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Abstract This paper discusses progress and future research possibilities in apply-
ing MLMC ideas to nested expectations of the form E[g(E[ f (X ,Y )|X ]) ], with an
outer expectation with respect to one random variable X , and an inner conditional
expectation with respect to a second random variable Y . The difficulty in treating
such applications is shown to depend on whether the function g is i) smooth, ii)
continuous and piecewise smooth, or iii) discontinuous.

1 Introduction

Considerable progress has been achieved over the past 10 years in the development,
application and analysis of Multilevel Monte Carlo (MLMC) methods, applied to
SDEs, SPDEs, continuous-time Markov processes, and a range of other stochastic
models; see [10] and references therein.

This paper discusses an area of active research, the application of MLMC ideas
to nested simulations, in which one is interested in estimating quantities of the form
E[g(E[ f (X ,Y )|X ]) ] with an outer expectation with respect to one random variable
X , and an inner conditional expectation with respect to a second random variable Y .

Such nested expectations arise in a number of applications; the two applications
motivating the author’s research are the evaluation of Expected Value of Partial Per-
fect Information (EVPPI) and Value-at-Risk (VaR).
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EVPPI arises in fields such as medicine [1, 4] and the exploration and exploita-
tion of oil and gas reservoirs [3, 24], the common element being decision making
under a large degree of uncertainty. In the medical case, models of the effective-
ness of different medical treatments are based on a number of uncertain parameters
which we group into two independent sets X and Y . Given no knowledge of X and Y
other than that they come from prescribed probability distributions, then given a fi-
nite set of possible treatments D, the optimal choice dopt is the one which maximises
E [ fd(X ,Y )] where fd(X ,Y ) represents some measure of the patient outcome, such
as QALY’s (quality-adjusted life-year, see Wikipedia), with a larger value being bet-
ter. Thus, with no knowledge, the expected optimal outcome is maxd E [ fd(X ,Y )] .
On the other hand, given perfect information on X ,Y due to additional medical re-
search, the best treatment maximises fd(X ,Y ), giving the overall expected outcome
E [maxd fd(X ,Y )] . In the intermediate situation, if X is determined but not Y , then
the best treatment has expected outcome value E [maxd E [ fd(X ,Y ) |X ] ] . EVPI, the
expected value of perfect information, is the difference

EVPI = E[max
d

fd(X ,Y )]−max
d

E[ fd(X ,Y )],

and EVPPI, the expected value of partial perfect information, is the difference

EVPPI = E[max
d

E [ fd(X ,Y ) |X ]]−max
d

E[ fd(X ,Y )].

EVPPI represents the benefit, on average, of knowing the value of X . This can be
compared to the cost of the research required to determine X , to judge whether or
not the research is cost-effective.

Value-at-Risk (VaR) is a financial risk measure used by investment banks [16,
17, 22, 23]. In this application, X represent a set of risk factors affecting the value
of the bank’s portfolio over some short risk horizon. For a given X , the loss in value
of the portfolio is L(X) ≡ E[ f (X ,Y )|X ] where the expectation corresponds to risk-
neutral pricing, with Y representing the stochastic drivers for the behaviour of the
underlying assets beyond the risk horizon. The objective with VaR is to compute
the loss threshold Lα such that P(L(X)≥Lα) = α, for some small value of α . This
defines Lα implicitly, but in this paper we will consider the simpler situation of a
given threshold L∗ and then computing P(L(X)≥L∗) ≡ E

[
111E[ f (X ,Y )|X ]≥L∗

]
. Hence

in this case the function g is a discontinuous indicator function.
The paper begins with a quick review of MLMC and two important variants, the

randomised unbiased MLMC method due to Rhee & Glynn [25], and the Multi-
Index Monte Carlo (MIMC) method of Haji-Ali, Nobile & Tempone [21]. Based
on material in [10], Section 3 addresses the case in which the function g is smooth,
using an antithetic estimator to achieve a faster rate of multilevel variance conver-
gence. Section 4 addresses the EVPPI problem; a similar antithetic estimator is used
but the convergence is poorer due to the lack of smoothness when there is a switch
in the optimal decision. Section 5 addresses the VaR problem, and the difficulty in
dealing with the discontinuous indicator function, and the paper finishes with a few
concluding comments.
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2 MLMC and Two Important Variants

