
Fat versus Thin Threading Approach
on GPUs: Application to Stochastic
Simulation of Chemical Reactions

Guido Klingbeil, Radek Erban, Mike Giles, and Philip K. Maini

Abstract—We explore two different threading approaches on a graphics processing unit (GPU) exploiting two different characteristics

of the current GPU architecture. The fat thread approach tries to minimize data access time by relying on shared memory and registers

potentially sacrificing parallelism. The thin thread approach maximizes parallelism and tries to hide access latencies. We apply these

two approaches to the parallel stochastic simulation of chemical reaction systems using the stochastic simulation algorithm (SSA) by

Gillespie [14]. In these cases, the proposed thin thread approach shows comparable performance while eliminating the limitation of the

reaction system’s size.

Index Terms—Parallel processing, compute unified device architecture (CUDA), graphics processing unit (GPU).

Ç

1 INTRODUCTION

GRAPHICS processing units (GPUs) using the compute
unified device architecture (CUDA) have distinct

exploitable architectural characteristics [1]. One is the
memory hierarchy consisting of fast on-chip memory and
device memory which needs to be managed explicitly by the
programmer, and another is the computational grid assign-
ing threads to groups of compute cores. With CUDA GPUs,
it is common to use fast on-chip shared memory to avoid
high data access latencies. However, shared memory is
limited and its size may actually limit the number of threads
per block. Another approach is to simply accept the high
latency when accessing device, also called global memory,
but try to hide it using many parallel threads. This paper
compares these two approaches by applying them to the
parallel stochastic simulation of chemical reaction systems.

The time evolution of a chemical reaction system is
neither continuous since reactions are atomic nor determi-
nistic since a reaction may, but does not have to, occur
whenever the appropriate molecules collide. Nevertheless,
assuming a sufficiently large molecular population, a well-
stirred chemical reaction system can be treated as a
deterministic continuous process which can be modeled

using ordinary differential equations (ODEs). But in many
biological systems, small molecular abundances make
deterministic ODE-based simulations inaccurate [2]. As
an example, the average copy numbers of some mRNA
molecules relevant to the budding yeast cell cycle per cell
may be less than 1. Proteins, the actual work horses of the
cell, are translated from mRNA [3]. In this scenario, all
protein of a certain kind may be translated from a single
mRNA molecule [4]. This means depending on even a
single event occurring, the transcription of an mRNA
molecule, the system may take different paths. The
behavior of the reaction system in a single cell, like
switching between two states, may depend on stochastic
fluctuations [5], [6].

Stochastic simulations compute every molecular reaction
event. While ODE-based simulations are computationally
inexpensive, the computational time of a stochastic simula-
tion increases with the molecular population and the
complexity of the system such that the computational effort
for realistic biochemical systems may be prohibitive.
Parallel simulations on GPUs can successfully address this
problem. In this paper, we show that the thin threading
approach is superior to fat threading for larger biochemical
reaction networks.

In general, there are two approaches to parallel stochastic
simulations of chemical reaction systems: computing multi-
ple independent replications in parallel (MRIP) or a single
replication in parallel (SRIP) [7], [8]. The MRIP spawns
multiple independent simulations on multiple processors. It
is important to use different random seeds such that the
processes are uncorrelated. SRIP relies on cooperating
threads, either by dividing the simulated model into
submodels and computing each of them on a different
processor [7], or by computing parts of a single SSA step in
parallel like updating the propensities or computing the
tentative reaction times in parallel [9]. We are computing
many realizations independently in an MRIP approach. No
synchronization between the threads is required during the
computation.

280 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2012

. G. Klingbeil is with the Centre for Mathematical Biology, Mathematical
Institute, University of Oxford, Oxford OX1 3LB.
E-mail: klingbeil@maths.ox.ac.uk.

. R. Erban is with the Oxford Centre for Collaborative Applied Mathematics
and the Centre for Mathematical Biology, Mathematical Institute,
University of Oxford, Oxford OX1 3LB. E-mail: erban@maths.ox.ac.uk.

. M. Giles is with the Oxford-Man Institute of Quantitative Finance, and the
Mathematical Institute, University of Oxford, Oxford OX1 3LB.
E-mail: mike.giles@maths.ox.ac.uk.

. P.K. Maini is with the Centre for Mathematical Biology and the
Oxford Centre for Integrative Systems Biology, University of Oxford,
Oxford OX1 3QU. E-mail: maini@maths.ox.ac.uk.

