1.12)

Therefore, RMSE [V̂ ] = O
(

1/
√
N + h

)
.

1.3 Digital Put Option

Throughout the dissertation, we will consider two options as a case study to assess

the performance of different methods. The first one is the European Digital Put,

whose payoff has the following expression:

P (ST ) = 1{ST<K} (1.13)

for a fixed strike price K. An analytic closed formula for its price can be derived, for

example, by solving analytically the associated Black-Scholes PDE (refer to [WDH95]

for full detail).

V (s, t) = Q (ST < K |St = s) = Φ

(
log(s/K) +

(
r − 1

2
σ2
)

(T − t)
σ
√
T − t

)
(1.14)

where Φ(·) is the Standard Normal cumulative distribution function. We will focus

on deep out-of-the-money Digital Put options, i.e. such that S0 � K. This sort of

securities are widely employed in the industry, for example as an insurance against

default risk of the underlying financial asset. Ending in-the-money at maturity is a

3



rare event and simulations of low probability events intrinsically tend to have high

variance. If we were to estimate the expected value of the indicator of a rare event (this

might be the case of an out-of-the-money digital option), such that P(X = 1) = ε� 1

and P(X = 0) = 1 − ε, the statistical error of a Monte Carlo simulation relative to

the estimate would be:

sd[X]

E[X]
=

√
E[X2]− E[X]2

E[X]
=

√
ε− ε2

ε2
≈
√

1

ε
(1.15)

Therefore, variance reduction is essential.

1.3.1 Payoff smoothing

For reasons that will be clear in chapter 4, the discontinuity in the Digital Put payoff

would be highly detrimental to the application of Multilevel Monte Carlo methods.

However, various payoff smoothing techniques are available. Throughout this disser-

tation, we will rely on the Conditional Expectation approach as explained in [Gla04]

(pp. 399-400). This method consists in the following approximation:

P̂CE(ŜT/h) = E
[
1ŜT/h<K

| ŜT/h−1

]
(1.16)

A simple application of the tower rule shows that it is an unbiased estimator. Under

Euler-Maruyama approximation, it is known that:

ŜT/h | ŜT/h−1 ∼ N
(

(1 + rh) ŜT/h−1, hσ
2 Ŝ2

T/h−1

)
(1.17)

Therefore, (1.16) takes the form:

P̂ = Φ

(
K − (1 + rh) ŜT/h−1

σ
√
h ŜT/h−1

)
(1.18)

1.4 Down-and-in Call Option

The second derivative we will analyse to assess the performance of different methods

is the Down-and-in Call Option. This path-dependent derivative delivers the same

payoff of a usual Call Option at time T , upon condition that the stock price St falls

below a pre-determined barrier B at least once during the option lifetime. Its payoff

takes the form:

P{(St)0≤t≤T} = (ST −K)+
1{Mt<B}, where Mt = inf

0≤t≤T
St (1.19)

4



for a fixed value of the strike price K and the barrier value B.

In chapter 12 of [WDH95], the following analytic expression for the price of a

Down-and-in Call Option is derived:

V (St, t) =

(
St
B

)1−2r/σ2

C

(
B2

St
, t

)
(1.20)

where C(St, t) is the Black-Scholes price for a vanilla Call with the same strike and

maturity. Since the payoff is naturally formulated in continuous time, it is necessary

to introduce a discretisation before in order to perform a Monte Carlo simulation. A

naive approach to discretisation would be the following:

P̂ = (ŜT/h −K)+
1T 6=∅, where T = {i = 1, . . . , T/h : Ŝi < B} (1.21)

However, this would lead to an undesirable weak error of order O(
√
h) (the same

order as the average standard deviation of the discretised path {Ŝ} between two

consequent time-steps).

1.4.1 Restoring the O(h) weak error

It is possible to overcome the issue by analysing the distribution of the driving Brow-

nian Increment within a time-step conditional on its value at the extremes. Following

the same approach as in chapter 6.4 of [Gla04], we will adopt the following discreti-

sation of the option payoff, which restores a O(h) order for the weak error.

P̂ =
(
ŜT/h −K

)+

1−
T/h∏
n=1

(1− Pn)

 , where: (1.22)

Pn = exp

{
−2(Ŝn −B)+(Ŝn−1 −B)+

hσ2Ŝ 2
n−1

}
(1.23)

is the probability of St crossing the barrier B in the time interval [tn−1; tn] condi-

tional on the values at the extremes. This particular choice leaves the payoff differ-

entiable, which is beneficial for the application of Multilevel Monte Carlo.
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Chapter 2

Importance Sampling

Throughout this section, we will present one of the most effective and at the same

time delicate variance reduction techniques - Importance Sampling. The following

explanation is mainly based on chapter 9 of [Owe13], section 4.6 of [Gla04] and section

2.7 of [BBG97].

Importance Sampling lays its foundations in the theory of changes of measure:

in fact, it consists in drawing samples for a Monte Carlo simulation from a more

convenient distribution (the concept of convenience will be clarified throughout this

section), weighting them by the corresponding Radon-Nikodym derivative.

When simulating the payoff of deep out-of-the-money options, the probability

of obtaining a payout is low and it is likely that most part of the simulated paths

return value zero. Through a suitable change of measure, it is possible to increase the

probability of a payout, allowing us to obtain more information out of each simulation

run.

2.1 Motivations and general theory

Specifically, let us consider the problem of estimating the following quantity:

µf = Ep [f(X)] =

∫
D
f(x)p(x)dx (2.1)

where p(·) is the distribution of the random variable X and D is its support. Let

us consider another distribution s(·) such that:

D ⊆ S = spt(s), or equivalently that p(x) > 0→ s(x) > 0 (2.2)

This condition ensures that it is possible to express (2.1) as:

Ep [f(X)] =

∫
D
f(x)

p(x)

s(x)
s(x) dx =

∫
Q
f(x)

p(x)

s(x)
s(x) dx = Es

[
f(X)

p(X)

s(X)

]
(2.3)

6



where Es [ · ] denotes expectation with respect to the measure defined by s(·).
We define f(X)p(X)/s(X), X ∼ s as the Importance Sampling estimator, which is

unbiased for µf . The ratio p(x)/s(x) is referred to as Likelihood Ratio or Radon-

Nikodym derivative.

Therefore, we define the corresponding Monte Carlo Importance Sampling esti-

mator as:

V̂ IS =
1

N

N∑
i=1

f(X(i))
p(X(i))

s(X(i))
, where X(i) i.i.d. ∼ s (2.4)

So far, we have just mentioned the assumptions in order for the Importance Sam-

pling estimator to exist and to be unbiased. Let us focus on the original purpose of

reducing the variance of our Monte Carlo estimate. The quantity we aim to minimise

is the following:

Vs

[
f(X)

p(X)

s(X)

]
= Es

[(
f(X)

p(X)

s(X)
− µf

)2
]

=∫
Q

(
f(x) p(x)

s(x)
− µf

)2

s(x) dx =

∫
Q

[ f(x) p(x)− µfs(x) ]2

s(x)
dx

(2.5)

Let us assume that f(x) ≥ 0, ∀x ∈ Q (it does not imply any loss of generality,

since f will be a discounted payoff in the following sections). The integrand in equa-

tion (2.5) is positive for all possible choices of s(·) and a minimum of 0 can be attained

at s(x) = f(x)p(x)/µf . Of course, such choice is not feasible, since it would require

us to know µf beforehand in order to estimate µf itself. However, this approach

provides useful insight about a convenient choice of s(·), which should satisfy:

s(x) ∝ f(x)p(x) (2.6)

Please refer to [KM53] for more rigorous proofs of optimality. Intuitively, we are

designing s(x) such that it generates more samples in the regions that contribute

more to the value of f , or equivalently, we are choosing s(·) such that f(·)p(·)/s(·) is

as close as possible to being constant, which implies having lower variance.

2.1.1 Importance Sampling with Markov Chains

The same reasoning exposed in the previous section can be extended to the case when

f(·) is a function of a multivariate random variable. We will focus on the special case

7



of a discrete-time Markov Chain {Sn}. The Radon-Nikodym derivative takes then

the form:

p(S1, S2, . . . , Sn)

s(S1, S2, . . . , Sn)
=

p(Sn |Sn−1) p(S1, S2, . . . , Sn−1)

s(Sn |Sn−1) s(S1, S2, . . . , Sn−1)
= . . . =

n∏
i=1

p(Si |Si−1)

s(Si |Si−1)
(2.7)

2.2 Importance Sampling in the Option Pricing

framework

Let us clarify what Importance Sampling implies in the framework we have described

in section 1.2, where the randomness driving the underlying price process (St) is

encapsulated in the Brownian MotionWt. When performing Monte Carlo simulations,

each payoff path is produced from a random (normal or uniform) number generator

throughout the following steps:(
U (i) Φ(·) inversion−−−−−−−→

)
Z(i) covar. matrix−−−−−−−→ {∆W (i)

n }
Euler-Maruyama−−−−−−−−−→ {Ŝ(i)

n }
e−rTP (·)−−−−−→ P̂ (i) (2.8)

Importance Sampling can be applied at each step of the process, provided that

the distribution of the corresponding Random Variable can be estimated.

As we have seen so far, the only restriction on the choice of s(·) is condition (2.2)

(alongside with an analysis of the tails of the two distributions). The optimality con-

dition (2.6) does not give precise indication about the features of the new distribution

function, which could belong to any family of distributions.

In order to choose what sort of change of measure to apply, we have reviewed

some of the most relevant papers about Importance Sampling applied to Option

Pricing. The vast majority of the literature keeps the Gaussian framework unaltered.

Specifically, in [Cap08, GHS99, Aro03] the change of measure consists in adding a

drift vector to the normal random vector Z; analogously, in [SF00], the change of

drift is applied to the Brownian Increments, whereas in [VAD98] the drift term is

added to the process log Ŝn; in [Rei93], after integrating analytically the underlying

SDE, the change of measure consists in adding a drift term and scaling the variance

of the underlying Brownian Motion WT .

Changing the drift of a normally distributed random variable falls into the so-

called Exponential Tilting approach (see [Gla04], page 260 for reference).

2.2.1 Our approach

Our first approach consisted in applying Importance Sampling to the Brownian In-

crements. Concretely, this consists in substituting ∆Wn in the Euler-Maruyama

8



updating of Ŝn with:

∆W IS
n = µ̃n h + σ̃∆Wn (2.9)

From now onwards, we will use the notations ∆W IS and ∆W to specify what mea-

sure the Brownian increments have been drawn from. The resulting Radon-Nikodym

derivative is:

RN =

T/h∏
n=1

RNn =

T/h∏
n=1

q
(
∆W IS

n

)
s (∆W IS

n )
, where: (2.10)

q(x) =
1√
2πh

exp

{
−x

2

2h

}
and s(x) =

1√
2πσ̃2h

exp

{
−(x− µ̃nh)2

2σ̃2 h

}
(2.11)

Therefore:

RN = σ̃T/h exp


T/h∑
n=1

(
−
(
∆W IS

n

)2

2h
+

(
∆W IS

n − µ̃nh
)2

2σ̃2 h

) (2.12)

Therefore, our Monte Carlo estimator takes the form:

V̂ IS =
1

N

N∑
i=1

{
P̂
({

∆W IS
}(i)

n= 1,...T/h

)
RN (i)

}
(2.13)

Throughout the rest of the dissertation, unless differently specified, we will use the

following expression for the time-varying Importance Sampling drift:

µ̃n = µ0 + µ1

( n
M

)
+ µ2

( n
M

)2

(2.14)

This choice restricts the degrees of freedom of the drift term compared to the

papers we have reviewed, where each time step was allowed to have a different value

for the drift. However, our choice has the advantage of keeping the dimension of the

Importance Sampling parameters state space constant, regardless of M.

In the case of Euler-Maruyama time-stepping, the distribution of Ŝn conditional

on Ŝn−1 is known. Therefore, it is possible to apply Importance Sampling to the path

{Ŝn} by changing the values of the drift and volatility parameters and making use of

the theory in section 2.1.1 to compute the Radon-Nikodym derivative.

2.2.2 Issue with changing variance

In the first simulations, we have applied a constant change of drift (µ1 = µ2 = 0

in equation (2.14)) and variance to the Brownian increments ∆W in the case of a

Digital Put. Any changes in the drift did not alter the order of weak convergence

9



(hence an indication of unbiasedness) and yielded significant variance reductions when

the drift was chosen to be negative. However, changing the variance of the Brownian

Increments produced unsatisfying results: specifically, the variance of the Monte Carlo

estimator diverged as the width of the timestep was reduced, suggesting some issues

arise when taking the limit to continuous time. A more detailed analysis follows.