2.1 MLMC

The central idea behind MLMC is very simple: given a sequence P0,P1, . . . which
approximates a random output variable P with increasing accuracy, but also increas-
ing cost, we have the simple identity

E[PL] = E[P0]+
L

∑
`=1

E[P̀ −P̀ −1] =
L

∑
`=0

E[∆ P̀ ], (1)

if we define ∆ P̀ ≡ P̀ −P̀ −1 and P−1 ≡ 0. Therefore, if Z` is an unbiased estimator
for E[∆ P̀ ] then ∑

L
`=0 Z` is an estimator for E[PL].

Combining this with a geometric sequence of levels, and choosing the finest level
L to control the magnitude of the weak error E[PL−P], leads to the usual MLMC
theorem in which we assume that there exist independent estimators Z` based on N`

Monte Carlo samples, each with expected cost C` and variance V`, such that there
are positive constants α,β ,γ,c1,c2,c3 with α≥ 1

2 min(β ,γ) and

i)
∣∣∣E[P̀ −P]

∣∣∣ ≤ c1 2−α `

ii) E[Z`] = E[∆ P̀ ]

iii) V` ≤ c2 2−β `

iv) C` ≤ c3 2γ `,

and then conclude that there exists a positive constant c4 such that for any desired
root-mean-square accuracy ε < e−1 there are values L and N` for which the multi-
level estimator

Z =
L

∑
`=0

Z`,

has a mean-square-error with bound

MSE ≡ E
[
(Z−E[P])2

]
< ε

2

with a computational complexity C with bound

E[C]≤


c4 ε−2, β > γ,

c4 ε−2(logε)2, β = γ,

c4 ε−2−(γ−β )/α , β < γ.

In each new application, the objective is to design an estimator so that β > γ to
achieve the best order of complexity.
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2.2 Randomised MLMC for unbiased estimation

An important extension has been introduced by Rhee & Glynn in [25]. Rather than
choosing the finest level of simulation L, based on the desired accuracy, and then
using the optimal number of samples on each level based on an estimate of the
variance, their “single term” estimator instead uses N samples in total, and for each
sample they perform a level ` simulation with probability p`>0, with ∑

∞
`=0 p`=1.

The estimator is

Z =
1
N

N

∑
n=1

∆P(n)
`(n)

/p`(n)

with the level `(n) for each sample being selected randomly with the relevant prob-
ability, so that

E[Z] = ∑
`

E[∆ P̀ ] = E[P].

Hence, it is an unbiased estimator.
The choice of the probabilities p` is crucial. For both the variance and the ex-

pected cost to be finite, it is necessary that

∞

∑
`=0

V`/p` < ∞,
∞

∑
`=0

p`C` < ∞.

Under the conditions of the usual MLMC theorem, this is possible when β > γ by
choosing p` ∝ 2−(γ+β )`/2, so that

V`/p` ∝ 2−(β−γ)`/2, p`C` ∝ 2−(β−γ)`/2.

It is not possible when β≤γ , and for these cases the estimators in [25] have infinite
expected cost.

2.3 Multi-Index Monte Carlo

In standard MLMC, there is a one-dimensional set of levels, with a scalar level index
`, although in some applications changing ` can change more than one aspect of the
computation, such as both timestep and spatial discretisation in a parabolic SPDE
application [14]. In [21], Haji-Ali, Nobile & Tempone generalised this, with the
Multi-Index Monte Carlo (MIMC) method defining “levels” in multiple directions,
so that the level index `̀̀ is now a vector of integer indices. This is illustrated in
Figure 1 for a 2D MIMC application.

