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Abstract

We compare two methods to estimate Value-at-Risk of a complex portfolio

made up of vanilla options: the standard Monte Carlo (MC) method and

Multilevel Monte Carlo Maximum Entropy (MLMC-ME) method. The MC

method will estimate the VaR as an empirical quantile from the random sam-

ples of the portfolio Profit-and-Loss (PnL). The MLMC-ME method will first

estimate the generalised moments of the distribution of PnL using the MLMC

method, with the level estimators formed by repricing different numbers of

positions in the portfolio, and then reconstruct the distribution of PnL with

the estimated series of generalised moments using the ME method. For an

accuracy of ε, the cost required by MC is O(ε−2K), where K is the number of

positions in the portfolio. MLMC-ME requires only a cost of O(ε−2), giving

large savings when K is large.
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Chapter 1

Introduction

Banks are required by regulators to calculate at a daily basis the risk statistics, such

as Value-at-risk (VaR) and Conditional VaR (CVaR, or Expected Shortfall, ES), etc.

Mathematically, the α-VaR is the α quantile of the distribution of the portfolio Profit-

and-Loss (PnL). The α-CVaR is the expectation of PnL conditional that the PnL is

smaller than the α-VaR. In this paper, we denote profits as positive values and losses

as negative values. As banks usually have a large and complex portfolio with different

financial instruments, the distribution of PnL is not explicitly known. To estimate the

risk statistics, random samples of PnL need to be simulated. This can be computationally

expensive. In this paper, we introduce two methods to estimate VaR and compare their

computational cost and accuracy: standard Monte Carlo (MC) method and Multilevel

Monte Carlo (MLMC) Maximum Entropy (ME) method. We show that the combined

MLMC-ME method is much cheaper computationally than the MC method, when the

number of different positions in the portfolio is large.

The standard MC method is the brute force way to estimate VaR. It involves simulating

random samples of the underlying risk factors, and then repricing all the financial assets

in the portfolio under each risk scenario. The difference between the new portfolio value

and the current value is the PnL. With the random samples of PnL, we can calculate

the VaR as an empirical quantile. Assume that there are K different positions in the

portfolio. For a given VaR level α and a given accuracy ε, the MC method requires a

computational cost of O(ε−2K). The K comes into play because K different positions

need to be repriced for each random sample of PnL. As K increases, this cost will increase

proportionally.

Instead, the key step of MLMC-ME method is to estimate the distribution density func-

tion of PnL. We first estimate the generalised moments of PnL using MLMC method,
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then reconstruct the PnL density function using ME method and finally obtain the quan-

tiles and conditional expectations from this reconstructed distribution. We will form

the MLMC estimator with different numbers of sub-samples of the portfolio on different

levels, and prove that if an accuracy of ε is required for the moments, MLMC only re-

quires a cost of O(ε−2), which is independent of K. We also show numerically that if

the moments can be obtained at accuracy ε, then the VaR can be estimated at accuracy

ε′ = cε, if other conditions are met. Overall, the MLMC-ME method requires a total

cost of O(ε−2), which is much superior to MC method.

The ME method is a powerful tool to recover the distribution density function ρ(x) when

only a series of truncated generalised moments of the form µr =
∫
φr(x)ρ(x)dx, r =

0, ..., R are known. One example of this is just the usual moment functions µr =∫
xrρ(x)dx, but other forms of φr are also possible and may have different and some-

times better numerical features. There may exist many density functions that satisfy the

moment constraints, among which the “best” one is the distribution with the Maximum

Entropy, with the entropy defined as −
∫
ρ(x) ln(ρ(x))dx. The details of this method will

be discussed in Chapter 3. The MLMC method is one way to estimate the moments µr

at a relatively low cost.

When estimating the moments, MLMC method uses the idea of nested simulation, which

involves an outer-level simulation and an inner-level simulation. The outer-level simu-

lation involves simulating the risk scenarios, the same as the MC method, under which

we will calculate the PnL; the inner level involves random sub-sampling of the whole

portfolio, i.e. instead of repricing the whole portfolio under each risk scenario, we inde-

pendently and randomly select the positions to be repriced. The number of positions to

be repriced on level l is 2l. The MLMC method can achieve a cost of O(ε−2) in estimating

the moments, which is independent of K.