Manuscript received 27 May 2010; revised 21 Aug. 2010; accepted 29 Oct.
2010; published online 25 May 2011.
Recommended for acceptance by P. Stenstrom.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2010-05-0318.
Digital Object Identifier no. 10.1109/TPDS.2011.157.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

Thin threading uses multithreading and data locality
optimization to hide memory access latency. The idea is to

perform a context switch whenever memory is accessed.

Latency hiding by multithreading has been used exten-

sively by the Cray MTA-2 system and the Sparcle multi-
processor design [10], [11]. The Cray MTA-2 requires at

least 21 threads per processor to hide memory access

latency. Data locality optimization exploits the memory
hierarchy to improve memory access. One technique is data

tiling, sorting or rescheduling data access such that they suit

the underlying architecture best, sequential memory access
operation accessing locations fitting into a cache line [12].

This paper is organized as follows. Section 2 introduces
the stochastic simulation of chemical reaction systems. In

Section 3, parallel computing on a GPU is briefly reviewed.

Section 4 introduces the idea of fat and thin threads on a
GPU. Section 5 presents the benchmark results and Section 6

concludes this paper.

2 STOCHASTIC SIMULATION ALGORITHM

The Gillespie stochastic simulation (SSA) of chemical

reaction systems answers two questions [13], [14]. First,

when does the next reaction event occur? Second, of which
kind is this event? The SSA is an exact algorithm to simulate

the time evolution of realizations consistent with the

chemical master equation of a well-mixed chemical reaction

system. One time step of the Gillespie SSA is given in
Listing 1. The SSA considers a spatially homogeneous (well

mixed) molecular system of M reactions Ri; i ¼ 1; . . . ;M, in

thermal equilibrium of the N molecular species
Sj; j ¼ 1; . . . ; N . The current state vector

XðtÞ ¼ ðx1ðtÞ; . . . ; xNðtÞÞ;

where xjðtÞ is the number of molecules of chemical species
SjðtÞ; j ¼ 1; 2; . . . ; N .

The M reactions Ri; i ¼ 1; . . . ;M, are accompanied by the

vector of propensity vector

aaðXðtÞÞ ¼ ðaiðXðtÞÞ; . . . ; aMðXðtÞÞÞ

and the state change vectors ��i which compose the N �M
stoichiometric reaction matrix �. The N components

�ij; j ¼ 1; . . . ; N;

of the change vector ��i describe the change in the number of

molecules of species Sj due to anRi reaction event. The term

aiðXðtÞÞdt is the probability, given the current state XðtÞ,
that an Ri reaction event will occur in the next infinitesimal
time interval ½t; tþ dtÞ. The total propensity function

a0ðXðtÞÞ is the sum of all propensity functions [13], [14]

a0ðXðtÞÞ ¼
XM
i¼1

aiðXðtÞÞ:

The core of the SSA is to use random numbers to choose

state transitions. The time � at any given state of the system

XðtÞ until the next reaction fires at tþ � is exponentially
distributed with mean a0ðXðtÞÞ. Then, aiðXðtÞÞ=a0ðXðtÞÞ is

the probability that the i-th reaction occurs.

Several more efficient reformulations of the exact SSA
have been proposed like the next reaction method (NRM)
by Gibson and Bruck [15], the logarithmic direct method
(LDM) by Li and Petzold [16], or the optimized direct
method (ODM) by Cao et al. [17]. The aim of this paper is
not to compare the algorithms, but to investigate two
threading approaches on GPUs; thus, the SSA is used.

3 PARALLEL COMPUTING ON A GPU

NVIDIA’s compute unified device architecture enables
efficient stochastic simulations in parallel using GPUs.
While GPUs emerged as dedicated graphics boards to
accelerate 3D graphics, these devices have recently been
used for general purpose parallel computations. NVIDIA
introduced CUDA in November 2006 in its GeForce 8800
GPU [18], [19]. GPUs are especially well suited for problems
where the same set of instructions can be applied to several
data sets simultaneously. This is called single-instruction
multiple data (SIMD). Even if the problem itself cannot be
well parallelized, several instances can be executed in
parallel. The stochastic simulation of chemical reaction
systems is not well parallelizable due to the requirement of
a single chain of random numbers, but several instances of
the simulation can be concurrently computed.