The SDE (1.5) allows for a closed formula analytic solution:

ST = s exp

{(
r − σ2

2

)
T + σWQ

T

}
(2.15)

In continuous time, the effect of applying the importance sampling construction de-

scribed at the beginning of this section is to replace WT with W̃T = µ̃T + σ̃WT .

Therefore, the Importance Sampling estimator for ST is:

SIST
s

s(W̃T )

q(W̃T )
= σ̃ exp

{(
r − σ2

2

)
T + σ (µ̃T + σ̃WT )− (µ̃T + σ̃WT )2

2T
+

(σ̃WT )2

2T σ̃2

}
(2.16)

log

{
SIST
s

s(W̃T )

q(W̃T )

}
= log σ̃+

(
r − σ2

2

)
T +σ (µ̃T + σ̃WT )− (µ̃T + σ̃WT )2

2T
+

(σ̃WT )2

2T σ̃2

(2.17)

Considering the Euler-Maruyama approximation and taking the logarithm of the

corresponding discretised quantity ŜISM RN (as defined in (2.13)) yields:

log

{
ŜISM
s
RN

}
=

T/h∑
n=1

log (1 + rh+ σ (µ̃h+ σ̃∆Wn)) +

T/h log σ̃ +

T/h∑
n=1

{
−(µ̃h+ σ̃∆Wn)2

2h
+

(σ̃∆Wn)2

2hσ̃2

} (2.18)

Applying Ito’s lemma to the logarithm in equation (2.18) yields:

log

{
ŜISM
s
RN

}
=

(
r − σ2

2

)
T + σ (µ̃T + σ̃WT ) + T/h o(h3/2) +

T/h log σ̃ +

T/h∑
n=1

{
− µ̃

2h

2
− µ̃σ̃∆Wn +

1− σ̃2

2h
∆W 2

n

} (2.19)

As h tends to zero, the last term in the summation in equation (2.18) diverges to +∞
with probability 1 (in fact, the Brownian motion Wt has finite quadratic variation,

which is divided by the infinitesimal quantity h). On the other hand, setting σ̃ = 1,

which implies a simple change of drift, the convergence of the quantity in (2.19) to

(2.16) is restored.
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2.2.3 Brownian Bridge construction

So far, we have simply converted the normal random vector Z into ∆W as ∆Wn =√
hZn. In order not to exclude the possibility of a change in variance for the Brownian

increments, we will adopt a different approach for the conversion Z → ∆W IS, based

on the theory of the Brownian Bridge. More specifically, we will be adapting a

technique which is more commonly used in quasi-Monte Carlo methods (please refer

to sections 3.1 and 5.3 of [Gla04] for further detail).

It is known that, for a Brownian Motion W (t),

W

(
ti+1 + ti

2

) ∣∣∣∣ W (ti) = wi,W (ti+1) = wi+1 ∼ N
(
wi + wi+1

2
,
ti+1 − ti

4

)
(2.20)

which has the same distribution as:

W

(
ti+1 + ti

2

)
=

wi + wi+1

2
+

√
ti+1 − ti

4
Z , Z ∼ N (0, 1) (2.21)

This piece of theory suggests the following construction of the set ∆W . After

computing

WM =
√
T Z1

WM/2 = 1/2WM +
√
T/4Z2

W3/4M = 1/2
(
WM +WM/2

)
+
√
T/8Z3

. . .

(2.22)

we simply take differences to obtain the Brownian increments. It is possible to

operate a change in variance by scaling the first normal random variable Z1, which is

converted into WM , to σ̃Z1. The Radon-Nikodym derivative needs to be adapted as

follows. Equation (2.13) defined the Monte Carlo estimator for:

Es
[
P̂
(
∆W IS

)
RN

(
∆W IS

)]
, Es

[
R̂
(
∆W IS

)]
(2.23)

Since ∆W IS is a function of Z, we can see (2.23) as:∫
RM

(R̂ ◦∆W IS)(Z)φ(Z) dZ (2.24)

Therefore, denoting by φ̃ the density of a RM -dimensional set of independent standard

normal variables (apart from the first which has variance σ̃), we obtain:∫
RM

(R̂ ◦∆W IS)(Z)φ(Z) dZ =

∫
RM

(
(R̂ ◦∆W IS)(Z)

φ(Z)

φ̃(Z)

)
φ̃(Z) dZ (2.25)

This translates into multiplying the Monte Carlo estimator in (2.13) by:

φ(Z)

φ̃(Z)
= |σ̃| exp

{
(1− σ̃2)

Z2
1

2

}
(2.26)
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2.3 Simulation for a Digital Put

In the following section and throughout the rest of the dissertation we will set T = 1,

r = 0.05 and σ = 0.25. Each simulation in this section will include two stages. Firstly,

we simulate a set of Nopt paths in order to run an optimisation algorithm (whose

features will be described in chapter 3), which returns the near-optimal values for

(µ0, µ1, µ2, σ̃). Secondly, we simulate N paths under the Original and the Importance

Sampling measures and we compute the corresponding Monte Carlo estimators. In

order to avoid introducing bias in the second step, the samples used in the first step

are discarded. Throughout this section we will only make use of the Euler-Maruyama

approximation.

Two key quantities will be used to compare the performance of the two methods.

VR is defined as the ratio of the Original measure estimator over the variance of

the Importance Sampling estimator. The empirical variance will be approximated as

follows:

ν ≈ 1

N − 1

(
1

N

N∑
i=1

(
P̂ (i)

)2

− V̂ 2

)
(2.27)

Please note that P̂ (i) refers to a single Monte Carlo sample in general: therefore,

in the Importance Sampling framework, by P̂ (i) we mean the product of the payoff

and the Radon-Nikodym derivative (R̂ in the notation of the previous section).

The second quantity is the Weak Error (as defined in (1.10)), which allows us to

check the unbiasedness of the Importance Sampling estimator.

Nopt needs to be calibrated beforehand, implying a trade-off between the compu-

tational cost of the overhead optimisation algorithm (roughly O(Nopt)) and the ad-

ditional computational cost in the actual Monte Carlo simulation in order to achieve

the same accuracy of an Importance Sampling simulation with optimal parameters.

The following table shows the effects of a change in Nopt on the following Monte Carlo

simulation. For this simulation, we have set S0 = 200, K = 100 and M = 16.

Nopt Nsteps R.T. Rel.R.T. µ0 µ1 µ2 σ̃ VR V V̂ IS V̂

105 5 44.7 s 100% -2.86 -0.46 0.08 0.50 604 0.0021 0.0025 0.0026
104 5 5.4 s 12.1% -2.88 -0.41 0.11 0.50 612 0.0021 0.0025 0.0026

5000 7 1.9 s 4.3% -2.82 -0.47 0.06 0.50 596 0.0021 0.0025 0.0026
103 ∗ 9 0.5 s 1.1% -2.53 -0.87 -0.45 0.51 404 0.0021 0.0025 0.0026

∗: The optimisation algorithm might be unstable: executing it several times, we

have observed that it fails to converge in about 1 case out of 10.
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A heuristic observation suggests that Nopt = 5000 is a fair compromise between

the overhead computational cost and effectiveness in variance reduction. From now

onwards, unless differently specified, we will employ 5000 paths in the optimisation

algorithm.

In order to show the outstanding potential of Importance Sampling in terms of

variance reduction, we have performed a full simulation (i.e. Optimisation + Actual

Simulation) for different combinations of S0 and K. The more the option is out-of-

the-money, the more Importance Sampling turns out to be beneficial. In the following

tables we have reported the values of the optimal Importance Sampling parameters,

the variance ratio, the estimated values (exact, Original Measure and Importance

Sampling), the Monte Carlo error of the Importance Sampling estimator and the

number Nitm of paths ending in the money under the two different measures.

Note: even when Nitm = 0, V̂ will not be exactly zero, due to the payoff smooth-

ing described in (1.18). It is worth noticing that µ1 and µ2 seem to give a minor

contribution. Since we are dealing with a European non path-dependent option, this

is unsurprising. In chapter 5 we will consider possible economisations of the model.

S0 K N M µ0 µ1 µ2 σ̃ VR 3 · sdIS 3 · sd

100 50 106 16 -2.62 -0.68 -0.19 0.51 519 1.17 · 10−6 2.67 · 10−5

125 50 106 16 -3.56 -0.59 0.04 0.51 7654 2.72 · 10−7 2.38 · 10−5

150? 50 106 16 -4.00 -0.82 -0.12 0.48 152249 1.72 · 10−8 6.71 · 10−6

175? 50 106 16 -5.09 0.04 0.03 0.43 2538625 1.04 · 10−9 1.66 · 10−6

200? 50 106 16 -5.56 0.07 0.04 0.44 708932 7.95 · 10−11 6.69 · 10−8

S0 K V V̂ V̂ IS Nitm N IS
itm

100 50 0.0021 0.0026 0.0025 2676 694919
125 50 8.75 · 10−5 1.35 · 10−4 1.33 · 10−4 141 663217
150? 50 3.73 · 10−6 1.01 · 10−5 7.55 · 10−6 12 633977
175? 50 1.74 · 10−7 9.60 · 10−7 4.87 · 10−7 1 647883
200? 50 9.07 · 10−9 2.80 · 10−8 3.60 · 10−8 0 624154

? : Please refer to section 3.2.5 for clarification
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The table in the previous page arouses a question worth being clarified. In section

2, we have stated that the Importance Sampling estimator is unbiased. However, we

have also seen (section 1.2) that a discrete time approximation is unavoidably affected

by Weak Error. According to the theory developed in section 2, we should expect

this quantity to be the same both for V̂ and V̂ IS. However, we are not provided with

the exact value for the Weak Error, and its estimator |V̂ − V | is intrinsically affected

by statistical error. Therefore, as long as the difference between the two estimated

weak errors is smaller than 3 · sd, this discrepancy should not raise concerns about

unbiasedness. A simple argument to support this assertion is that, in the case of

S0 = 200, K = 50, the estimated price without any payoff smoothing is 3.58 · 10−8

and 0 with and without Importance Sampling respectively. Without Importance

Sampling, the estimated Weak Error is simply the exact value V . Since Importance

Sampling provides an estimate of the price different than 0, we should not expect the

two estimators to have the same estimated Weak Error.

An interesting fact that we have observed is that performing the preliminary

optimisation on a coarser time-stepping, we obtain Importance Sampling parameters

that produce satisfactory results even with finer time grids. Figure 2.1 shows the

dependence of the Weak Error and the Monte Carlo error on the length of the time-

step h with and without Importance Sampling. Optimisation has been carried out

with M = 4, whereas the actual simulation was repeated for M = 2, 4, 8, 16, 32, 64.

Incidentally, figure 2.1 shows that the Weak Error of the Importance Sampling

estimator has indeed O(h) magnitude.
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Figure 2.1: Plot of the Weak Error and the Monte Carlo Error (3 · sd)for a Digital
Put, with and without Importance Sampling. S0 = 125, K = 50. S0 = 200, K = 100.
M = 2, 4, 8, 16, 32, 64 from right to left.

To provide a stronger argument in favour of the unbiasedness of our Importance

Sampling estimator, we have performed 20 simulations, computed the payoff using an-

alytic integration of the underlying SDE (namely, setting ŜM = S0 exp{(r−1/2σ2)T+

σ
∑

n ∆Wn}) with and without Importance Sampling and computed the Relative Root

Mean Square Error (see section 1.2.1 for definitions) of the estimated price compared

to the analytic price. These are the results:

RMSE[V̂ ] RMSE[V̂ ]/V RMSE[V̂ IS] RMSE[V̂ IS]/V

2.11 · 10−7 23.2 1.28 · 10−11 0.0014

We conclude this section with a plot of the empiric distribution functions of ST

under three different measures: the Optimal measure (as defined in (2.6)), the Im-

portance Sampling measure and the Original Measure. As expected, the Importance

Sampling density is as close to the Optimal density as its lognormal shape allows for.
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Figure 2.2: Plot of the empirical density functions (produced using the ksdensity
kernel smoothing Matlab function) of ST under the Importance Sampling, the Original
and the Optimal measures in the case of a Digital Put. S0 = 200, K = 100.

2.4 Simulation for a Down-and-in Barrier Call Op-

tion

In this section we will show the results we have obtained applying Importance Sam-

pling for pricing a Down-and-In Call. We have made use of the Milstein time-scheme

on a 32-step time-grid.