Generalising (1) to D dimensions in [21], Haji-Ali, Nobile & Tempone first de-
fine a backward difference operator in one particular dimension, ∆d P̀̀̀ ≡ P̀̀̀ − P̀̀̀ −eeed
where eeed is the unit vector in direction d, and then define the cross-difference
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cross-difference ∆∆∆P(5,4)

Fig. 1 “Levels” in 2D multi-index Monte Carlo application

∆∆∆ P̀̀̀ ≡

(
D

∏
d=1

∆d

)
P̀̀̀

so that the telescoping sum becomes

E[P] = ∑
`̀̀≥0

E[∆∆∆ P̀̀̀ ]. (2)

As an example, Figure 1 marks the four locations at which P̀̀̀ must be computed to
determine the value of ∆∆∆P(5,4) in the 2D application.

Following the presentation in [10], the MIMC theorem formulated in [21] can
be expressed in a form which matches quite closely the formulation of the MLMC
theorem. If the level `̀̀ MIMC estimator Z`̀̀ , with variance V`̀̀ and cost C`̀̀ , per sample,
satisfies

i)
∣∣∣E[P̀̀̀ −P]

∣∣∣−→ 0 as min
d

`d −→ ∞

ii) E[Z`̀̀] = E[∆∆∆ P̀̀̀ ]

iii)
∣∣∣E[Z`̀̀]

∣∣∣ ≤ c1 2−ααα·`̀̀

iv) V`̀̀ ≤ c2 2−βββ ·`̀̀

v) C`̀̀ ≤ c3 2γγγ·`̀̀,

then the complexity is O(ε−2) provided βd > γd for all dimensions d, with additional
| logε| factors introduced if βd = γd for some d.

This complexity is achieved by truncating the set of increments in Eq. (2). It
might seem natural that the summation region L should be rectangular, as illus-
trated on the left in Figure 2, so that

∑
`̀̀∈L

E[Z`̀̀] = E[PLLL]
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Fig. 2 Two choices of 2D MIMC summation region L .

where LLL is the outermost point on the rectangle. However, [21] proves that in general
this does not give the optimal order of complexity, and instead it is often best to use
a region which in 2D is triangular, as illustrated on the right in Figure 2. This is very
similar to the use of sparse grid methods in high-dimensional PDE approximations
[7], and indeed MIMC can be viewed as a combination of sparse grid methods and
Monte Carlo sampling.

3 The General Smooth Case

In this first section, we consider the case in which g is a smooth function. A partic-
ular case of interest is the VaR application which was discussed in the Introduction.
If one can estimate moments of the loss function L(X), then an approximation of
the loss CDF can be generated using Maximum Entropy reconstruction [2, 19]. The
critical loss value Lα can then be determined from this CDF approximation.

3.1 MLMC treatment

Following the presentation in [10], we are interested in estimating quantities of the
form E [g(E[ f (X ,Y )|X ]) ] where X is an outer random variable, and E[ f (X ,Y )|X ] is
a conditional expectation with respect to an independent inner random variable Y .

This can be simulated using nested Monte Carlo simulation with N outer samples
X (n), M inner samples Y (m,n) and a standard Monte Carlo estimator:

Z = N−1
N

∑
n=1

g

(
M−1

M

∑
m=1

f (X (n),Y (m,n))

)
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Note that to improve the accuracy of the estimate we need to increase both M and
N, and this will significantly increase the cost. In fact, it can be proved [18] that the
root-mean-square error is O(M−1+N−1/2), so to achieve r.m.s. accuracy of ε it is
best to choose M=O(ε−1), N=O(ε−2), giving a complexity which is O(ε−3).