In this paper, we consider a portfolio composed of only call options that can be priced by

Black-Scholes (BS) formula and do not need to be priced using numerical schemes, thus

we exclude the complexity and randomness arising from pricing the options themselves.

The key point that we would like to make is that when K increases, the MC cost will

increase proportionally, while the MLML cost will stay roughly the same, thus MLMC

can greatly reduce the computational cost when K is very large. When considering

the process that K tends to infinity, we need to include more different positions in our

portfolio. In this paper, we carry out our numerical analysis on an idealised portfolio

composed of only call options on the same stock with different strike prices and maturity

dates, each of them having equal weighting. The strike prices are equally spaced over a

fixed interval. Every time we fix the total amount of money in the portfolio, so as to
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double K, we halve the weighting of each position and halve the interval of strike price

or maturity. For the outer-level risk scenarios, we only consider the movement of the

stock price S and hold all the other risk factors fixed. For a given S, the PnL of the kth

position is Lk(S), k = 1, ..., K.

The outline of the paper is as follows. In Chapter 2, we will discuss the standard MC

method. In Chapter 3, we will discuss in details the ME method, including the theory,

the algorithm and practical issues. In Chapter 4, we will show the MLMC complexity

theorem introduced in [5] and explain in details how the levels are formed. We will also

calculate the constants in the complexity theorem and thus prove the order of the MLMC

cost. In Chapter 5, we will demonstrate some numerical results, including the MLMC

moments estimation, the ME reconstruction and compare the accuracy of MLMC-ME

and MC methods using the same cost.
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Chapter 2

Standard Monte Carlo method

Denote t as the current time point, h the VaR horizon, S0 the current stock price, S the

stock price in time h. The current value of the kth position in the portfolio is akVk(S0, t)

where ak is the unit of the option, Vk is the standard Black Scholes price of an option on

one share of stock, and the value at the end of the horizon h is akVk(S, t + h), the PnL

is Lk(S) = ak[Vk(S, t+ h)− Vk(S0, t)].

For simplicity, we only consider the change in the stock price. All the other risk factors,

such as volatility, interest rate, will stay the same. Assume {S(n)}Nn=1 is a random sample

of the stock price S at time t+ h. A random sample of the portfolio PnL is

Y(n) =
K∑
k=1

Lk(S(n))

The empirical distribution of the PnL based on N independent random samples is

F̂N(x) =
1

N

N∑
n=1

1{Y(n) ≤ x} (2.0.1)

The α-VaR is calculated as:

V̂ aRα,N = F̂−1N (α) (2.0.2)

According to [15] and [9], this empirical estimate of VaR has asymptotic distribution

√
N(V̂ aRα,N − V aRα) ∼

√
α(1− α)

ρ(V aRα)
N (0, 1) (2.0.3)

as N →∞, where N (0, 1) is the standard normal distribution and ρ(·) is the probability

density function of the portfolio PnL. If we want to achieve an accuracy of ε, i.e.√
E
[(
V̂ aRα,N − V aRα

)2]
≤ ε (2.0.4)
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we need
1√
N

√
α(1− α)

ρ(V aRα)
≤ ε (2.0.5)

thus the number of independent samples of PnL should be roughly

N ≈
√
α(1− α)

ρ(V aRα)
ε−2 (2.0.6)

For each random sample, we need to evaluate the BS formula for K times, thus the total

cost needed to achieve an accuracy of ε is roughly

√
α(1−α)

ρ(V aRα)
ε−2K.

It is also noteworthy that this cost will increase as we aim at more extreme quantile

values. The density function of PnL usually decreases at the two tails and has a hump

in the middle. As α tends to 0, ρ will usually become very small, thus the cost required

will be fairly large.
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Chapter 3

Maximum Entropy method

3.1 The theory

The goal of the Maximum Entropy method is to reconstruct a “best” distribution when

only a series of generalised truncated moments is available. Mathematically the goal is

to find ρ such that ∫
φr(x)ρ(x)dx = µr, r = 0, ..., R (3.1.1)

where {µr}Rr=0 is a given series of constants and {φr}Rr=0 is a series of basis functions.