As expected, since we are dealing with a path-dependent option, the parameters

µ1, µ2 appear to be relevant in defining the shape of the drift term throughout time

(see figure 2.4).

As in the previous section, we have reported some key quantities in a table. The

difference between WE and WEIS, which we have discussed about in the previous

section, is well within 3 · sd, hence does not raise any concerns. As expected, the

beneficial effects of Importance Sampling in terms of variance reduction become more

evident when the probability of a payout is lower.
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S0 K B µ0 µ1 µ2 σ̃ VR 3 · sd 3 · sdIS

100 100 80 -2.32 8.63 -4.05 0.60 9.3 7.9 · 10−3 2.6 · 10−3

100 100 70 -3.40 9.47 -2.38 0.52 47.6 1.39 · 10−3 2.01 · 10−4

?100 100 60 -6.24 15.77 -4.34 0.29 299 6.40 · 10−5 3.70 · 10−6

100 110 90 -1.18 8.62 -5.82 0.58 7.1 0.0185 0.00695
100 110 80 -3.06 12.93 -7.39 0.48 18.7 5.0 · 10−3 1.17 · 10−3

S0 K B V V̂ V̂ IS WE WEIS Nitm N IS
itm

100 100 80 0.4083 0.4169 0.4159 8.56 · 10−3 7.59 · 10−3 24213 221451
100 100 70 0.01689 0.01780 0.01709 9.10 · 10−4 2.05 · 10−4 1157 102537
?100 100 60 1.26 · 10−4 8.20 · 10−5 1.29 · 10−4 4.35 · 10−5 3.20 · 10−6 7 103241
100 110 90 1.7103 1.7265 1.7337 0.0162 0.0234 80657 373853
100 110 80 1.652 1.678 1.681 2.66 · 10−3 2.97 · 10−3 9135 236987

? : Please refer to section 3.2.5 for clarification

We conclude this section plotting the solution Sdet(t) of the ODE: dSdet (t) = (µ0 +

r + µ1 t + µ2 t
2) dt, which defines the evolution that S(t) would follow in a fully

deterministic case (namely, if the underlying Brownian motion was set to 0).
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K = 110, B= 80

Figure 2.3: Plot of Sdet(t) for 3 different combinations of K and B.
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Chapter 3

Optimisation techniques

In the following section, we will explain the Optimisation Algorithm that has been

employed to produce the optimal values of the Importance Sampling parameters. The

main references for this topic are [NW99] and [BGLS06].

We have decided to implement our own Optimisation algorithm, rather than rely-

ing on built-in packages, in order to have full control on it. Despite being suboptimal,

it does not prevent us from evincing the relation between its runtime and Nopt in rel-

ative terms. In fact, if we assume that a more efficient algorithm reduces the number

of iterations and the number of function and gradient calls, still the above mentioned

dependence lies in the estimation time of the objective function and its gradient.

As in [GHS99], we opted for a fully deterministic method (in the paper, the authors

make use of a large deviations principle to derive the nonlinear equation governing the

optimal parameters and they solve it with a fully deterministic fixed-point iteration

method). Specifically, we will generate only one set of Nopt sample paths at the

beginning of the algorithm and we will use it for all estimations of the objective

function or its gradient. In fact, we are interested in the dependence of the objective

function on the Importance Sampling parameters and repeating the generation of

random numbers at each function/gradient evaluation would affect their smoothness.

At the current state of art, other commonly used techniques are gradient-based

Robbins-Monro stochastic optimisation (as in [Aro03, SF00, VAD98]) and non-linear

least-squares minimisation (as in [Cap08]).

3.1 Objective function

The quantity we are set to minimise is the one defined in (2.5):

Vs

[
P̂
(
∆W IS

)
RN

]
= Es

[(
P̂
(
∆W IS

)
RN

)2
]
−
(
Es
[
P̂
(
∆W IS

)
RN

])2

(3.1)
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where ∆W IS denotes the whole set of Brownian increments
{

∆W IS
}
n= 1,...T/h

.

Since the Importance Sampling estimator is unbiased, Es
[
P̂
(
∆W IS

)
RN

]
is con-

stant for all choices of the Importance Sampling parameters. We will then focus on

minimising the following objective function:

ϕs(x) , Es
[(

P̂
(

∆W IS(x)
)
RN(x)

)2
]

(3.2)

where x = (µ0, µ1, µ2, σ̃).

Alternatively, we could minimise ϕp(x) , Ep
[
P̂ 2 (∆W ) RN(x)

]
, since:∫

RT/h

P̂ 2 (w)
q2(w)

s2(w, x)
s(w, x) dw =

∫
RT/h

P̂ 2 (w)
q(w)

s(w, x)
q(w) dw (3.3)

where s(·, x) denotes the Importance Sampling density function s(·) as defined in

(2.11) (with the addition of the term deriving from the Brownian Bridge construction

in (2.26)) when the set of Importance Sampling parameters take value x.

As pointed out in section 2 of [SF00] the choice between one formulation or the

other has a remarkable consequence: opting for the latter, the dependence of ϕp on

x comes in only through the Radon-Nikodym derivative, since ∆W is sampled from

the Original measure. Since the optimisation algorithm will imply differentiating ϕ(·)

w.r.t. x, this formulation allows for non-differentiable payoffs. However, both ϕs and

ϕp will be approximated via Monte Carlo simulation, and will therefore be affected by

the same statistical error we are attempting to minimise by sampling from s rather

than q:

ϕ̂s(x) =
1

Nopt

Nopt∑
i=1

[(
P̂
(

∆W IS (i)(x)
)
RN (i)(x)

)2
]

(3.4)

Since we will deal with differentiable payoffs, we will opt for ϕ̂s(x), which we will

denote simply as ϕ(x). This choice allows us to avoid the risk that, sampling under

the Original measure, too few paths end in-the-money.

3.1.1 Potential improvement

We will expose, only at a theoretical level, a third possible way to estimate the

objective function. Due to time constraints, we have not managed to assess its per-

formances with numerical experiments.

Since our optimisation algorithm is iterative, we expect it to generate a sequence

{xn} before reaching the near-optimal point. Therefore, at the nth iteration, xn can
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be considered as a constant and ϕ is a function of xn+1. Taking one step back, let us

recall what ϕ = ϕ̂s is estimating:

ϕs(xn+1) =

∫
RT/h

P̂ 2 (w)
q2(w)

s2(w, xn+1)
s(w, xn+1) dw (3.5)

We can formulate the integral in (3.5) alternatively as:∫
RT/h

P̂ 2 (w)
q2(w)

s2(w, xn+1)

s(w, xn+1)

s(w, xn)
s(w, xn) dw (3.6)

Therefore, applying a reasoning similar to what we have shown in (2.25) and

(2.26):

ϕs(xn+1) = Es?
[
P̂ 2
(
∆W IS?) q2(∆W IS?

)

s (∆W IS? , xn+1) s? (∆W IS?)

]
, ϕs?(xn+1|xn) (3.7)

where s?(·) , s(·, xn). This naturally leads to the estimator:

ϕ̂s?(xn+1|xn) =
1

Nopt

Nopt∑
i=1

[
P̂ 2
(
∆W IS? (i)

) q2(∆W IS? (i))

s (∆W IS? (i), xn+1) s? (∆W IS? (i))

]
(3.8)

where each ∆W IS? (i) ∼ s?.

The dependence of ϕ̂(·|xn) on xn+1 is entirely encapsulated in s
(
∆W IS? (i), xn+1

)
,

meaning that any differentiation with respect to xn+1 will not involve differentiating

the payoff. At the same time, sampling from s(·, xn) reduces the statistical error of

ϕ̂(·) compared to sampling from q(·).

3.2 The algorithm

We will denote the descent direction at iteration n as pn and the length of the corre-

sponding step αn. Therefore, we will update xn as: xn+1 = xn +αn pn. Moreover, we

will set qn(α) , ϕ(xn + αpn), hence: q′n(α) = ∇ϕ(xn + αpn)Tpn.

The extremely simplistic optimisation algorithm consists in the following proce-

dure:

20



Algorithm 1 Gradient-based optimisation

Compute steepest-descent direction
Perform Line Search
Update x
while not converged do

Compute steepest-descent AND BFGS directions
Perform Line Search for both directions
Choose the direction that most minimises ϕ
Update x

end while

3.2.1 Descent directions

The steepest-descent direction simply consists in: pn = −∇ϕ(xn) / ‖∇ϕ(xn)‖.
The BFGS method falls into the category of quasi-Newton methods. The descent

direction is defined by pn = −Bn∇ϕ(xn) / ‖Bn∇ϕ(xn)‖, where Bn is an approxima-

tion of the inverse of the Hessian matrix, such that it meets the so-called secant

condition:

Bn yn = sn sn = xn − xn−1, yn = ∇ϕ(xn)−∇ϕ(xn−1) (3.9)

The sequence Bn is updated via rank-1 matrices as follows:

Bn+1 =

(
1− sny

T
n

yTn sn

)
Bn

(
1− yns

T
n

yTn sn

)
+

sns
T
n

yTn sn
(3.10)

Since we have little (if any) knowledge about the Hessian matrix of ϕ, we will simply

set B0 = 1. Although steepest-descent is well known for being slow in a neighbour-

hood of the optimal point, it often outperforms BFGS when xn is far from the optimal

point. Moreover, it is the only viable technique for the very first iteration.

3.2.2 Complex-step differentation

The previous sections imply the estimation of ∇ϕ(x), which has no closed formula.

We will adopt the so-called Complex-Step differentiation (or Complex Variable Trick)

technique. We have referred to [MSA03, ST98] for practical implementation and

underlying theory.

ϕ(x) can be extended to an analytic complex function ϕ(x + iy), for which the

following Taylor expansion holds:

ϕ(x+ i ε) = ϕ(x) + i εT ∇ϕ(x)− 1

2
εT ∇2ϕ(x) ε+ o(‖ε‖2) (3.11)
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Therefore, we can approximate ∇ϕ(x) (up to a truncation error of order O(‖ε‖2))

as follows:

(∇ϕ(x))i ≈
imag (ϕ(x+ i ε ei))

ε
(3.12)

The main advantage of CVT differentiation compared to Finite Differencing ap-

proximation is the possibility of reducing the step-size without the risk of subtractive

error cancellations.

In order to show the validity of this method, we have approximated the MSE

of the gradient computed with complex-step differentiation compared to the same

calculation using finite differencing. We have set ε = 10−10 and used the case of the

Digital Put payoff to estimate:

MSE
[
∇CV Tϕ(x)

]
≈ 1

100

100∑
i=1

‖ ∇CV Tϕ(x|∆W (i))−∇FDϕ(x|∆W (i)) ‖2
2 (3.13)

We have obtained the following results, for N = 105, M = 16, S0 = 100, K = 50:

x = (0, 0, 0, 1) : MSE = 7.42 · 10−12

x = (−2.6,−0.7,−0.2, 0.5) : MSE = 1.19 · 10−14
(3.14)

The only prescription in order to apply complex-step differentiation is to re-

implement a number of functions that are not defined for complex numbers. We

have had to redefine Φ(·) and max as follows:

max(x, y) = max( Re(x),Re(y) ) + i
(
Im(x)1Re(x)>Re(y) + Im(y)1Re(y)>Re(x)

)
abs(x) = abs( Re(x) ) + i (Im(x) sign(x))

Φ(x) = Φ(Re(x)) + i Im(x)
1√
2π
e−

Re(x)2

2

(3.15)

3.2.3 Line search

The Line Search procedure consists in finding the step length αn minimising qn(α).

We will use the following inexact (and, in a sense, greedy) Line Search procedure. It

consists in finding an interval [αL;αR] where the optimal α lies and in progressively

narrowing it, until the midpoint satisfies sufficient decrease conditions for qn (it would

be useless computational expense to search for the exact optimal point). Our stopping

criterion is based on the Wolfe conditions. Namely:

Wolfe1(α) : q(α) ≤ q(0) +m1α q
′(0)

Wolfe2(α) : q′(α) ≥ m2 q
′(0)

(3.16)
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Generally, m1 ∈ [10−4; 10−3] and m2 ∈ [0.1; 0.9].