An MLMC implementation is straightforward; on level ` we can use M` = 2`

inner samples. To construct a low variance estimate for E[P̀ −P̀ −1] where

E[P̀ ]≡ E

[
g

(
M−1

`

M`

∑
m=1

f (X ,Y (m))

)]
,

we use an antithetic approach and split the M` samples for the “fine” value into two
subsets of size M`−1 for the “coarse” value:

Z` = N−1
`

N`

∑
n=1

{
g

(
M−1

`

M`

∑
m=1

f (X (n),Y (m,n))

)

− 1
2 g

(
M−1

`−1

M`−1

∑
m=1

f (X (n),Y (m,n))

)

− 1
2 g

(
M−1

`−1

M`

∑
m=M`−1+1

f (X (n),Y (m,n))

)}

Note that this has the correct expectation, i.e. E[Z`] = E[P̀ −P̀ −1].
If we define

M−1
`−1

M`−1

∑
m=1

f (X (n),Y (m,n)) = E[ f (X (n),Y )]+∆ f (n)1 ,

M−1
`−1

M`

∑
m=M`−1+1

f (X (n),Y (m,n)) = E[ f (X (n),Y )]+∆ f (n)2 ,

then if g is twice differentiable a Taylor series expansion gives

Z` ≈−
1

4N`

N`

∑
n=1

g′′
(
E[ f (X (n),Y )]

)(
∆ f (n)1 −∆ f (n)2

)2
.

By the Central Limit Theorem, ∆ f (n)1 ,∆ f (n)2 = O(M−1/2
` ) and therefore

g′′
(
E[ f (X (n),Y )]

)(
∆ f (n)1 −∆ f (n)2

)2
= O(M−1

` ).

It follows that E[Z`] =O(M−1
` ) and V` =O(M−2

` ). For the MLMC theorem, this
corresponds to α =1, β =2, γ =1, so the complexity is O(ε−2).

This antithetic approach to nested simulation has been developed independently
by several authors [6, 8, 20], and is related to an earlier use of an antithetic MLMC
estimator for SDEs [15].
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[20] used it in a mean field model for the motion of crowds, in which each person
is modelled as a independent agent subject to random forcing and an additional force
due to the collective influence of the crowd. This same approach is also relevant to
mean field problems which arise in plasma physics [26].

[6] used multilevel nested simulation for a financial credit derivative application.
In their case, the function g was piecewise linear, not twice differentiable, and so the
rate of variance convergence was slightly lower, with β =1.5. This will be discussed
in Section 4, but it is still sufficient to achieve an overall O(ε−2) complexity.

3.2 MIMC treatment

The previous analysis assumes we can compute f (X ,Y ) with O(1) cost, but suppose
now that Y represents a complete Brownian path, and f (X ,Y ) cannot be evaluated
exactly; it can only be approximated using some finite number of timesteps. Using
MLMC, on level ` we could use 2` timesteps and a Milstein discretisation (giving
first order weak and strong convergence) which would still give α =1, β =2. How-
ever, we would now have γ = 2, because on successive levels we would be using
twice as many timesteps as well as twice as many inner samples. This then leads to
an overall MLMC complexity which is O(ε−2(logε)−2).

Instead we can use MIMC to recover an optimal complexity of O(ε−2). We now
have a pair of level indices (l1, l2), with the number of inner samples equal to 2`1

and the number of timesteps proportional to 2`2 . If we use the natural extension
of the MLMC estimator to the corresponding MIMC estimator, which means (for
l1 > 0, l2 > 0) using

Z` = N−1
`

N`

∑
n=1

{
g

(
2−`1

2`1

∑
m=1

f`2(X
(n),Y (m,n))

)
− 1

2 g

(
2−`1+1

2`1−1

∑
m=1

f`2(X
(n),Y (m,n))

)

− 1
2 g

(
2−`1+1

2`1

∑
m=2`1−1+1

f`2(X
(n),Y (m,n))

)

− g

(
2−`1

2`1

∑
m=1

f`2−1(X (n),Y (m,n))

)
+ 1

2 g

(
2−`1+1

2`1−1

∑
m=1

f`2−1(X (n),Y (m,n))

)

+ 1
2 g

(
2−`1+1

2`1

∑
m=2`1−1+1

f`2−1(X (n),Y (m,n))