CUDA enables one to apply GPUs to parallel general
purpose computations. A NVIDIA CUDA enabled GPU
consists of a set of streaming multiprocessors (SMs). Each SM
currently aggregates eight single-precision and one double-
precision floating point processing cores called stream
processors (SPs) accompanied by two special function units
(SFUs). The SM is the smallest independent unit of schedul-
ing with its own instruction cache, thread select logic, 64 kB of
register file, 16 kB of shared memory, and 8 kB of constant
cache.1 Each SM is a threaded single-issue processor with
SIMD. Each SM can execute up to eight thread blocks with a
total of 1,024 threads; this is 128 threads per SP, concurrently.
So, each of the SM’s eight SP has a 2 K 32-bit entry register file.
The register’s usage is assigned at compile time. The graphics
card’s memory is called global memory. It is accessible by all

KLINGBEIL ET AL.: FAT VERSUS THIN THREADING APPROACH ON GPUS: APPLICATION TO STOCHASTIC SIMULATION OF CHEMICAL... 281

1. Based on NVIDIA GTX 200 generation GPUs [1].

threads of all SMs, but it has a high access latency of 400 to 600
clock cycles [1].

Each SP can perform two floating point operations per
cycle by its multiply add unit. Each SFU can perform four
instructions per cycle. This gives a total per SM of 16
operations per cycle for the eight SPs and eight for the two
SFUs [20].

CUDA uses a variation of SIMD, as used in vector
computers, called single-instruction multiple thread
(SIMT). The SIMT architecture applies one instruction to
multiple independent threads in parallel achieving data
level parallelism. In contrast to vector computers using
SIMD, where a single instruction is applied to all data
lanes, the threads are scheduled in groups, called a “warp,”
of 32 threads. Threads of a warp either execute the same
instruction or remain idle. This allows threads of the warp
to branch and take other execution paths. The execution of
threads taking different branches is serialized decreasing
the overall performance. The advantage of SIMT over SIMD
is the independent scheduling of thread warps. This gives a
higher flexibility and efficiency when branches occur, since
only diverging threads within a warp need to be serialized.
Obviously, full efficiency is gained when all threads of a
warp take the same execution path [18].

Multiple warps of threads can be grouped into blocks
which again form a computational grid. Blocks are assigned
to the SMs and the threads of a block can cooperate and share
cached memory areas and shared memory. Each thread is
able to access its own set of local variables in local memory.
Variables in local memory are stored in registers (fast access,
but read after write penalty of two cycles). If register space is
exceeded, local variables spill into global memory.

4 FAT VERSUS THIN THREADS

The idea to distinguish a fat threading approach from a thin
threading approach is based on the characteristics of
modern GPUs. In contrast to a central processing unit
(CPU), where many details, such as caching or paging
mechanisms, are hidden and hence transparent to the
programmer, the GPU exhibits different types of memory to
the user and determines the interoperability of threads.2

The main loop of Gillespie’s SSA as given in Listing 1 is
executed as a CUDA kernel on the GPU. Regarding both
threading approaches, the stoichiometric reaction matrix �,
the reaction rate constants ci; i ¼ 1; . . . ;M, and the seeds of
the pseudorandom number generator (PRNG) are initia-
lized on the host and copied and stored in the GPU’s cached
constant memory. The current time t, final time T , index j of
the reaction which occurs in the next time step, the total
propensity function a0ðXðtÞÞ, and the uniform random
numbers r1 and r2 are kept in registers.

4.1 Fat Threads

The common approach is to maximize the usage of shared
memory and registers to keep the data required by the
threads as “close” (in terms of memory access time and
latency) as possible. This means to copy a working set of
data into shared memory and process it by as many threads
as possible in parallel [1].

1. Load data from device memory to shared memory.
2. Synchronize with all the other threads of the block so

that each thread can safely execute the chosen
algorithm in shared memory.

3. Synchronize with all the other threads of the block
again if necessary to make sure that shared memory
has been updated with the results.

4. Write the results back to device memory.

The number of threads per block may be restricted by the

available shared memory which may again hamper the

overall performance.
In order to minimize global memory transactions, the fat

thread stochastic simulation software keeps the vector of

propensity functions a and current molecular population

vector XðtÞ in shared memory. Only when a sample is

permanently stored, is it written to global memory as shown

in Fig. 1. However, both the propensity function vector a

and the current molecular population vector XðtÞ depend on

the size of the reaction system and with it the maximum

number of possible threads per block. The PRNG state

vector is stored in registers.
For each thread, the state vector XðtÞ of length N and

the propensity function vector aaðXXðtÞÞ of length M need to

be stored in shared memory. Additionally, the 128 bytes

(32 32-bit wide entries) of shared memory are statically

allocated by the compiler. This gives a per block shared

memory requirement in bytes of

memoryshared ¼ ððM þNÞ � threads per blockþ 32Þ � 4:

282 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2012

2. The term transparent describes features such as a cache which are
beneficial, but do not require any attention from or work by the
programmer.