Algorithm 2 Line Search

Set αL = 0
Make ansatz for αR

while q′n(αR) ≤ 0 do
if Wolfe1(αR) = TRUE AND Wolfe2(αR) = FALSE then

Set αL = αR
end if
Set αR = 2αR

end while

Set α = 0.5 · (αL + αR)

while Wolfe1(α) = FALSE OR Wolfe2(α) = FALSE do
Set α = 0.5 · (αL + αR)
if Wolfe1(α) = FALSE then

Set αR = α
end if
if Wolfe1(αR) = TRUE AND Wolfe2(αR) = FALSE then

Set αL = α
end if

end while

For further details and proofs of convergence, please refer to [BGLS06].

The Line Search algorithm is generally the most critical part of an optimisation

procedure, and poor implementation can affect convergence speed as well as robust-

ness. For example, introducing quadratic and cubic interpolation would be a way of

reducing the number of function evaluations, hence increasing speed.

We have focused on ensuring that our method is robust, especially in the search

for the right bound. Our first guess is for the value of α such that the linear expansion

of q around 0 decreases by (ϕ(xn)−ϕ(xn−1))/ϕ(xn). Less careful choices might have

often produced dramatic effects: in fact, we have observed that, for certain values of

xn, qn shows an increasing trend up to a value ᾱ and suddenly drops to 0 after ᾱ

(this happens e.g. when σ̃ reaches 0). In a similar scenario, if our initial guess for

the right bound αR had been greater than ᾱ, the Line Search algorithm would have

never terminated.
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3.2.4 Stopping criterion

Direct observation suggest that ϕ is a convex function in a neighbourhood of the

optimal point. Therefore, first order conditions are sufficient to ensure optimality.

We have chosen a stopping criterion based on the norm of the gradient:

‖∇ϕ(xN)‖2 ≤ ξ ‖∇ϕ(x0)‖2 (3.17)

We have decided to operate in relative terms since the magnitude of the gradient

varies significantly according to the moneyness of the option. We have set ξ = 0.5%

unless differently specified.

3.2.5 Initial Point

So far, we have dealt with descent directions, line search and stopping criteria, but

we have not addressed the question of the initial point. A natural choice would be to

set x0 = (0, 0, 0, 1), which corresponds to a simulation under the Original Measure.

This choice proves to be robust until a certain degree of moneyness. In sections 2.3

and 2.4 we have marked with a ? some options which were excessively out of the

money. For instance, for those combinations of S0 and K, fewer than 1 path out of

105 in the Monte Carlo simulation without Importance Sampling ended in-the-money

in the Digital Put case. This means that setting x0 = (0, 0, 0, 1), it is extremely

likely that none of the paths in the smaller Optimisation sample ends in-the-money.

Since the Optimisation algorithm is conceived to simply minimise (3.2), regardless

of Weak Error, MSE or other indicators of biasedness, the iterations will tend to

proceed further out-of-the-money, where eventually Es [P 2(W ) q2(W )/s2(W )] reaches

0, to the price of WE = V . This hurdle can be overcome by making an educated guess

about the initial point, in order to force more paths to end in-the-money. Following

a heuristic argument, in the Digital Put case we have set x0 = (µ0
0, 0, 0, 1), where

µ0
0 = (log (K/S0)− rT ) /σ, such that:

EQ [S0 exp
{(
r − 1/2σ2

)
T + σ(WT + µ0

0 T )
}]

= K (3.18)

Alternatively, it is possible to run the optimisation algorithm in a less extreme

scenario and use its solution as an initial guess for the actual optimisation. This is

the approach we have followed for the Down-and-In Call.
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Chapter 4

Multilevel Monte Carlo

Multilevel Monte Carlo is an extension of the Control Variate technique which was

introduced by M. Giles in 2008. It enables us to reduce remarkably the computational

cost required to achieve a pre-determined accuracy. The underlying intuition is to

simulate a consistent number of samples at lower accuracy levels, using then fewer

paths at higher accuracy as a correction term. The main references for Multilevel

Monte Carlo are [Gil08, Gil15b, Gil15a].

4.1 General Background

Let us consider the Monte Carlo estimator we have defined in (1.2). Each sample

is estimated by discretising the underlying SDE, which implies choosing the number

of time-steps M . We will make this dependence explicit by denoting as P̂` a sample

path approximated with ` time-steps.

Given a sequence P̂1, . . . , P̂L−1, P̂L, it takes a simple application of telescopic sum

and linearity of expectation properties to obtain the following identity:

E[P̂L] = E[P̂0] +
L∑
`=1

E[P̂` − P̂`−1] (4.1)

With the usual Monte Carlo approach, we can approximate the expectation in (4.1)

as:

V̂ ML
L =

1

N0

N0∑
i=1

P̂
(i)
0 +

L∑
`=1

(
1

N`

N∑̀
i=1

(
P̂` − P̂`−1

)(i)
)

(4.2)

where the number of samples N` per each level is allowed to be different. The

notation
(
P̂` − P̂`−1

)(i)

implies that both P̂` and P̂`−1 are to be evaluated using the

same random sample (nevertheless, different paths on the same or on different levels
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are independent). We will assume that simulating a single path has different compu-

tational costs C`, depending on the number of time-steps ` of the approximation. In

our Euler-Maruyama framework, C` grows with ` (the order will be estimated later).

Moreover, we will admit that each of the estimators Ŷ` ,
(
P̂` − P̂`−1

)
, Ŷ0 , P̂0 have

different variance V`. Therefore the overall variance and computational cost of the

estimator V̂ ML
L are:

V [V̂ ML
L ] =

L∑
`=0

V`
N`

, Cost [V̂ ML
L ] =

L∑
`=0

C`N` (4.3)

For a fixed computational cost, it is possible choose the N`’s such that the overall

variance of the MLMC estimator is minimised. Applying KKT conditions to:

L({N`}, λ) =
L∑
`=0

V`
N`

+ λ

(
L∑
`=0

C`N`

)
(4.4)

we obtain that N` = λ
√
V`/C`. It is possible to choose the constant λ such that

the overall variance is equal to ε2, leading to:

N` =

(∑L
`=0

√
V`C`

ε2

) √
V`
C`

(4.5)

The overall computational cost is then:
(∑L

`=0

√
V`C`

)2

/ε2.

We will now state a key theorem for Multilevel Monte Carlo in a general stochastic

framework (for reference, see Theorem 1 in section 2 of [Gil15b]).

Complexity Theorem. Let P be a random variable and let P` be its corresponding

level ` numerical approximation. Let us suppose there exist independent estimators

Ŷ` based on N` Monte Carlo samples, each with expected cost C` and variance V`, and

positive constants α, β, γ, c1, c2, c3 such that α ≥ 1
2
min(β, γ) . Let us suppose in

addition that the following hold:

1. |E[P` − P ] | ≤ c1 2−α`

2. E[Ŷ`] =

{
P0 if ` = 0

P` − P`−1 if ` > 0

3. V` ≤ c2 2−β`

4. C` ≤ c3 2γ`
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Then, there exists a positive constant c4 such that, ∀ε < e−1 there are values L and

N` for which the Multilevel estimator V̂ ML =
∑L

`=0 Ŷ` has a Mean Square Error with

bound MSE[V̂ ML] < ε2 and a computational complexity C̄ with bound:

E[C̄] ≤


c4 ε

−2 if β > γ

c4 ε
−2 log2 ε if β = γ

c4 ε
−2−(γ−β)/α if β < γ

Recalling the results about Weak Error in section 1.2.1 and assuming that h` =

T 2−`, we can affirm that condition 1 is met, with α = 1.

Condition 2 (unbiasedness of the telescopic sum) is naturally met when using

Monte Carlo estimators. We will show in chapter 5 that this condition will not be

violated when introducing Importance Sampling.

In order to check condition 3, we need to introduce some assumptions on the

payoff. Let us assume that P (·) is Lipschitz-continuous. This means that:

|P (S)− P̂`| ≤ ξ ‖S − Ŝ‖ (4.6)

The monotonicity property of expectation combined with the results about Strong

Error that we have stated in 1.2.1 yields the following:

V[P − P̂`] ≤ E[(P − P̂`)2] ≤ ξ2 E[‖S − Ŝ‖2] = O(hβ` ) (4.7)

where β = 1 for the Euler-Maruyama approximation and β = 2 in the Milstein

case. An application of Cauchy-Schwartz inequality yields the result:
√

V[a− b] ≤√
V[a] +

√
V[b]. Applying it to V`:

V[P̂` − P̂`−1] = V[(P̂` − P )− (P̂`−1 − P )] ≤
(√

V[P − P̂`] +

√
V[P − P̂`−1]

)2

(4.8)

Therefore, the values of β in the Complexity Theorem are the ones we have mentioned

a few lines above.

As far as condition 4 is concerned, since one path simulation at level ` implies

2` iterations of fixed size block of instructions, without any nested for loops, C1
` =

O(2`). Hence, γ = 1.

On the basis of the values of α, β, γ we have derived, Complexity theorem ensures

that the computational cost to achieve O(ε2) Mean Square Error is O(ε−2 log2 ε). How

does this compare to standard Monte Carlo? We have seen in section 1.2.1 that the

MSE of a standard Monte Carlo estimator is O(1/N+h2), which requires N = O(ε−2)

and h = O(ε) to achieve our target O(ε2) MSE accuracy. The resulting computational

cost is C = O(N/h) = O(ε−3), which proves the benefit of the Multilevel approach.
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4.1.1 Smoothing of non-Lipschitz payoffs

In the previous section we have assumed to deal with Lipschitz-continuous payoffs.

However, the payoff of a Digital Put is originally discontinuous, hence non-Lipschitz.

This feature has a detrimental consequence on the order of V`. In fact:

E[Ŷ 2
` ] = O(1) · P

(
P̂` 6= P̂`−1

)
(4.9)

Denoting by Ŝf the final value of Ŝn at the finer level ` and Ŝc the corresponding

quantity at the coarser level (`−1), the case when (P̂` 6= P̂`−1 occurs when Ŝf < K and

Ŝc > K or vice versa. This happens for an O(
√
h`) fraction of paths using an Euler-

Maruyama time-stepping and for an O(h`) fraction if the Milstein approximation is

used.

Therefore, the order of convergence for the variance of the Multilevel estimators

(β) decreases to 0.5 and 1 respectively. Recalling the relation between V` and N`, this

effect is clearly detrimental.

Applying the payoff smoothing technique explained in section 1.3.1, the difference

between the payoffs corresponding to Ŝf and Ŝc around the strike K is:

P̂` − P̂`−1 = O

(
‖Ŝf − Ŝc‖√

h`

)
=

{
O (1) Euler-Maruyama

O
(√

h`
)

Milstein
(4.10)

The result comes from an application of the Mean Value Theorem.

The practical implementation of the payoff smoothing explained in 1.3.1 requires

some care at the coarser level. In fact, the results we have presented hold only if we

re-use the first half of the increment (which is the penultimate step at the finer level).

Hence:

P̂`−1 = Φ

(
K − ŜcMc−1 (1 + rh`−1 + σ∆WMf−1)

σ
√
h`ŜcMc−1

)
(4.11)

where M f = 2` and M c = 2`−1.

It is worth pointing out what we have just shown: payoff smoothing introduces

tangible benefit in terms of order of variance convergence only when using Milstein

discretisation. Nevertheless, differentiability is always a positive feature (for example,

it would allow for a broader range of techniques if we needed to compute Greeks).
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Chapter 5

Multilevel Monte Carlo and
Importance Sampling combined

5.1 Preliminary clarifications

In this section we will show the benefits of combining Multilevel Monte Carlo with

Importance Sampling. However, we need to clarify a few important points before

showing numerical results.