This problem may have no solution or multiple solutions. The latter is always true when

the series of moments is admissible, i.e. (µ0, ..., µR) are indeed the generalised moments

of some probability density function. If multiple solutions exist, the “best” solution is

the distribution function that has the maximum entropy, which in fact requires minimal

prior information on the distribution. The Shannon entropy of a given distribution ρ is

defined as

E[− ln(ρ(X))] = −
∫
ρ(x) ln(ρ(x))dx (3.1.2)

The {φr}Rr=0 in equation (3.1.1) is a series of basis functions, the following three series

are commonly used:

1. Monomials: φr(x) = xr for r ≥ 0

2. Legendre polynomials: P0(x) = 1, P1(x) = x, Pr(x) = 2r−1
r
xPr−1(x) − r−1

r
Pr−2(x)

for r ≥ 2

3. Fourier functions (trigonometric functions): φ0(x) = 1, φ2r−1(x) = sin(rx) and

φ2r(x) = cos(rx) for r ≥ 1
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This problem now has the form of an optimisation problem:

maximise −
∫
ρ(x) ln(ρ(x))dx

subject to

∫
φr(x)ρ(x)dx = µr, r = 0, ..., R

(3.1.3)

After expressing the problem in the Lagrangian form, the solution to problem (3.1.3) is

given by

ρR(x) = exp

[
−

R∑
r=0

λrφr(x)

]
(3.1.4)

where the {λr}Rr=0 are Lagrangien parameters to be obtained by solving the following set

of non-linear equations∫
φr(x) exp

[
−

R∑
s=0

λsφs(x)

]
dx = µr, r = 0, ..., R (3.1.5)

The detailed derivation of this result can be found in for example [3].

When the exact moments {µr}Rr=0 are not known, but some estimations {µ̃r}Rr=1 can be

obtained using numerical methods, e.g. in our case, {µ̃r}Rr=1 can be obtained by MC or

MLMC method, the solution to the perturbed problem is

ρ̃R(x) = exp

[
−

R∑
r=0

λ̃rφr(x)

]
(3.1.6)

where {λ̃r}Rr=0 is the solution to∫
φr(x) exp

[
−

R∑
s=0

λ̃sφs(x)

]
dx = µ̃r, r = 0, ..., R (3.1.7)

The accuracy of ρ̃R as an estimate of ρ depends on how large R is and how close the

µ̃r are to µr. In [2], the author uses Kullback-Leibler (KL) distance as the criterion of

distance between two density functions:

DKL(ρ||η) =

∫
ρ(x) ln

ρ(x)

η(x)
dx (3.1.8)

It is proved that

DKL(ρ||ρ̃R) = DKL(ρ||ρR) +DKL(ρR||ρ̃R) (3.1.9)

We call the first item the truncation error, the second the discretisation error. The

author proves that for given R, as µ̃r become more accurate, the discretisation error

will become smaller; when µr are estimated within some accuracy by some numerical

scheme and are random themselves, as R increases, the truncation error becomes smaller
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on average, but the probability that problem (3.1.3) does not admit a solution also

increases. In our numerical experiments to estimate VaR, we won’t determine R using

rigorous mathematical deduction due to time limit, instead we use a moderate choice of

R for a tradeoff between truncation error and stability.

3.2 The algorithm

The most complex step of the ME method is to solve the non-linear system (3.1.7)

with R + 1 equations. This can be done by Newton method. Following [14], denote

λ = [λ0, ..., λR]t, µ = [µ0, ..., µR]t

Gs(λ) =

∫
φs(x) exp

[
−

R∑
r=0

λrφr(x)

]
dx, s = 0, ..., R (3.2.1)

G(λ) = [G0(λ), ..., GR(λ)]t (3.2.2)

The Jacobian matrix of λ is

H = [hrs] =

[
∂Gr(λ)

∂λs

]
, r, s = 0, ..., R (3.2.3)

The matrix H is symmetric and we have

hrs = hsr = −
∫
φr(x)φs(x) exp

[
−

R∑
p=0

λpφp(x)

]
dx, r, s = 0, ..., R (3.2.4)