Fig. 1. Outline of the fat threading approach on the left and the thin
threading approach on the right. Each streaming multiprocessor
contains eight processing cores and 16 kB of shared memory. The
thickness of the lines between the computational cores and shared/
global memory as well as the shading of the shared/global memory
indicates the usage. The fat thread approach uses the shared memory
to avoid the global memory access latency, while the thin thread
approach does not use shared memory and hides latency by using large
numbers of parallel threads.

Rearranging this for the number of threads gives the upper
bound

threads per block � 4096� 32

M þN

� �
:

The maximum block size for the used example reaction
systems is given in Table 1. Given the minimum efficient
block size is 64 threads or 2 warps [1], the maximum size of
the reaction system is given by bN þMc � 63.

4.2 Thin Threads

As discussed earlier, one characteristic of a GPU is the
elaborated memory hierarchy, but in contrast to the CPU
which relies heavily on caching, the programmer has to
manage different memory types to maximize performance.
The second characteristic of a GPU is the ability to spawn
large numbers of threads. The thin thread approach is to
maximize the number of parallel threads per thread block.
As a consequence, it is no longer feasible to store the
propensity function vector aaðXXðtÞÞ and current molecular
population vector XðtÞ in shared memory. They are stored
in global memory. The high global memory access latency
is hidden by the large number of threads and the total
number of global memory transactions is minimized by
coalesced transfers. The thin thread does not use the above
protocol, but works in global memory similarly as one
would do using a CPU. This is also illustrated in Fig. 1.
The PRNG state vector is moved from registers to share
memory. This is not contradictory to the aim of this paper,
since registers are the fastest storage available [21]. The
second motivation for the thin thread approach is hiding
register dependencies or arithmetic latency. When an
instruction within a thread writes a result into a register,
there is an approximately 24 clock cycle latency until the
thread is able to use this result. To hide this arithmetic
latency, multiprocessors should be running at least 192
threads or 6 warps [21].

The maximum block size of the thin threading approach
is independent of the reaction system 512 threads per block,
which is the maximum block size using current CUDA
capable GPUs [1].

4.3 Coalesced Memory Access

If the threads of a block access global memory in the right
pattern, the GPU is able to bundle a number of these accesses
into one memory transaction. This is called a coalesced
memory transaction. The underlying idea of memory coales-
cing is similar to a cache line. A cache line is either completely

replaced or not at all. Even if only a single data item is
requested, the entire line is read. If now a neighboring item is
subsequently requested, it is already in the cache.

The stochastic simulation software only uses 32-bit, or
4 byte word, values. Using a GPU with compute capability
greater than or equal to 1.2, the global memory access of all
threads of a half-warp is coalesced into a single memory
transaction if certain requirements are met. If the words
accessed by the threads of a half-warp are in a 128-byte
segment, the memory transactions are coalesced as shown in
Fig. 2.

Memory transactions are issued per half-warp, either the

lower or upper 16 threads of a warp. The following protocol

is used to issue a memory transaction and to determine the

number of bytes transferred [1]:

1. Find the 128-byte memory segment that contains
the address requested by the lowest numbered
active thread.

2. Find all other active threads whose requested
address lies in the same segment and reduce the
transferred number of bytes if possible:

a. If the transaction is 128 bytes and only the lower
or upper half is used, reduce the transaction size
to 64 bytes.

b. If the transaction is 64 bytes and only the lower
or upper half is used, reduce the transaction size
to 32 bytes.

KLINGBEIL ET AL.: FAT VERSUS THIN THREADING APPROACH ON GPUS: APPLICATION TO STOCHASTIC SIMULATION OF CHEMICAL... 283

Fig. 2. Examples of coalesced global memory access patterns using a
GPU with compute capability 1.2 and beyond grouping all access of 16
threads into one transaction. The top panel shows a consecutive access.
The middle shows a random access onto a 64- or 128-byte segment. The
bottom panel shows that not all threads participate in the transaction.
Even though the achieved bandwidth is not increased 16 times, it is still
much higher than using noncoalesced global memory accesses.

TABLE 1
Number of Reactions and Molecular Species

The right-most column gives the maximum feasible block sizes using the
fat thread approach.