)}

The subscript on the f terms denotes the level of timestep approximation.
Carrying out the same analysis as before, performing the Taylor series expansion

around E[ f (X (n),Y )], we obtain

Z` ≈−
1

4N`

N`

∑
n=1

g′′ (E[ f (X(n),Y )])
{(

∆ f (n)1,`2
−∆ f (n)2,`2

)2
−
(

∆ f (n)1,`2−1−∆ f (n)2,`2−1

)2
}
.
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The difference of squares can be re-arranged as(
∆ f (n)1,`2

−∆ f (n)2,`2

)2
−
(

∆ f (n)1,`2−1−∆ f (n)2,`2−1

)2

=
(
(∆ f (n)1,`2

+∆ f (n)1,`2−1)− (∆ f (n)2,`2
+∆ f (n)2,`2−1)

)
×(

(∆ f (n)1,`2
−∆ f (n)1,`2−1)− (∆ f (n)2,`2

−∆ f (n)2,`2−1)
)

Due to the Central Limit Theorem, we have

∆ f (n)1,`2
+∆ f (n)1,`2−1 = O(2−`1/2), ∆ f (n)2,`2

+∆ f (n)2,`2−1 = O(2−`1/2),

and assuming first order strong convergence we also have

∆ f (n)1,`2
−∆ f (n)1,`2−1 = O(2−`1/2−`2), ∆ f (n)2,`2

−∆ f (n)2,`2−1 = O(2−`1/2−`2).

Combining these results we obtain(
∆ f (n)1,`2

−∆ f (n)2,`2

)2
−
(

∆ f (n)1,`2−1−∆ f (n)2,`2−1

)2
= O(2−`1−`2)

and therefore E[Z`] = O(2−`1−`2) and V` = O(2−2`1−2`2) with a cost per sample
which is O(2`1+`2). In the MIMC theorem this corresponds to α1 =α2 = 1, β1 =
β2=2, and γ1=γ2=1, so the overall complexity is O(ε−2).

3.3 Nested MLMC

MIMC is not the only way in which to generalise MLMC to multiple dimensions.
Another option, which can sometimes be equivalent, but is often not, is to use
nested MLMC, with an inner MLMC being used to generate samples within an
outer MLMC computation.

The application in the previous section gives rise to a natural example of this.
Ideally, we would like to generate exact samples of f (X ,Y ) with O(1) cost per sam-
ple. However, it is just as good to produce samples which have the correct expected
value E[ f (X ,Y )|X ], with an expected cost which is O(1). This can be achieved by
using the randomised MLMC discussed in Section 2.2, so that f (X (n),Y (m,n)) is
replaced by (

f (X (n),Y (m,n)
` )− f (X (n),Y (m,n)

`−1 )
)
/ p`,

where the level ` which determines the number of timesteps is a random variable
taking integer value `′≥0 with probability p`′>0. The only requirement is that the
variance for this inner randomised MLMC must decay faster with the number of
timesteps than the increase in the computational cost, so that p`′ can be specified
appropriately to achieve both finite variance and finite expected cost.
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4 EVPPI

For the estimation of the difference EVPI−EVPPI defined in the Introduction, we
define a level ` approximation as

P̀ = max
d

fd
`−max

d
fd

`

where maxd fd
` and fd

` represent averages over 2` independent values of Y (i) for
one particular value of X , so that

EVPI−EVPPI = lim
`→∞

E[P̀ ].

Following the ideas in [6, 10, 20] we use the antithetic MLMC estimator

Z` = 1
2

(
max

d
fd

(a)
+max

d
fd

(b)
)
− max

d
fd

where

• fd
(a) is an average of fd(X ,Y ) over 2`−1 independent samples for Y ;

• fd
(b) is an average over a second independent set of 2`−1 samples;

• fd is an average over the combined set of 2` inner samples.

The MLMC variance can be analysed by following the approach used by Giles
& Szpruch for Theorem 5.2 in [15], which is also similar to the analysis by Bujok
et al in [6]. Define

Fd(X) = EY [ fd(X ,Y )] , dopt(X) = argmax
d

Fd(X)

so the domain for X is divided into a number of regions in which the optimal deci-
sion dopt(X) is uniform, with a dividing lower-dimensional decision manifold K on
which dopt(X) is not uniquely-defined.