5.1.1 The Importance Sampling Multilevel Estimators

Equation (4.2) allowed for a certain freedom of choice for the estimators P̂` and P̂`−1:

in fact, we only require that they do not violate the consistency of the telescopic sum

in (4.1). In the standard Multilevel framework (assuming that the refinement factor

is 2, as we have done so far), the Brownian Increments used in the path simulation

for Ŝc are derived from the Brownian Increments of the finer level as follows:

∆Wc,n = ∆Wf,2n + ∆Wf,2n+1, n = 1, . . . , 2`−1 (5.1)

Using the change in drift and variance, alongside with the Brownian Bridge construc-

tion (as we have exposed in chapter 2) leads to slightly different Radon-Nikodym

derivatives for the two levels. Namely:

RN` = |σ̃| exp

(1− σ̃2)
Z2

1

2
+

2`∑
n=1

(
1

2
µ̃2
n h` − µ̃n∆W IS

f,n

) (5.2)

RN`−1 = |σ̃| exp

(1− σ̃2)
Z2

1

2
+

2`−1∑
n=1

(
1

2
µ̃2
n h`−1 − µ̃n∆W IS

c,n

) (5.3)
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It is worth mentioning that, in the case of a digital put with the payoff smoothing

(1.3.1), the last term in the summations is dropped, since we are ending our stochastic

simulation at M f − 1 and M c − 1 respectively. The resulting Multilevel Importance

Sampling estimator is:

V̂ IS
ML =

1

N0

N0∑
i=1

P̂
(i)
0 RN

(i)
0 +

L∑
`=1

(
1

N`

N∑̀
i=1

(
P̂`RN` − P̂`−1RN`−1

)(i)
)

(5.4)

Recalling the unbiasedness results we have proved in chapter 2, the consistency

condition follows immediately:

Es[P̂`RN`] = Eq[P̂`] and Es[P̂`−1RN`−1] = Eq[P̂`−1] (5.5)

Note: in section 2.1, our derivation of the optimal Importance Sampling distri-

bution assumed that f(·) is a positive function. Of course, this condition cannot

be verified for the Multilevel estimator (P̂` − P̂`−1). We will simply mention that,

for a general integrand function f(·), the Importance Sampling distribution s(x) is

proportional to |f(x)| q(x) (please refer to [KM53] for full detail). Figure 5.2.1.2 will

add insight into this aspect.

5.1.2 Choice for the penultimate step

In (4.11) we have shown how the smoothed payoff for a digital option is built at the

coarser level. However, in the Importance Sampling framework this definition is not

obvious, as we have to choose whether the penultimate Brownian Increment is drawn

from the original or from the Importance Sampling measure. Choosing to sample

from the Importance Sampling measure adds a term in the summation inside RN`−1,

corresponding to the step M f − 2.

We will show the effects of this choice later on in this chapter.

5.1.3 How many degrees of freedom?

A priori, we have no knowledge about the dependence between the optimal Impor-

tance Sampling parameters and the level `. We will start allowing each level to have

different parameters (which implies performing an optimisation algorithm at each

step). More specifically, we will use the optimal parameters at level (` − 1) as a

starting point when optimising for level `. For practical reasons, we have reduced the

tolerance ξ (see section 3.2.4) to 10% for ` ≥ 6.
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5.1.4 What to minimise?

When it comes to running the optimisation algorithm, we have to decide which quan-

tity should be minimised. Since the estimators P̂` and (P̂` − P̂`−1) have different fea-

tures, we have considered minimising for Es
[(
P̂`RN`

)2
]

and Es
[(
P̂`RN` − P̂`−1RN`−1

)2
]
.

Results for both will follow.

5.2 Simulations for a Digital Put. S0 = 100, K = 50

5.2.1 Economised model 1: only µ0 and σ̃

We will start with an economised model, where we will assume that the Importance

Sampling drift term is constant throughout time. In the following sections we will

use this notation to indicate different Importance Sampling approaches.

• i/ii: Minimising Es[(P̂`RN` − P̂`−1RN`−1)2] or Es[(P̂`RN`)
2]

• a/b: with and without Importance Sampling in the penultimate step at the

Coarse level

We have used the following quantity as a proxy for the computational cost:

Cost ∝
L∑
`=0

2`N` (5.6)

Note: we have excluded from all plots the values of V0 and N0. In fact, because

of payoff smoothing, simulating at level 0 produces a constant estimator.

5.2.1.1 Euler-Maruyama time-stepping

We have performed several simulations. For each, we have multiplied the payoff by

10 and set the target accuracy ε to 10−4. We have observed that all approaches

outperform standard Multilevel Monte Carlo and among them, i.a brings about the

greatest computational savings. Results and plots follow in the next pages.

In addition, we have added contour plots of the surfaces Es[(P̂`RN`)
2] and

Es[(P̂`RN`− P̂`−1RN`−1)2] as functions of (µ0, σ̃) (note: gaps between subsequent

lines in contour plots, looking like discontinuities, are simply due to our choice for non

uniform spacing between levels). These plots provide further insight into the difference

between approaches i and ii, showing that the optimal values for the two objective

functions are effectively different, especially for small values of ` (or equivalently M).
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No Importance Sampling

CostML V V̂ML WEML

1.97 · 109 0.020952 0.021113 1.62 · 10−4

Approach i.a

CostISML CostML/CostISML V V̂ IS
ML WEIS

ML

2.82 · 107 69.9 0.020952 0.020936 1.56 · 10−5

Importance Sampling parameters are:

Level 1 2 3 4 5 6 7 8 9 10

µ0 -1.64 -1.78 -2.15 -2.42 -2.62 -2.70 -2.78 -2.80 -2.83 -2.84
σ̃ 0.90 0.86 0.65 0.49 0.34 0.28 0.19 0.13 0.09 0.07

Approach ii.a

CostISML CostML/CostISML V V̂ IS
ML WEIS

ML

4.46 · 107 44.2 0.020952 0.020993 4.14 · 10−5

Importance Sampling parameters are:

Level 1 2 3 4 5 6 7 8 9 10

µ0 -2.80 -2.96 -2.96 -3.05 -3.09 -3.10 -3.11 -3.12 -3.11 -3.11
σ̃ 0.97 0.76 0.62 0.47 0.39 0.38 0.40 0.42 0.36 0.30

Approach i.b

CostISML CostML/CostISML V V̂ IS
ML WEIS

ML

3.52 · 108 5.6 0.020952 0.021092 1.40 · 10−4

Importance Sampling parameters are:

Level 1 2 3 4 5 6 7 8 9 10

µ0 -0.17 -0.66 -1.10 -2.29 -2.92 -3.00 -3.03 -3.00 -3.02 -3.01
σ̃ 1.20 1.33 1.39 0.88 0.50 0.40 0.38 0.32 0.31 0.30
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Figure 5.1: Values of µ0 (above) and σ̃ (below) for three different approaches. Euler-
Maruyama scheme.
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Figure 5.4: Contour plot of ϕ (µ0, σ̃) approach ii. M = 2
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Figure 5.5: Contour plot of ϕ (µ0, σ̃) approach i. M = 4
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Figure 5.6: Contour plot of ϕ (µ0, σ̃) approach ii. M = 4
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Figure 5.7: Contour plot of ϕ (µ0, σ̃) approach i. M = 8
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Figure 5.9: Contour plot of ϕ (µ0, σ̃) approach i. M = 16
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Figure 5.10: Contour plot of ϕ (µ0, σ̃) approach ii. M = 16
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Figure 5.11: Contour plot of ϕ (µ0, σ̃) approach i. M = 32
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Figure 5.12: Contour plot of ϕ (µ0, σ̃) approach ii. M = 32
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5.2.1.2 Milstein time-stepping

We have repeated the same simulations as in the previous section using Milstein

scheme. Guided by the results obtained so far, we have decided not to consider

approach b. We have reported some key quantities in the following tables and plots.

Moreover, we have plotted the empirical distributions of Ŝf at the final time-step

both for Euler-Maruyama and Milstein scheme.

No Importance Sampling

CostML V V̂ML WEML

2.80 · 108 0.020952 0.020875 7.71 · 10−5

Approach i.a

CostISML CostML/CostISML V V̂ IS
ML WEIS

ML

1.47 · 107 18.9 0.020952 0.020850 1.01 · 10−4

Importance Sampling parameters are:

Level 1 2 3 4 5 6 7 8

µ0 -1.74 -1.64 -2.12 -2.49 -2.65 -2.76 -2.80 -2.82
σ̃ 0.92 0.84 0.67 0.50 0.36 0.26 0.19 0.14

Approach ii.a

CostISML CostML/CostISML V V̂ IS
ML WEIS

ML

2.04 · 107 13.7 0.020952 0.020906 4.53 · 10−5

Importance Sampling parameters are:

Level 1 2 3 4 5 6 7 8

µ0 -2.08 -2.95 -3.10 -3.11 -3.11 -3.14 -3.11 -3.10
σ̃ 0.97 0.82 0.62 0.48 0.37 0.41 0.31 0.26
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Figure 5.13: Values of µ0 (above) and σ̃ (below) for two different approaches. Milstein
scheme.
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Figure 5.15: Empirical distributions of Ŝf on different levels. Milstein (above) and
Euler-Maruyama (below) discretisation. Approach i.a
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As expected, distributions exhibit a peak around ST = K = 50, where |P̂` −
P̂`−1| reaches its maximum. It is also worth noticing that in both cases σ̃ exhibits a

downwards trend. This is not surprising: as we have seen in section 4.1.1, the fraction

of paths for which P̂` and P̂`−1 differ (hence, |P̂`−P̂`−1| reaches its maximum) decreases

as ` increases. Analogously, the separation between the corresponding values of Ŝf
Mf

and ŜcMc decreases as ` increases. Therefore, the range of values of Ŝf
Mf which are

likely to have produced a difference in the payoffs collapses around K as ` increases.

A more detailed explanation of this phenomenon can be found at page 259 of [Gla04].

It is also worth commenting about the greater improvement that Importance

Sampling brings about when Euler-Maruyama scheme is employed. Figures 5.2.1.1

and 5.2.1.2 show that variance reduction due Importance Sampling is more significant

at the finest levels. However, recalling how the optimal set of N` is computed (see

chapter 4) and especially its O(2−β/2`) dependence on β, we expect the computational

cost to be more spread across all levels for the Euler-Maruyama approximation (β =

1/2); on the other hand, since β = 3/2 for the Milstein scheme, we expect the majority

of the computational cost to be concentrated in the coarsest levels, where the variance

reduction effects are less significant. The following bar plots summarise what we have

just mentioned.
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Figure 5.16: Computational cost at each level, using Importance Sampling. Euler-
Maruyama (green) and Milstein (blue) schemes.
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5.2.2 Full model: µ0, µ1, µ2, σ̃

In this section we will compare the benefits of allowing for a time-varying Importance

Sampling drift parameters, in the form described in (2.14). The first experiments

showed that, especially at the coarsest level, the objective function has more than

one local minimum. For example, at ` = 2, ϕ(x) has also a local minimum at

x = (−0.15,−1.45,−2.07, 0.90).

In order to ensure that the optimisation algorithm identifies the global minimum,

we have set Nopt = 20000. A more refined solution could make use of simulated

annealing before running the optimisation algorithm.

We have repeated 5 simulation using the Milstein scheme with optimisation ap-

proach i.a, with and without time-varying drift. Target accuracy was set to 10−4.

The average of the Importance Sampling parameters for the time-varying case is:

Level 1 2 3 4 5 6 7 8

µ0 -1.33 -4.94 -3.51 -3.10 -3.10 -3.01 -3.05 -3.03
µ1 -0.66 15.99 6.93 2.55 1.51 0.93 0.92 0.87
µ2 -0.33 -17.27 -6.86 -2.06 -0.96 -0.63 -0.64 -0.69
σ̃ 0.93 0.86 0.72 0.50 0.36 0.28 0.20 0.14

We have averaged the following values over the 5 simulations:

Model Cost V̂ V RMSE[V̂ ]

µ0, µ1, µ2, σ̃ 1.41 · 107 0.020966 0.020951 2.24 · 10−5

µ0, σ̃ 1.41 · 107 0.020941 0.020952 4.64 · 10−5

The difference in RMSE and the apparent indifference in terms of computational

cost led us to further investigation. We have plotted (figure 5.2.2) the average of

variance of the different levels in the two cases. Estimating β through linear regres-

sion over the 8 levels a posteriori yields β = 2.8 in the constant case and β = 2.4

in the time-varying case. Forcing this values in our MLMC algorithm (which usually

computes β through linear regression over the first 2 or 3 levels), we obtained com-

putational costs of 1.17 · 107 for constant drift and 1.03 · 107 for time-varying drift

(comparison in figure 5.2.2).

We conclude this section mentioning the possibility of a hybrid approach, using

time-varying drift in the first levels and constant drift in the following. For further

experiments with the Digital Put we will consider only the economised model µ0, σ̃.