3. Carry out the transaction and mark the serviced
threads as inactive.

4. Repeat until all threads in the half-warp are serviced.

4.4 Minimizing the Number of Memory Transactions

The key to minimizing memory transactions by coalescing
is an appropriate storage layout taking the characteristics of
the SSA into account. The global memory access scheme
used to store the time evolution data is shown in Fig. 3.
Each thread is computing a single realization. The storage
addresses of the molecular populations and propensity
functions are grouped by species.

This scheme works perfectly for the propensity functions
if all threads update the same molecular species. If the
threads do not fire the same reaction, they do not necessarily
update the same species. But due to the large block size,
there will still be updates in the same 128-byte segment
which can be coalesced, thus minimizing the total global
memory transactions. Whenever multiple threads update
the same molecular species, memory access is coalesced.

5 RESULTS

The performance of the thin thread approach implementa-
tion of the SSA algorithm on GPUs is assessed in two steps.
First, we assess the optimum block size using a small
example system. Second, the fat and thin thread approaches
to parallel stochastic simulation using GPUs are compared
to the sequential implementation on a CPU.3 The results are
given as a speedup (ratio of sequential runtime on a CPU to
parallel runtime on the GPU) as well as in runtime in
milliseconds. The base case computes a realization of the

stochastic simulation on a single CPU core. This is a
reasonable choice using an MRIP approach. This is the
sequential runtime per realization and assumes a linear
scaling on the CPU which is, by Amdahl’s law, the best case
and a conservative estimate [22]. Our results do not include
transfers between the host and the GPU.

5.1 Example Systems

We use five example reaction systems of varying size. They
are described in detail in the Supplemental Online Material,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.157. The first example system is a decay-
dimerization model used by Gillespie [23], and the second
is the Oregonator, a simulation of the oscillating Belousov-
Zhabotinskii reaction discovered in 1951 [24]. The third
example is a simple model of a circadian oscillator. Many
organisms use a circadian clock to keep internal sense of
daily time and regulate their behavior accordingly [25]. The
fourth is a simplified simulation of the lac-operon presented
in [26]. The lac-operon consists of three genes and is
required for the transport and metabolism of lactose in
some bacteria, e.g., Escherichia coli. It is regulated by several
factors including the availability of glucose and of lactose.
The lac-operon is one of the foremost examples of
prokaryotic gene regulation. The final example is a fully
connected reaction network consisting of six chemical
species. The size of these reaction systems in terms of the
number of reactions and molecular species involved is
given in Table 1.

5.2 Latency Hiding and Register Pressure

The thin threading approach is based on minimizing
memory transactions by coalescing and hiding memory
and arithmetic latency by large block sizes. It is now
obvious to ask whether there is an optimal block size. The
fat thread approach uses up to 128 threads or 4 warps per
block, so we use 160 up to 512 threads or 5 to 16 warps
per block with the thin threading. We investigate the
influence of the block size by simulating the time
evolution of the Oregonator system. The runtime per
realization across the increasing block sizes is given in
Table 2. Since threads are scheduled in warps of
32 threads, the block size is incremented by 32 threads.
Against intuition, the best performance is at block sizes of
192 (6 warps) or 384 (12 warps) threads per block,
respectively. All further calculations are performed with
a block size of 384 threads or 12 warps per block.

It has to be noted that our SSA implementation requires
33 32-bit register entries per thread. At 16384 32-bit register
entries available per SM, this allows for up to 455 threads
per block. To allow a block size of 512 threads per block,
the register usage has to be limited to 32 registers per
thread. This may potentially hamper the performance at
this block size [27].

5.3 Comparing Fat and Thin Threading

Using the fat thread approach, the block size computing the
simulations is set according to Table 1 and set to 384 using
the thin thread approach.

284 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2012

3. To ensure an unbiased comparison, all used algorithms are
implemented in C.

Fig. 3. The coalesced global memory layout used. Storage of the
propensity functions of the M reactions of the reaction system is shown
on the top, of the time evolution data at the bottom. The time evolution
data were stored row wise. Each row corresponds to one sampled time
point. Each row consists of N blocks of size equal to block size�
grid size holding the per realization molecular populations of one
molecular species.

Since the actual runtime depends on the chosen hard-

ware, the results are stated in terms of gain or speed-up

comparing the parallel GPU implementation to the sequen-

tial CPU one. The speedup for the example systems used is

given in Fig. 4. While the fat thread approach outperforms

the thin thread one on the dimerization-decay and

Oregonator system, the thin thread approach performs

better on the Lac-operon, circadian cycle, and the fully

connected network. The fat thread approach seems to be

favorable for smaller reaction systems when its small size

allows large block sizes.
To investigate whether the performance of the fat thread

approach depends on the block size and with it on the size

of the reaction system, we simulated 1, 2, 4, and 6 decay-

dimerization systems at once. The details of these models

are given in the Supplemental Online Material, which can

be found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TPDS.2011.157. The

runtime ratio of the fat thread and thin thread approaches

is shown in Fig. 5. A ratio smaller than 1 means that the fat

thread approach is faster.