Note that 1
2 ( fd

(a)
+ fd

(b)
)− fd = 0, and therefore Z` = 0 if the same decision

d maximises each of the terms in its definition. This is the key advantage of the
antithetic estimator, compared to the alternative fd

(a)− fd . When ` is large and so
there are many samples, fd

(a)
, fd

(b)
, fd will all be close to Fd(X), and therefore it is

highly likely that Z`=0 unless X is very close to K at which there is more than one
optimal decision. This idea leads to a theorem on the MLMC variance, but first we
need to make three assumptions.

Assumption 1. E [ | fd(X ,Y )|p] is finite for all p≥2.
Comment: this enables us to bound the difference between fd

(a)
, fd

(b)
, fd and Fd(X).

Assumption 2. There exists a constant c0>0 such that for all 0<ε <1

P
(

min
x∈K
‖X−x‖ ≤ ε

)
≤ c0 ε.
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Comment: this bounds the probability of X being close to the decision manifold K.

Assumption 3. There exist constants c1,c2 > 0 such that if X /∈ K, then

max
d

Fd(X)− max
d 6=dopt (X)

Fd(X) > min
(

c1, c2 min
x∈K
‖X−x‖

)
.

Comment: on K itself there are at least 2 decisions d1,d2 which yield the same
optimal value Fd(X); this assumption ensures at least a linear divergence between
the values as X moves away from K.

Theorem 1. If Assumptions 1-3 are satisfied, and Z` is as defined previously for
level `, then for any δ >0

V [Z`] = o(2−(3/2−δ )`), E [Z`] = o(2−(1−δ )`).

The proof of the theorem is given in [11], but a heuristic explanation is as follows:

• Because of Assumption 1, for any X , fd−Fd(X) = O(2−`/2);
• Because of Assumption 2, there is an O(2−`/2) probability of X being within

O(2−`/2) of the decision manifold K, in which case Z` = O(2−`/2);
• Because of Assumption 3, if it is further away from K then there is a clear sep-

aration between the different decision values, and hence Z` = 0 with very high
probability.

• This results in E[Z2
` ] = O(2−`/2)×

(
O(2−`/2)

)2
= O(2−3`/2).

The conclusion from the theorem is that the parameters for the MLMC theorem
are β ≈3/2, α≈1, and γ =1, giving the optimal complexity of O(ε−2). Numerical
results support this prediction.

A final comment is that sometimes the random variables in X or Y correspond
to Bayesian posterior distributions, with samples generated by MCMC methods.
In that case, it is possible to pre-generate a large set of MCMC samples, after the
initial burn-in, and then MLMC can uniformly and randomly take samples from this
dataset as required.

5 Value-at-Risk

The Value-at-Risk problem has been defined in the Introduction. In this section, we
begin by introducing the idea of portfolio sub-sampling, and then proceed to discuss
the difficulties in constructing efficient MLMC estimators for VaR because of the
discontinuous nature of the indicator function.
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5.1 Portfolio sub-sampling

In Sections 3.2 and 3.3, we considered Y to represent the driving Brownian mo-
tion, and the inner conditional expectation was with respect to this. However, in the
context of the Value-at-Risk application, where we are considering estimation of
moments of the loss for the purpose of Maximum Entropy reconstruction, there is
an important second aspect to this conditional expectation.

The loss function L(X) has contributions from a large number of financial options
within a portfolio, so that it may be written as

L(X) =
No

∑
i=1

Li(X), Li(X)≡ E [ fi(X ,Y ) |X ] ,

where Li(X) is the loss from the ith option. In the existing literature, standard treat-
ments evaluate each sample of the total loss by summing the contributions from all
of the financial options, and the computational cost is inevitably proportional to No,
the number of options. However, instead we can express the loss as

L(X) = E [Li(X)/pi] .

where the integer index i is randomly sampled from the set {1,2, . . . ,No} with prob-
ability pi.