43



1 2 3 4 5 6 7 8
−30

−25

−20

−15

−10

−5

Level

lo
g 2 V

ar
 [P

f −
P

c ]

 

 
log

2
 Var [Pf−Pc]. Time−varying drift

log
2
 Var [Pf−Pc]. Constant drift

Figure 5.17: Variance of the MLMC estimator at each level. With time-varying and
constant Importance Sampling drift

2 4 6 8
10

2

10
3

10
4

10
5

10
6

10
7

Level

N
um

be
r 

of
 p

at
hs

Time−varying drift

 

 
Number of paths forcing Beta
Number of paths regressing Beta

2 4 6 8
10

2

10
3

10
4

10
5

10
6

10
7

Level

N
um

be
r 

of
 p

at
hs

Constant drift

 

 
Number of paths forcing Beta
Number of paths regressing Beta
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Importance Sampling drift. Forcing (red) and regressing (black) the value of β

44



5.2.3 Optimising only on coarser levels

So far, we have run the optimisation algorithm at each level, using the optimal param-

eters of the previous level as a starting point. In order to investigate the sensitivity

of the computational cost to the optimality of the Importance Sampling parameters,

we have tried performing optimisation only up to a level L̄ rather than at each level.

For ` > L̄ we have simply set x` = xL̄. We have repeated the same experiment 5

times per each value of L̄. We have used Milstein scheme and set target accuracy to

5 · 10−5, resulting in 9-level estimators.

L̄ Cost Cost/(Cost|L̄=8) Achieved RMSE

all 5.66 · 107 100% 3.99 · 10−5

5 5.78 · 107 102% 1.93 · 10−5

4 5.86 · 107 103% 1.38 · 10−6

3 6.10 · 107 108% 3.56 · 10−5

2 6.58 · 107 116% 6.55 · 10−5

1 6.22 · 107 110% 2.78 · 10−5
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Figure 5.19: Computational Cost per each level for L̄ = 9

Note: we have decided to stop at L̄ > 5, since the standard deviation of Costs

for L̄ = 9 is 7.3 · 105 and distinguishing between different L̄’s would have required a

higher number of experiments. We can observe that performing optimisation only on
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the first 4/5 levels has marginal consequences on the benefits of the model. On the

other hand, it solves an intrinsic contradiction we had not properly investigated so

far: in fact, in the previous simulations, N` was often smaller than Nopt on the finest

levels.

5.2.4 Comparison between standard Importance Sampling
and Multilevel Importance Sampling

In this section we will compare the performances of four methods at different levels

of accuracy ε = (5, 2, 1, 0.5, 0.2, 0.1) · 10−4:

1. Standard Monte Carlo. Euler-Maruyama scheme.

2. Standard Importance Sampling Monte Carlo. Euler-Maruyama scheme. (µ0, σ̃).

3. Multilevel Monte Carlo. Milstein scheme.

4. Multilevel Importance Sampling Monte Carlo. Milstein scheme. (µ0, σ̃).

In figure 5.20 we have plotted Cost· ε−2 against ε. This choice helps showing

the O(ε−2) order of the computational cost of the Multilevel Methods. In order to

compute the computational cost for Standard Monte Carlo, we have used formula

(1.12). Applying a heuristic argument, we have set:

ν

N
=

ε2

2
and WE2 =

ε2

2
(5.7)

to find the values of N and M required to achieve the target accuracy. Computa-

tional cost has been simply obtained as Cost = N ·M . We have run simulations for

Standard Monte Carlo with N = 106 in order to estimate the values of WE, WEIS,

νIS (recall section 1.1) and ν.

M WEIS νIS WE ν

24 4.30 · 10−3 2.3 · 10−4 4.53 · 10−3 1430 · 10−4

25 2.07 · 10−3 2.05 · 10−4 1.97 · 10−3 1500 · 10−4

26 1.01 · 10−3 1.95 · 10−4 1.06 · 10−3 1580 · 10−4

27 4.70 · 10−4 3.2 · 10−4 7.49 · 10−4 1710 · 10−4

28 2.20 · 10−4 3.4 · 10−4 2.84 · 10−4 1830 · 10−4

29 8.51 · 10−5 3.55 · 10−4 1.81 · 10−4 1860 · 10−4

210 1.82 · 10−5 3.77 · 10−4 8.05 · 10−5 1910 · 10−4

211 1.77 · 10−5 4.26 · 10−4 1.02 · 10−3 -
212 8.55 · 10−6 4.24 · 10−4 5.60 · 10−5 -
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We have noticed that, in the case of the Standard Monte Carlo, for M ≥ 29, the

magnitude of the Weak Error becomes comparable with the standard deviation of the

Monte Carlo estimator, requiring then more than N = 106 samples for an accurate

estimate. Due to limited computational capacity, we have opted for a linear regression

based on the previous values of WE rather than direct simulation.

Figure 5.20 confirms the O(ε−2) order of magnitude of the computational cost for

Multilevel Monte Carlo. Moreover, it shows the great benefits both of Importance

Sampling and Multilevel Monte Carlo, compared to Standard Monte Carlo, as well as

the advantage of the combination of the two over either technique applied separately.

As we have pointed out at the end of section 5.2.1.2, the variance reduction effect

of Importance Sampling for the Multilevel estimators (P̂`−P̂`−1) is more evident at the

finest levels. On the contrary, the previous table showed that the variance reduction

effect on the Standard Monte Carlo estimator is comparable for all values of M . This

is the reason why Standard Importance Sampling outperforms Multilevel Monte Carlo

with Importance Sampling for the lowest value of accuracy that we have set. The

benefits of Multilevel Monte Carlo (both with and without Importance Sampling)

in terms of computational cost reduction becomes more and more remarkable as we

decrease the value of ε.

Note: unlike Multilevel Monte Carlo, computational cost for Standard Monte

Carlo (with and without Importance Sampling) has only been worked out theoreti-

cally.
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5.2.5 Economised models 2 & 3: only µ0 and only σ̃

We conclude the section about the Digital Put comparing two possible economisations

of the model. The former applies only a change in the variance σ̃, the latter only a

change in the constant Importance Sampling drift term µ0. We have used the Milstein

scheme and set target accuracy to ε = 10−4, obtaining the following results.

Importance Sampling parameters:

Levels 1 2 3 4 5 6 7 8

Only µ0 -1.77 -1.64 -2.04 -2.33 -2.62 -2.74 -2.75 -2.72

Only σ̃ 1.26 1.49 1.80 2.61 2.86 2.60 2.73 3.98

As we expected, the optimal value for σ̃ is greater than 1 when the change in

variance is not coupled with a change in drift. In fact, increasing the variance has the

effect of driving more paths in the critical region around the strike price K. On the
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contrary, the optimal values for µ0 are comparable to those obtained when associated

with σ̃.

Key figures:

Method V V̂ WE Cost

MLMC+IS, only µ0 0.020952 0.020947 4.02 · 10−6 1.48 · 107

MLMC+IS, only σ̃ 0.020952 0.020951 5.94 · 10−7 1.49 · 108

MLMC+IS, (µ0,σ̃) 0.020952 0.020889 6.24 · 10−5 1.41 · 107

MLMC 0.020952 0.020769 1.83 · 10−4 2.78 · 108
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Figure 5.21: Plots of log2 V` and N` for Multilevel Monte Carlo without (purple) and
with (only σ̃: green, only µ0: red, both: red) Importance Sampling.
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Although both changes in drift and in variance have beneficial effects even when

applied separately, the role of the former is more relevant. The apparently scarce

advantage of choosing the full model over the one including only µ0 can be explained

observing figure 5.21: the difference in V` between the two approaches increases with

`. Therefore, the benefits of the complete models can be fully appreciated at higher

levels of accuracy. Repeating the experiment with ε = 5 · 10−5 and ε = 2.5 · 10−5

required computational costs of 5.65 ·107 and 2.28 ·108 respectively for the full model

and of 5.96 · 107 and 2.41 · 108 respectively using only µ0.

5.3 Simulations for a Down-and-In Call.

S0 = 100, K = 100, B = 70

In this section we have performed simulations for a Down-and-In Call with and with-

out Importance Sampling in the Multilevel framework. We have used exclusively

the Milstein scheme and we have only considered the full model, namely including

(µ0, µ1, µ2, σ̃). Setting the target accuracy to ε = 2 · 10−4, we have obtained the

following results:

No Importance Sampling

CostML V V̂ML WEML

1.36 · 109 0.016885 0.017047 1.62 · 10−4

Approach i.a

CostISML CostML/CostISML V V̂ IS
ML WEIS

ML

9.47 · 107 14.4 0.016885 0.016863 2.23 · 10−5

Importance Sampling parameters are:

Level 1 2 3 4 5 6 7

µ0 -3.24 -5.85 -5.35 -4.47 -4.12 -3.89 -3.89
µ1 1.66 12.73 12.89 10.42 11.84 11.12 11.13
µ2 4.11 -4.56 -4.44 -2.06 -4.73 -4.09 -4.10
σ̃ 0.49 0.71 0.56 0.60 0.60 0.35 0.38
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Approach ii.a

CostISML CostML/CostISML V V̂ IS
ML WEIS

ML

2.04 · 108 6.7 0.016885 0.016775 1.11 · 10−4

Importance Sampling parameters are:

Level 1 2 3 4 5 6 7

µ0 -3.28 -5.51 -4.63 -3.28 -3.87 -3.69 -3.66
µ1 1.67 12.97 12.75 7.73 11.54 10.60 10.53
µ2 4.15 -4.37 -4.92 -0.69 -4.36 -3.45 -3.51
σ̃ 0.49 0.42 0.48 0.45 0.39 0.51 0.45

Plots of N` and log2 V` for the three methods follow:

1 2 3 4 5 6 7
−12

−10

−8

−6

−4

−2

0

Level

lo
g 2 V

ar
 [P

f −
P

c ]

 

 
log

2
 Var [Pf−Pc] without IS

log
2
 Var [Pf−Pc] with IS. Approach ii.a

log
2
 Var [Pf−Pc] with IS. Approach i.a

1 2 3 4 5 6 7
10

5

10
6

10
7

10
8

Level

N
um

be
r 

of
 p

at
hs

 

 
Number of paths without IS
Number of paths with IS. Approach ii.a
Number of paths with IS. Approach i.a

Figure 5.22: log2 V` and N` for Multilevel Monte Carlo, with and without Importance
Sampling. Approaches i.a and ii.a
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It is worth pointing out that we have decided to start from ` = 1 rather than

` = 0, since we are dealing with a path-dependent option. Therefore, the estimator

corresponding to level 1 is a Standard Monte Carlo estimator P̂1.

Figure 5.22 shows that the variance reduction effect of Importance Sampling is

significantly more evident for ` = 1. This result is analogous to those obtained for

a Digital Put, where we have observed that the magnitude of the variance reduction

effect is much higher if applied to the Standard estimators P̂` rather than to the

Multilevel estimators (P̂` − P̂`−1). Moreover, both tables and plots suggest that

approach i outperforms approach ii in terms of reduction of variance (especially for

` = 2) and overall computational cost.

Note: the performance of the optimisation algorithm for a Down-and-In Call has

been poorer than with a Digital Put. Contour plots show that the objective function

requires more careful preconditioning. As a result, some of the simulation runs needed

to be discarded, since the estimated Importance Sampling parameters were evidently

suboptimal. We do not exclude that more refined optimisation methods may lead to

further variance reduction.

5.3.1 Optimising only on coarser levels

In this section, we have performed an experiment similar to the one in section

5.2.3. We have set our target accuracy to be ε = 2 ·10−4 and performed 5 simulations

per each value of L̄. We will be using the same notation as in section 5.2.3.

L̄ Cost Cost/(Cost|L̄=7) Achieved RMSE

7 (all) 9.47 · 107 100% 7.90 · 10−5

6 1.04 · 108 110% 6.20 · 10−5

5 1.15 · 108 121% 1.25 · 10−4

4 1.04 · 108 109% 1.80 · 10−4

3 6.18 · 108 652% 1.26 · 10−4

2 4.24 · 108 447% 1.49 · 10−5

The results in this table suggest that setting L̄ ≥ 4 allows to obtain satisfactory

results. It is worth pointing out that setting L̄ smaller than the overall number of

levels is the only practically viable solution: in fact, although this approach provides

suboptimal solutions, optimising at each level would often imply that Nopt > N` at

the coarser levels, which is contradictory.
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Chapter 6

Conclusions

Throughout this dissertation, we have explored the potential of a combined use of

Importance Sampling and Multilevel Monte Carlo to achieve variance reduction. We

have shown that this approach leads to greater benefits than either Multilevel Monte

Carlo or Importance Sampling on their own. Apart from a similar application with a

different approach in [Eug12], we are not aware of any other papers dealing with the

combination of the two techniques.

We have tested in full detail the advantages of our method on a European option

(namely, a Digital Put) and we have included results showing that remarkable variance

reduction can be achieved also for path-dependent options (in our case, a Down-and-

In Barrier Call).