6 DISCUSSION AND CONCLUSION

We compared two threading strategies on GPUs with the
sequential computation on a CPU. We applied both
strategies to the stochastic simulation of four biologically
meaningful and one artificially constructed example sys-
tems. The fat threading follows the recommended approach
using the fast on-chip shared memory to minimize global
memory accesses and their latency. We propose a thin
threading strategy not using the shared memory, but hiding
the arithmetic and access latencies by large block sizes. The
thin thread approach basically ignores the GPU memory
hierarchy, especially shared memory, and uses memory in a
more CPU-like fashion. However, the programmer still has
to ensure coalesced memory transfers to hide access latency.

Thin and fat threading approaches show comparable
performance. However, the thin threading approach re-
lieves the stochastic simulation software of one of its major
limitations, the size of the reaction system to be simulated
by the size of shared memory.6

The optimal block size in latency hiding is not, as one
might expect, at 512 threads per block, but either at 192
(6 warps) or 384 (12 warps) threads per block.

Fat threading uses shared memory as a CPU-style cache.
It is not used for thread synchronization or cooperation.
Thin threading neglects shared memory and uses an easier
more CPU-like programming model without a perfor-
mance loss. If thread synchronization and caching compete
for the limited shared memory, thread synchronization
should take priority since memory latency can be success-
fully hidden by using a thin thread approach.

6.1 Outlook

The stochastic simulation of ensembles of chemical reac-
tion systems is trivially parallel. All simulations are
independent. The shared memory is solely used to
accelerate computation, but not for thread cooperation. It
has to be verified whether the thin threading approach is
applicable to problems requiring thread cooperation. Since

KLINGBEIL ET AL.: FAT VERSUS THIN THREADING APPROACH ON GPUS: APPLICATION TO STOCHASTIC SIMULATION OF CHEMICAL... 285

TABLE 2
Determining the Optimal Block Size in Latency Hiding

Runtime per realization in milliseconds while varying the block size from
160 (5 warps) to 512 (16 warps) threads per block. Counterintuitive to
latency hiding, the largest block size of 512 threads does not yield the
best performance. Both block sizes of 192 and 384 threads,
respectively, yield the best performance.
4. Limited to 32 registers per thread.
5. The maximum block size for GPUs with compute capability greater or
equal than 1.3 is 512 threads [1].

6. Details of the example reaction systems used are given in the
supplemental material, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.157.

Fig. 4. Comparing the gain, ratio of the sequential runtime of the CPU

implementation and the parallel GPU implementation, of the fat and thin

thread approaches.

Fig. 5. Runtime ratio of the fat thread and thin thread approaches. A ratio
smaller than 1 means that the fat thread approach is faster, and greater
than 1 means that the thin thread is faster. To create larger reaction
systems with similar characteristics, multiple (1, 2, 4, and 6) dimeriza-
tion-decay reaction systems are concatenated to create reaction
systems with 4, 8, 16, and 24 reactions, respectively.6 Even for eight
reactions, the thin thread approach is slightly faster than the fat thread.
For 16 and 24 reactions, the thin thread approach is clearly beneficial.

the global memory is shared by all threads, it is not a

question of feasibility but of performance.
The lately released NVIDIA Fermi architecture in-

creases the amount of shared memory and introduces

caches to the GPU. Each SM has a combined 64 kB shared

memory and cache area. It can be divided either into

48 kB of shared memory and 16 kB of cache or vice versa

[28]. The fat thread strategy benefits from the increased

shared memory by relieving the pressure on the max-

imum size of the reaction system. The thin thread

approach may benefit from the introduction of caches

when different threads update different molecular popu-

lations in global memory.

APPENDIX

HARDWARE AND SOFTWARE ENVIRONMENT

All simulations were computed using a NVIDIA GTX 260

GPU with 216 cores and 896 Mb DDR3 RAM. The Host CPU

is an Intel Core 2 Duo 6420 at 2.13 GHz and 4 GB RAM. The

software environment is OpenSuse 11.1 with gcc 4.2.3,

NVIDIA CUDA 3.0, and MATLAB 2010a. The stochastic

simulation software requires a GPU with compute cap-

ability 1.2 or higher. The GPU code is integrated into

MATLAB using the MEX C interface.