Adding back in the expectation with respect to the Brownian motion we obtain
the conditional expectation

L(X) = E [ fi(X ,Y )/pi |X ] ,

in which the expectation is now over both the Brownian motion and the index of the
option being sampled. When 2` samples are generated to approximate the condi-
tional expectation, they each can have a different option index as well as a different
Brownian path sample. The overall benefit is to achieve a complexity, for a given
accuracy ε expressed as a fraction of the total portfolio value, which no longer de-
pends on No, the number of financial options in the portfolio.

This idea of sub-sampling a portfolio has been investigated by Wenhui Gou [19]
whose research combined it with Maximum Entropy reconstruction of the loss dis-
tribution, but used an analytic expression for the conditional expectation with re-
spect to the driving Brownian motion, and also used a control variate which sub-
stantially reduced the variance of the estimator.
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5.2 Previous work on VaR

As explained in the Introduction, we are interested in determining

P
[
L(X)≥ L∗

]
≡ E

[
1
(
L(X)≥ L∗

)]
This is again a nested simulation problem, but the indicator function makes it much
harder than EVPPI, because small differences between the “coarse” and “fine” esti-
mates for the conditional expectation in L(X) can lead to a±1 change in the indica-
tor value.

Gordy & Juneja [18] considered this problem, using a single level Monte Carlo
method with M inner samples Y (m,n) for each of N outer samples X (n) to estimate

L(X)≡ E[ f (X ,Y )]

for each of N outer samples X (n), so that the overall estimate for the probability of
exceeding the loss threshold is

P
[
L(X)≥ L∗

]
≈ N−1

N

∑
n=1

1

(
M−1

M

∑
m=1

f (X (n),Y (m,n) ≥ L∗)

)

This problem setup assumes that it is possible to exactly simulate f (X (n),Y ) at unit
cost. Given this, they proved that the resulting RMS error is

O(M−1+N−1/2),

and hence, to achieve an ε RMS accuracy requires M = O(ε−1), N = O(ε−2) and
so the complexity is O(ε−3).

Broadie, Du & Moallemi [5] improved on this, by noting that unless L(X)−L∗

is small, we usually don’t need many samples to determine whether L(X) ≥ L∗.
Their paper presents a rigorously analysed adaptive algorithm based on the theory
of sequential sampling but here we give a simplified heuristic analysis. When using
M inner samples, if

σ
2(X) = V[ f (X ,Y )|X ], d(X) =

∣∣∣E[ f (X ,Y )|X ]−L∗
∣∣∣

then the usual CLT confidence interval for the estimate of E[ f (X ,Y )|X ]− L∗ has
size ±3σ/

√
M. Hence, we need roughly

M = 9σ
2(X)/d2(X)

inner samples to be sure whether or not E[ f (X ,Y )|X ]≥ L∗. If we now use

M = min
(
cε
−1,9σ

2(X)/d2(X)
)
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then the cross-over point between the two terms in the minimum is at d = O(ε1/2),
and it follows that the the average number of inner samples required is

M = O(ε−1/2),

reducing the overall complexity to O(ε−5/2).
This is clearly a significant improvement on the complexity of the uniform sam-

pling algorithm of Gordy & Juneja, but in both papers they are not using the sub-
sampling introduced in Section 5.1 but are instead evaluating the full portfolio each
time so the complexity is also proportional to the number of options in the portfolio.
Furthermore, their analysis does not consider the additional cost which is incurred
when one needs to approximate an SDE for the underlying assets.

5.3 Current research

Current research by the author and Abdul-Lateef Haji-Ali builds on the adaptive
approach of Broadie et al [5] by incorporating MLMC ideas.

The first step is to extend Wenhui Gou’s work to Monte Carlo estimation of the
inner conditional expectations:

No

∑
i=1

E[ fi(X ,Y )|X ]≈M−1
M

∑
m=1

fim(X ,Wm) / pim

where Wm represents the Brownian path and any additional random inputs needed
for the conditional expectation. This essentially combines, or unifies, the Monte
Carlo averaging over the portfolio samples with the averaging over the Brownian
paths.