Our approach to Importance Sampling, operating exclusively on the Brownian

increments and on the normal random variables they are generated from, has been

appositely designed to allow for great flexibility. In fact, it can be generalised to a

wide variety of problems without needing much prior knowledge. In addition, we have

presented different approaches to optimisation, which can extend the application of

our model even in the case of discontinuous payoffs.

Alongside with the benefits of combining the two techniques, this dissertation

has also pointed out how intrinsically delicate the implementation of Importance

Sampling is and has appositely dedicated several sections to important matters that

have arisen throughout the process. For instance, we have investigated the theoretical

limit to a change in variance and we have proposed an alternative approach based

on the Brownian Bridge construction; we have assessed the benefits of performing

optimisation for (P̂` − P̂`−1) rather than for P̂` in the Multilevel framework; we have

investigated the sensitivity of our method to the choice for the penultimate step in

the case of payoff smoothing.
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6.1 Further developments

The first improvement in order to make the model we have presented applicable is

to adopt a faster optimisation algorithm. Since we are dealing with a low dimensional

problem, any built-in package can produce satisfactory results.

In addition, it might be worth considering different Optimisation techniques, such

as the ones we have mentioned at the beginning of chapter 3.

Furthermore, it could be interesting to compare the performance of the three differ-

ent versions of the objective function for our problem using a more solid optimisation

algorithm.

Moreover, it could be possible to further exploit the flexibility that our model

allows for: in fact, we have dealt with a SDE that might have been solved analytically.

However, we have made use of the exact solution only with the purpose of making

tests on the method. Therefore, our Importance Sampling Multilevel Monte Carlo

approach can be applied to non-integrable SDEs, e.g. for Stochastic Volatility models.

Finally, in [GHS99] the authors have shown the benefits of combining Importance

Sampling with Stratification. It might be worth investigating the advantages of this

approach in the Multilevel framework.
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Appendix A

Matlab code

This appendix includes a selection the Matlab scripts and functions that have been

used to produce the results included in this dissertation.

A.1 Approximation of ϕ

A.1.1 Digital Put, Milstein scheme, approach i.a

This function approximates Es[(P̂`RN` − P̂`−1RN`−1)2] starting from a given matrix

of normal random variables Z. It is designed to deal with the cases of (µ0, µ1, µ2, σ̃),

(µ0, σ̃), only µ0 and only σ̃.

function e = E2_digital_MLMC_milstein(Z,PROBparam,ISparam)

S0 = PROBparam(1); K = PROBparam(2);

r = PROBparam(3); sig = PROBparam(4);

T = PROBparam(5);

N = size(Z,2); M = size(Z,1);

P = length(ISparam);

if M<2

error(’Row dimension must be at least 2.’)

end

jump = 2;

Mc = M/jump;

hf = T/M;
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hc = hf*jump;

Sf_old = S0*ones(1,N);

Sf_new = Sf_old;

Sc_new = Sf_old;

Sc_old = Sf_old;

switch P

case 4

a = ISparam(1); b = ISparam(2);

c = ISparam(3); sigIS = ISparam(4);

ARG_EXPc = 0.5*(-sigISˆ2+1)*Z(1,:).ˆ2;

Z(1,:) = sigIS * Z(1,:);

ARG_EXPf = ARG_EXPc;

Z = bb(Z,T);

for n = 1:Mc

Sc_old = Sc_new;

dWc = zeros(1,N);

for m = 1:jump

Sf_old = Sf_new;

index = (n-1)*jump + m;

rISf = a+b*(index/M)+c*(index/M)ˆ2;

Sf_new = Sf_old .*(1+r*hf+sig*Z(index,:)+rISf*sig*hf...

+0.5*sigˆ2*((Z(index,:)+rISf*hf).ˆ2-hf));

ARG_EXPf = ARG_EXPf - ...

(0.5*hf*rISfˆ2+rISf*Z(index,:));

dWc = dWc + Z(index,:);

end

rISc = a+b*(n/Mc)+c*(n/Mc)ˆ2;

Sc_new = Sc_old .*(1+r*hc+sig*dWc+sig*rISc*hc...

+0.5*sigˆ2*((dWc+rISc*hc).ˆ2-hc));

ARG_EXPc = ARG_EXPc - ...

(0.5*hc*rIScˆ2+rISc*dWc);

end
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last_rIS = a+b*((M-1)/M)+c*((M-1)/M)ˆ2;

case 2

rIS = ISparam(1); sigIS = ISparam(2);

ARG_EXPc = 0.5*(-sigISˆ2+1)*Z(1,:).ˆ2;

Z(1,:) = sigIS * Z(1,:);

ARG_EXPf = ARG_EXPc;

Z = bb(Z,T);

for n = 1:Mc

Sc_old = Sc_new;

dWc = zeros(1,N);

for m = 1:jump

Sf_old = Sf_new;

index = (n-1)*jump + m;

Sf_new = Sf_old .*(1+r*hf+sig*Z(index,:)+rIS*sig*hf...

+0.5*sigˆ2*((Z(index,:)+rIS*hf).ˆ2-hf));

ARG_EXPf = ARG_EXPf - ...

(0.5*hf*rISˆ2+rIS*Z(index,:));

dWc = dWc + Z(index,:);

end

Sc_new = Sc_old .*(1+r*hc+sig*dWc+sig*rIS*hc...

+0.5*sigˆ2*((dWc+rIS*hc).ˆ2-hc));

ARG_EXPc = ARG_EXPc - ...

(0.5*hc*rISˆ2+rIS*dWc);

end

last_rIS = rIS;

case 1

rIS = ISparam(1); sigIS = 1;
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ARG_EXPc = zeros(1,N);

ARG_EXPf = ARG_EXPc;

Z = bb(Z,T);

for n = 1:Mc

Sc_old = Sc_new;

dWc = zeros(1,N);

for m = 1:jump

Sf_old = Sf_new;

index = (n-1)*jump + m;

Sf_new = Sf_old .*(1+r*hf+sig*Z(index,:)+rIS*sig*hf...

+0.5*sigˆ2*((Z(index,:)+rIS*hf).ˆ2-hf));

ARG_EXPf = ARG_EXPf - ...

(0.5*hf*rISˆ2+rIS*Z(index,:));

dWc = dWc + Z(index,:);

end

Sc_new = Sc_old .*(1+r*hc+sig*dWc+sig*rIS*hc...

+0.5*sigˆ2*((dWc+rIS*hc).ˆ2-hc));

ARG_EXPc = ARG_EXPc - ...

(0.5*hc*rISˆ2+rIS*dWc);

end

last_rIS = rIS;

% Uncomment and comment the previous part to switch from

% only drift to only variance

% case 1

%

% rIS = 0; sigIS = ISparam(1);

%

% ARG_EXPc = 0.5*(-sigISˆ2+1)*Z(1,:).ˆ2;

% Z(1,:) = sigIS * Z(1,:);

% ARG_EXPf = ARG_EXPc;

% Z = bb(Z,T);

%

% for n = 1:Mc

60



%

% Sc_old = Sc_new;

% dWc = zeros(1,N);

% for m = 1:jump

% Sf_old = Sf_new;

% index = (n-1)*jump + m;

% Sf_new = Sf_old .*(1+r*hf+sig*Z(index,:)...

% +0.5*sigˆ2*(Z(index,:).ˆ2-hf));

%

% dWc = dWc + Z(index,:);

% end

% Sc_new = Sc_old .*(1+r*hc+sig*dWc...

% +0.5*sigˆ2*(dWc.ˆ2-hc));

% end

% last_rIS = 0;

end

ARG_EXPf = ARG_EXPf + ...

(0.5*hf*rISfˆ2+rISf*Z(end,:));

ARG_EXPc = ARG_EXPc + ...

(0.5*hc*rIScˆ2+rISc*dWc);

ARG_EXPc = ARG_EXPc - ...

(0.5*hf*rISfˆ2+last_rIS*Z(end-1,:));

D = exp(-r*T);

Pf = D*Ncdf((K-Sf_old-r*hf*Sf_old)./(sig*sqrt(hf)*Sf_old));

RNf = sigIS*exp(ARG_EXPf);

dW = dWc - Z(end,:);

Pc = D*Ncdf((K-Sc_old-r*hc*Sc_old-sig*Sc_old.*...

(dW+last_rIS*hf))./(sig*sqrt(hc)*Sc_old));

RNc = sigIS*exp(ARG_EXPc);

e = sum((Pf.*RNf-Pc.*RNc).ˆ2)/N;

end
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A.1.2 Down-and-In-Call, Milstein scheme, approach i.a

This function approximates Es[(P̂`RN` − P̂`−1RN`−1)2] starting from a given matrix

of normal random variables Z.

function e = E2_downandin_MLMC(Z,PROBparam,ISparam)

aIS = ISparam(1); bIS = ISparam(2);

cIS = ISparam(3); sigIS = ISparam(4);

S0 = PROBparam(1); K = PROBparam(2);

r = PROBparam(3); sig = PROBparam(4);

T = PROBparam(5); B = PROBparam(6);

N = size(Z,2); M = 2;

nf = size(Z,1); nc = nf/M;

hf = T/nf; hc = T/nc;

sumP_IS = 0;

l = log2(nf);

Sf_new = S0*ones(1,N);

Pc = zeros(1,N);

if l == 1

P_notcrossf = ones(1,N);

Z(1,:) = sigIS*Z(1,:);

RNf = sigIS*exp( - 0.5*(1-1/sigISˆ2)*Z(1,:).ˆ2);

dWf = bb(Z,T);

ARG_expf = zeros(1,N);

for m = 1:nf

Sf_old = Sf_new;

rISf = aIS+bIS*(m/nf)+cIS*(m/nf)ˆ2;

Sf_new = Sf_old .*(1+r*hf+sig*dWf(m,:)+rISf*sig*hf...

+0.5*sigˆ2*((dWf(m,:)+rISf*hf).ˆ2-hf));

P_notcrossf = P_notcrossf.*(1-exp(-2*complex_max(Sf_new-B,0)...

.*complex_max(Sf_old-B,0)./(hf*sigˆ2*Sf_old.ˆ2)));

ARG_expf = ARG_expf - ...
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(0.5*hf*rISfˆ2+rISf*dWf(m,:));

end

RNf = RNf.*exp(ARG_expf);

D = exp(-r*T);

Pf = D*complex_max(Sf_new-K,0).*(1-P_notcrossf).*RNf;

end

if l > 1

Sc_new = Sf_new;

P_notcrossf = ones(1,N); P_notcrossc = ones(1,N);

Z(1,:) = sigIS*Z(1,:);

RNf = complex_abs(sigIS)*exp( - 0.5*(1-1/sigISˆ2)*Z(1,:).ˆ2);

RNc = RNf;

dWf = bb(Z,T);

ARG_expc = zeros(1,N); ARG_expf = zeros(1,N);

for n = 1:nc

dWc = zeros(1,N);

Sc_old = Sc_new;

for m = 1:M

Sf_old = Sf_new;

index = (n-1)*M + m;

rISf = aIS+bIS*(index/nf)+cIS*(index/nf)ˆ2;

Sf_new = Sf_old .*(1+r*hf+sig*dWf(index,:)+rISf*sig*hf...

+0.5*sigˆ2*((dWf(index,:)+rISf*hf).ˆ2-hf));

P_notcrossf = P_notcrossf.*(1-exp(-2*complex_max...

(Sf_new-B,0).*complex_max(Sf_old-B,0)./...

(hf*sigˆ2*Sf_old.ˆ2)));

ARG_expf = ARG_expf - ...

(0.5*hf*rISfˆ2+rISf*dWf(index,:));

dWc = dWc + dWf(index,:);

end

rISc = aIS+bIS*(n/nc)+cIS*(n/nc)ˆ2;

Sc_new = Sc_old + r*Sc_old*hc + sig*Sc_old.*dWc+sig*rISc*hc*Sc_old...

+0.5*sigˆ2*Sc_old.*((dWc+rISc*hc).ˆ2-hc);
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ARG_expc = ARG_expc - ...

(0.5*hc*rIScˆ2+rISc*dWc);

P_notcrossc = P_notcrossc.*(1-exp(-2*complex_max...