ACKNOWLEDGMENTS

GK was supported by the Systems biology Doctoral Training

Center (DTC) and the Engineering and Physical Sciences

Research Council (EPSRC). This publication was based on

work supported in part by Award No. KUK-C1-013-04, made

by King Abdullah University of Science and Technology

(KAUST). The research leading to these results has received

funding from the European Research Council under the

European Community’s Seventh Framework Programme (FP7/

2007-2013) / ERC grant agreement No. 239870. RE would also

like to thank Somerville College, University of Oxford for

Fulford Junior Research Fellowship. MG was supported in

part by the Oxford-Man Institute of Quantitative Finance,

and by the United Kingdom Engineering and Physical

Sciences Research Council under research grant EP/

G00210X/. PM was partially supported by a Royal Wolfson

Merit Award.

REFERENCES

[1] Nvidia CUDA Programming Guide, Version 2.1, NVIDIA Corpora-
tion, 2701 San Tomas Expressway, vol. 12, 2008.

[2] R. Erban, S. Chapman, I. Kevrekidis, and T. Vejchodsky, “Analysis
of a Stochastic Chemical System Close to a Sniper Bifurcation of Its
Mean-Field Model,” SIAM J. Applied Math., vol. 70, no. 3, pp. 984-
1016, 2009.

[3] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter,
Molecular Biology of the Cell. Garland Science, 2007.

[4] F. Holstege, E. Jennings, J. Wyrick, T. Lee, C. Hengartner, M.
Green, T. Golub, E. Lander, and R. Young, “Dissecting the
Regulatory Circuitry of a Eukaryotic Genome,” Cell, vol. 95, no. 5,
pp. 717-728, Nov. 1998.

[5] J. Hasty, D. McMillen, F. Isaacs, and J. Collins, “Computational
Studies of Gene Regulatory Networks: In Numero Molecular
Biology,” Nature Rev. Genetics, vol. 2, no. 4, pp. 268-279, Apr. 2001.

[6] T. Tian and K. Burrage, “Stochastic Models for Regulatory
Networks of the Genetic Toggle Switch,” Proc. Nat’l Academy of
Sciences of USA, vol. 103, no. 22, pp. 8372-8377, 2006.

[7] G. Ewing, D. McNickle, and K. Pawlikowski, “Multiple Replica-
tions in Parallel: Distributed Generation of Data for Speeding up
Quantitative Stochastic Simulation,” Proc. Int’l Assoc. for Mathe-
matics and Computers in Simulation (IMACS ’97), pp. 397-402, 1997.

[8] L. Dematte and T. Mazza, “On Parallel Stochastic Simulation of
Diffusive Systems,” Proc. Sixth Int’l Conf. Computational Methods in
Systems Biology (CMSB ’08), pp. 191-210, 2008.

[9] T. Tian and K. Burrage, “Parallel Implementation of Stochastic
Simulation for Large-Scale Cellular Processes,” Proc. Eighth Int’l
Conf. High Performance Computing and Grid in Asia-Pacific Region,
vol. 0, pp. 621-626, 2005.

[10] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K.S. Gatlin, N.
Mitchell, J. Feo, and B. Koblenz, “Multi-Processor Performance on
the Tera MTA,” Proc. IEEE/ACM Conf. Supercomputing (SC ’98),
pp. 4-4, 1998.

[11] A. Agarwal, J. Kubiatowicz, D. Kranz, B. Lim, D. Yeung, G.
D’souza, and M. Parkin, “Sparcle: An Evolutionary Processor
Design for Large-Scale Multiprocessors,” IEEE Micro, vol. 13,
no. 3, pp. 48-61, June 1993.

[12] F. Irigoin and R. Triolet, “Supernode Partitioning,” POPL ’88: Proc.
15th ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages, pp. 319-329, 1988.

[13] D. Gillespie, “A General Method for Numerically Simulating the
Stochastic Time Evolution of Coupled Chemical Reactions,”
J. Computational Physics, vol. 22, pp. 403-434, 1976.

[14] D. Gillespie, “Exact Stochastic Simulation of Coupled Chemical
Reactions,” J. Physical Chemistry, vol. 81, no. 25, pp. 2340-2361,
1977.

[15] M. Gibson and J. Bruck, “Efficient Exact Stochastic Simulation of
Chemical Systems with Many Species and Many Channels,”
J. Physical Chemistry A, vol. 104, pp. 1876-1889, 2000.