If we do this with the uniform inner sampling with M` = 4` samples on level
`, assuming that fpm(X ,Wm) can be computed exactly at unit cost, then the er-
ror in the inner estimate is O(M−1/2

` ) = O(2−`). There is an O(2−`) probabil-
ity of being within O(2−`) of the indicator step, producing an O(1) value for the
MLMC estimator sample, so the MLMC variance is V` ∼ 2−`. In addition we get
bias ∼ M−1

` ∼ 4−`, C` ∼ M` ∼ 4`, so α ≈ 2, β ≈ 1, γ ≈ 2 and therefore the com-
plexity is O(ε−5/2). The advantage over the previous method due to Broadie et al is
that the complexity is independent of the value of No the number of options in the
portfolio, but it still falls short of our target of O(ε−2).

To further improve things, we add in the adaptive approach of Broadie et al, with
the number of inner samples dependent on both X and the level `, along the lines of

M`(X) = max
(

c1 2`,min
(

c2 4`,9σ
2(X)/d2(X)

))
.

This gives approximately the same asymptotic behaviour in the variance and the
bias, i.e. bias∼ 4−`, V`∼ 2−`, but the cost is reduced to approximately C`∼ 2`. This
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leads to α ≈ 2, β ≈ 1, γ ≈ 1 and hence the complexity is approximately O(ε−2),
independent of No.

The final challenge comes from the approximation of the underlying SDE. At
first sight this looks very difficult, but the algorithm does not require the exact sam-
pling of fim(X ,Wm); it is sufficient to have an unbiased estimate with a unit expected
cost. Following the ideas in Section 3.3, this is precisely what can be supplied in
many cases by Rhee & Glynn’s unbiased single-term estimator based on randomised
MLMC. This requires the use of the Milstein time discretisation, because of the im-
proved strong order of convergence and hence rate of MLMC variance convergence
compared to an Euler-Maruyama discretisation. The complexity analysis is largely
unchanged, and again we achieve an overall complexity of approximately O(ε−2),
to within log terms.

In practice, it is also very important to use an effective control variate, similar to
the one used by Wenhui Gou [19], but the details are omitted here.

5.4 Future research

There are other aspects of the VaR problem to be investigated in the future.
One is associated with the fact that the different financial options within a port-

folio vary greatly, both in their variance (in part due to differences in their financial
magnitude) and in the computational cost involved in their simulation. Both of these
factors need to be taken into account in optimising the probability pi for sampling
the option with index i. It might even be desirable to identify a few options which
should always be sampled because of their large value, and apply the randomised
sub-sampling to the remainder.

Secondly, the discussion so far has been about the simpler problem of determin-
ing

P(L(X)≥L∗) ≡ E
[
111L(X)≥L∗

]
,

for some given loss value L∗. The research must be extended to the full VaR defini-
tion which requires some root-finding algorithm to determine Lα defined implicitly
for some α by

P(L(X)≥Lα) = α.

We also need to consider other risk measures such as CVaR, or expected shortfall,

CVaR = E [L(X) | L(X)≥Lα ] = α
−1E

[
L(X)1L(X)≥Lα

]
.



16 Michael B. Giles

6 Conclusions

In this paper we have reviewed progress in applying MLMC ideas to problems with
nested expectations. Such applications lead quite naturally to the use of the Multi-
Index Monte Carlo method and other generalisations of MLMC such as nested
MLMC. Randomised MLMC for the inner conditional expectation is particularly
helpful as it is unbiased, which simplifies the treatment.

One important nested expectation application is the estimation of EVPPI, the
Expected Value of Partial Perfect Information. Substantial progress has been made
on this topic, in both the construction and the analysis of efficient algorithms.

In the context of the financial Value-at-Risk application, we have pointed out the
benefits to be achieved from sub-sampling the portfolio. Combining this with an
adaptive MLMC estimator addresses the challenge due to the discontinuous indica-
tor function in the outer expectation. This use of adaptive algorithms within MLMC
fits well with other current research [9, 12, 13].
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