(Sc_new-B,0).*complex_max(Sc_old-B,0)./(hc*sigˆ2*Sc_old.ˆ2)));

end

RNc = RNc.*exp(ARG_expc); RNf = RNf.*exp(ARG_expf);

D = exp(-r*T);

Pf = D*complex_max(Sf_new-K,0).*(1-P_notcrossf).*RNf;

Pc = D*complex_max(Sc_new-K,0).*(1-P_notcrossc).*RNc;

end

sumP_IS = sumP_IS + sum((Pf-Pc).ˆ2);

e = sumP_IS/N;

end

A.2 Line Search

This function performs the Line Search described in section 3.2.3.

function [alpha,value] = find_alpha...

(Z,PROBparam,x0,f0,grad0,p,m1,m2,E2fcn,GRADfcn,percentage,bump)

alphaL = 0; fprime0 = (grad0’*p);

% alpha = -0.5*percentage*f0/fprime0; %safer

alpha = -percentage*f0/fprime0;

alphaR = alpha; xR = x0 + alphaR*p;

fR = feval(E2fcn,Z,PROBparam,xR);

gradR = feval(GRADfcn,Z,PROBparam,xR,bump);

fprimeR = (gradR’*p)/norm(p,2);

while fprimeR <=0

wolfe1 = (fR <= f0 + m1*alpha*fprimeR);

wolfe2 = (fprimeR >= m2*fprime0);

if wolfe1 == true && wolfe2 == false

alphaL = alphaR;

end

if alphaR > 1e5
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alpha = +inf; value = +inf;

return

end

alphaR = 2*alphaR; xR = x0 + alphaR*p;

fR = feval(E2fcn,Z,PROBparam,xR);

gradR = feval(GRADfcn,Z,PROBparam,xR,bump);

fprimeR = (gradR’*p)/norm(p,2);

end

alpha = alphaL+(alphaR-alphaL)*0.5;

x1 = x0 + alpha*p; f1 = feval(E2fcn,Z,PROBparam,x1);

grad1 = feval(GRADfcn,Z,PROBparam,x1,bump);

fprime1 = (grad1’*p)/norm(p,2);

wolfe1 = (f1 <= f0 + m1*alpha*fprime0);

wolfe2 = (fprime1 >= m2*fprime0);

warning = 0;

while (˜(wolfe1 == true && wolfe2 == true)) && warning < 16

if wolfe1 == true && wolfe2 == false

alphaL = alpha;

alpha = alphaL + 0.5*(alphaR-alphaL);

x1 = x0 + alpha*p;

f1 = feval(E2fcn,Z,PROBparam,x1);

grad1 = feval(GRADfcn,Z,PROBparam,x1,bump);

fprime1 = (grad1’*p)/norm(p,2);

wolfe1 = (f1 <= f0 + m1*alpha*fprime0);

wolfe2 = (fprime1 >= m2*fprime0);

elseif wolfe1 == false

alphaR = alpha;

alpha = alphaL + 0.5*(alphaR-alphaL);

x1 = x0 + alpha*p;

f1 = feval(E2fcn,Z,PROBparam,x1);

grad1 = feval(GRADfcn,Z,PROBparam,x1,bump);

fprime1 = (grad1’*p)/norm(p,2);

wolfe1 = (f1 <= f0 + m1*alpha*fprime0);

wolfe2 = (fprime1 >= m2*fprime0);
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end

warning = warning+1;

end

value = f1;

if warning >=16

alpha = +inf; value = +inf;

end

end

A.3 Multilevel Monte Carlo simulation. Digital

Put. Milstein Scheme

The following function is used to perform a Multilevel Monte Carlo simulation. The

target accuracy needs to be specified as an input for the nested function mlmc penultimate.

This function relies on three underlying routines: mlmc penultimate (which per-

forms the actual Multilevel Monte Carlo simulation), gbm l (which computes es-

timators for P̂`, (P̂` − P̂`−1) and their squares for a single specified level) and the

optimisation function optim.

function [P,Nl,var,elapsed,cost,rIS,sigIS]=...

MLMC_digital_optimincluded_milstein

tic

global S0 K T r sig insurance

S0 = 100; K = 50; T = 1;

r = 0.05; sig = 0.25; insurance = 10;

[P, Nl,var,rIS,sigIS] = mlmcvar_optimincluded(1000,TARGET_ACCURACY,...

@gbm_l, 1,-1,1,@optim);

maxL = length(Nl); cost = sum((2.ˆ(0:(maxL-1))).*Nl);

elapsed=toc;

end

function [sum1, sum2] = gbm_l(l,N,rIS,sigIS)
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global S0 K T r sig insurance

M = 2; nf = Mˆl; nc = nf/M;

hf = T/nf; hc = T/nc;

sum1(1:4) = 0; sum2(1:2) = 0;

for N1 = 1:10000:N

N2 = min(10000,N-N1+1);

Sf_old = S0*ones(1,N2); Sf_new = Sf_old;

Sc_old = Sf_old; Sc_new = Sc_old;

Pc = zeros(1,N2);

if l == 0

RNf = ones(1,N2);

end

if l>0

dWf = randn(nf,N2);

dWf(1,:) = sigIS*dWf(1,:);

RNf = sigIS*exp( - 0.5*(1-1/sigISˆ2)*dWf(1,:).ˆ2);

RNc = RNf; dWf = bb(dWf,T);

ARG_expc = zeros(1,N2); ARG_expf = zeros(1,N2);

for n = 1:nc

dWc = zeros(1,N2); Sc_old = Sc_new;

for m = 1:M

Sf_old = Sf_new;

index = (n-1)*M + m;

dWc = dWc + dWf(index,:);

Sf_new = Sf_old .*(1+r*hf+sig*dWf(index,:)+rIS*sig*hf...

+0.5*sigˆ2*((dWf(index,:)+rIS*hf).ˆ2-hf));

ARG_expf = ARG_expf - ...
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(0.5*hf*rISˆ2+rIS*dWf(index,:));

end

Sc_new = Sc_old + r*Sc_old*hc + sig*Sc_old.*dWc+sig*rIS*hc*Sc_old...

+0.5*sigˆ2*Sc_old.*((dWc+rIS*hc).ˆ2-hc);

ARG_expc = ARG_expc - ...

(0.5*hc*rISˆ2+rIS*dWc);

end

ARG_expf = ARG_expf + ...

(0.5*hf*rISˆ2+rIS*dWf(end,:));

ARG_expc = ARG_expc + ...

(0.5*hc*rISˆ2+rIS*dWc);

ARG_expc = ARG_expc - ...

(0.5*hf*rISˆ2+rIS*dWf(end-1,:));

RNc = RNc.*exp(ARG_expc); RNf = RNf.*exp(ARG_expf);

end

Pf = exp(-r*T)*insurance*...

Ncdf((K-Sf_old-r*hf*Sf_old)./(sig*sqrt(hf)*Sf_old)).*RNf;

if (l>0)

dW = dWc-dWf(end,:);

Pc = exp(-r*T)*insurance*Ncdf((K-Sc_old-r*hc*Sc_old-sig*Sc_old.*...

(dW+rIS*hf))./(sig*sqrt(hf)*Sc_old)).*RNc;

end

sum1(1) = sum1(1) + sum(Pf-Pc);

sum1(2) = sum1(2) + sum((Pf-Pc).ˆ2);

sum1(3) = sum1(3) + sum((Pf-Pc).ˆ3);

sum1(4) = sum1(4) + sum((Pf-Pc).ˆ4);

sum2(1) = sum2(1) + sum(Pf);

sum2(2) = sum2(2) + sum(Pf.ˆ2);

end end

function [rIS,sigIS] = optim(l,rIS,sigIS,tol)

global S0 K T r sig
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Nopt = 10000;

E2fcn = @E2_digital_MLMC_milstein;

GRADfcn = @grad_CVT_digital_MLMC_milstein;

bump = 1e-10; %bump to be used in the CVT approximation

first_percentage = 0.01;

m1G = 1e-4; m2G = 0.8;

% Parameters for the Wolfe conditions

PROBparam(1)= S0; PROBparam(2) = K; PROBparam(3) = r;

PROBparam(4) = sig; PROBparam(5) = T;

x0 = [rIS;sigIS];

Z = randn(2ˆl,Nopt);

f0 = feval(E2fcn,Z,PROBparam,x0);

grad0 = feval(GRADfcn,Z,PROBparam,x0,bump);

p = -grad0; p = p/norm(p,2);

alpha = find_alpha(Z,PROBparam,...

x0,f0,grad0,p,m1G,m2G,E2fcn,GRADfcn,first_percentage,bump);

x1 = x0 + alpha*p;

f1 = feval(E2fcn,Z,PROBparam,x1);

grad1 = feval(GRADfcn,Z,PROBparam,x1,bump);

H0 = eye(length(x0)); I = H0;

tol = tol*norm(grad0,2);

while norm(grad1,2)>tol

s = x1-x0; y = grad1 - grad0;

rho = 1/(y’*s);

H1 = (I-rho*s*y’)*H0*(I-rho*y*s’)+rho*s*s’;

pBFGS = - H1*grad1; pBFGS = pBFGS/norm(pBFGS,2);

[alphaBFGS,valueBFGS] = find_alpha(Z,PROBparam,...

x1,f1,grad1,pBFGS,m1G,m2G,E2fcn,GRADfcn,abs(f1-f0)/f0,bump);

pG = -grad1; pG = pG/norm(pG,2);

[alphaG,valueG] = find_alpha(Z,PROBparam,...

x1,f1,grad1,pG,m1G,m2G,E2fcn,GRADfcn,abs(f1-f0)/f0,bump);

provBFGS = x1+alphaBFGS*pBFGS; provG = x1+alphaG*pG;
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if provBFGS(end) < 0.01

valueBFGS = +inf;

end

if provG(end) < 0.01

valueG = +inf;

end

if valueBFGS<valueG

x2 = x1+alphaBFGS*pBFGS;

elseif valueBFGS>=valueG

x2 = x1+alphaG*pG;

end

x0 = x1; x1 = x2; f0 = f1;

f1 = feval(E2fcn,Z,PROBparam,x1);

grad0 = grad1; grad1 = feval(GRADfcn,Z,PROBparam,x1,bump);

H0 = H1;

end

rIS = x1(1);

sigIS = x1(2);

end

A.3.1 mlmc optimincluded

This function is an adapted version of the original one provided by Prof. Mike

Giles for the paper [Gil15b] (it can be found at https://people.maths.ox.ac.

uk/gilesm/acta/mlmc.m). We simply added a few lines to perform optimisation

(function optim) every time a new level is added (possibly up to a certain level

L̄). Moreover, we adapted the function so that it returns the estimated optimal

parameters for Importance Sampling and the estimated values of V`. We will omit

the implementation of the function.
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Appendix B

Light tails

Throughout the whole dissertation, we have assessed in several ways the benefits of

sampling from the Importance Sampling distribution. A common feature, encom-

passing Standard and Multilevel, Down-and-In Call and Digital Put, is the lightness

of the tails. In fact, σ̃ is smaller than 1 in the vast majority of the examples we have

presented.

However, it is well known that sampling from a distributions with lighter tails

often produces catastrophic variance blow-ups: in fact, since the original and the

Importance Sampling distribution are involved in computations as a ratio, different

asymptotic behaviours can induce integrals to diverge. To be more specific, we have

provided an example, inspired to the one exposed in [Owe13]. Let us consider the

case when the original measure is a standard normal distribution and the Impor-

tance Sampling measure is normal with variance σ̃2. The resulting Radon-Nikodym

derivative is:

s(z)

q(z)
= exp

{(
1

2σ̃2
− 1

2

)
z2

}
(B.1)

Therefore, its second moment under the Importance Sampling measure is:

Es

[(
s(Z)

q(Z)

)2
]

=
1√

2πσ̃2

∫
R

exp

{(
1

2σ̃2
− 1

)
z2

}
dz (B.2)

The integral in (B.2) converges only if σ̃ > 1/
√

2.

The change of measure we have just described is the same as the one involved in

our Brownian Bridge construction. Nevertheless we have have often dealt with values
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of σ̃ consistently smaller than 1/
√

2. We argue that in our estimators the Radon-

Nikodym derivative is always multiplied by the payoff and that extreme values of Z,

which would produce a variance blow-up in the likelihood ratio, result in zero payoff.

Throughout the dissertation, the only case when choosing small values of σ̃ has

raised our concerns happened when experimenting optimisation using the objective

function described in section 3.1.1. When σ̃ was set to be smaller than 1/
√

2, either

in s or in s?, the function ϕs? began to show inconsistencies. Specifically, it started

exhibiting an unexpected dependence on xn.

We address to further analysis the theoretical explanation of the results we have

produced with light tail distributions and a numerical analysis in the case of different

payoffs (e.g. a European call).

72