[16] H. Li and L. Petzold, “Logarithmic Direct Method for Discrete
Stochastic Simulation of Chemically Reacting Systems,” technical
report, Dept. of Computer Science, Univ. of California, http://
www.cs.ucsb.edu/cse/publications.php, 2006.

[17] Y. Cao, H. Li, and L. Petzold, “Efficient Formulation of the
Stochastic Simulation Algorithm for Chemically Reacting Sys-
tems,” J. Chemical Physics, vol. 121, no. 9, pp. 4059-4067, 2004.

[18] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia
Tesla: A Unified Graphics and Computing Architecture,” IEEE CS
Hot Chips, no. 19, pp. 39-45, Mar./Apr. 2008.

[19] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel
Programming with CUDA,” ACM Queue, vol. 6, no. 2, pp. 40-53,
Mar./Apr. 2008.

[20] P. Maciol and K. Banas, “Testing Tesla Architecture for Scientific
Computing: The Performance of Matrix-Vector Product,” Proc.
Int’l Multiconf. Computer Science and Information Technology, vol. 3,
pp. 285-291, 2008.

[21] Nvidia Compute PTX: Parallel Thread Execution, ISA Version 1.4,
NVIDIA Corporation, 2701 San Tomas Expressway, vol. 3, 2009.

[22] G.M. Amdahl, “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities,” AFIPS ’67 : Proc.
Apr. 18-20, 1967, Spring Joint Computer Conf., pp. 483-485, 1967.

[23] D. Gillespie, “Approximate Accelerated Stochastic Simulation of
Chemically Reacting Systems,” J. Chemical Physics, vol. 115, no. 4,
pp. 1716-1733, 2001.

[24] J. Murray, Mathematical Biology 1: An Introduction, third ed.
Springer Verlag, 2002.

[25] J. Vilar, H. Kueh, N. Barkai, and S. Leibler, “Mechanisms of Noise-
Resistance in Genetic Oscillators,” Proc. Nat’l Academy of Sciences of
USA, vol. 99, no. 9, pp. 5988-5992, 2002.

[26] D. Wilkinson, Stochastic Modelling for Systems Biology. Chapman &
Hall/CRC, 2006.

[27] NVIDIA CUDA C Programming Best Practices Guide CUDA Toolkit
2.3, NVIDIA Corporation, 2701 San Tomas Expressway, July 2008.

[28] NVIDIAs Next Generation CUDA Compute Architecture: Fermi,
NVIDIA Corporation, 2701 San Tomas Expressway, v 1.1, 2009.

286 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2012

Guido Klingbeil received the diploma degree in
computer engineering from the Technical Uni-
versity of Hamburg-Harburg. Currently, he is
working as a member of the Systems Biology
Doctoral Training Centre at the University of
Oxford. His research interests include mathe-
matical biology, stochastic simulation algo-
rithms, gene regulatory networks, and the use
of GPUs for scientific computing applications.

Radek Erban received the PhD degree from the
University of Minnesota. Currently, he is working
as a Royal Society University Research Fellow
in the Mathematical Institute, University of
Oxford. His research interests include mathe-
matical biology, multiscale modeling, partial
differential equations, stochastic simulation al-
gorithms, gene regulatory networks, mathema-
tical fluid dynamics, and applications of
mathematics in medicine.

Mike Giles received the BA degree in mathe-
matics from the University of Cambridge, and
the SM and PhD degrees in aeronautical
engineering from MIT. Currently, he is working
as a professor of scientific computing in the
Mathematical Institute at the University of
Oxford, and is also a member of the Oxford-
Man Institute of Quantitative Finance and the
Oxford e-Research Centre. His research inter-
ests include the development and numerical

analysis of Monte Carlo methods in computational finance, and the use
of GPUs for a wide variety of scientific computing applications.

Philip K. Maini received the DPhil degree in
mathematics from Oxford University. Currently,
he is working as a professor of mathematical
biology and the director of the Centre for
Mathematical Biology, Mathematical Institute,
Oxford. He is also a part of the Oxford Centre
for Integrative Systems Biology, Department of
Biochemistry. His research interests include
deterministic models of cell and tissue-level
interactions to signaling cues with applications

in developmental biology, cancer growth, and wound healing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KLINGBEIL ET AL.: FAT VERSUS THIN THREADING APPROACH ON GPUS: APPLICATION TO STOCHASTIC SIMULATION OF CHEMICAL... 287