Given the n iteration λn, the n+ 1 iteration of the Newton algorithm is

λn+1 − λn = H(λn)−1(µ−G(λn)) (3.2.5)

A Matlab code is developed in [2] to solve problem (3.1.3). To solve (3.1.7), the author

uses the damped Newton method. Instead of doing (3.2.5), set

λn+1 − λn = pH(λn)−1(µ−G(λn)) (3.2.6)

where p is the damping factor between 0 and 1. The damped Newton method helps to

improve convergence in some cases. In order to calculate the integrals in (3.2.1) and
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(3.2.4), Gaussian quadrature rule is used (for Gaussian quadrature rule, see e.g. [17]),

because of its sufficiently high order . The full algorithm works as follows.

Algorithm 1: Maximum Entropy algorithm

Set φ to be monomials, Legendre polynomials or Fourier functions;
Set the support of ρ: (a, b);
Determine the quadrature points in (a, b);
Calculate φ at the quadrature points;
Set λ = λ0;
while |dλ| > tolerance & number of steps < maximum number of steps do

Calculate G(λ);
Calculate H(λ);
Calculate dλ = damping ∗H(λ)−1(µ−G(λ));
λ← dλ+ λ;

end
Calculate ρR;

3.3 Numerical issues

Practically the performance of this algorithm can be influenced by many factors.

The number of moments R: In [2], the author finds that bigger R increases the

accuracy of the distribution approximation, but at the same time increases the probability

that the perturbed problem does not admit a solution even though the problem using the

exact moments does admit a solution. When solving the problem using Newton method,

a matrix of dimension (R+1)×(R+1) needs to be inverted, thus a larger R also increases

computation burden and will more often bring problems when inverting the matrices due

to ill-conditioning. The following graphs show the ME approximation for the lognormal

distribution with parameters µ = 0, σ = 0.5 using up to the 5th and 20th Fourier functions

respectively, with the moments estimated using 107 random samples. When using R = 20,

the ME approximated distribution is very close to the true distribution.

9



0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

exact density
Maximum Entropy approximation

(a) R = 5

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

exact density
Maximum Entropy approximation

(b) R = 20

Figure 3.1: ME approximation with different R

The choice of φ: Theoretically all the three choices of φ will work, however, it does

significantly affect the numerical results. The Legendre polynomials usually have a better

performance than the monomials. Mathematically, the monomials and Legendre poly-

nomials should be equivalent — the difference is entirely due to ill-conditioning and

round-off error problems. Another observation is that when the kurtosis of the true dis-

tribution is high, Fourier functions work much better than the monomials and Legendre

polynomials. When R is big, the monomials and Legendre polynomials will usually make

the Jacobian matrix close to singular, thus cannot be inverted when doing the Newton

iteration, which will stop us from increasing R further to achieve a better accuracy, thus

limiting the usage of monomials and Legendre polynomials. We have done some tests on

lognormal distributions with different parameters σ1 = 0.2, σ2 = 0.5 and σ3 = 1 using

the three series of polynomials. We estimate the moments using 107 random samples

and increase R from 1, stop and record R when the algorithm cannot converge before

generating the error of singular matrix. Even though the estimation of moments brings

randomness into the results, it is still clear that in all cases, the Fourier functions work

more stably than the monomials and Legendre polynomials.

Lognormal distribution
parameter σ

kurtosis Monomials
Legendre

polynomials
Fourier

functions

0.2 3.7 9 22 > 40
0.5 8.9 6 6 > 40
1.0 110 5 4 > 40

Table 3.1: The biggest R with which the algorithm works
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The support of ρ (a, b): The numerical algorithm must take in a bounded support for

ρ as an input. In Algorithm 1, this interval is provided by the user. Generally it should

be neither too small nor too big. The algorithm will assume the integral of ρ over this

interval is equal to 1. If the interval is too small, then the estimated distribution has high

bias; if this interval is too big, the algorithm will usually have worse convergence than

using an appropriate interval. For distributions with bounded support, this interval can

be slightly wider than the support of the distribution; for distributions with unbounded

support, such as the normal distribution, we can make (a, b) to be the interval over which

the integral of the density function is equal to 99.99%. If the support of the underlying

density is unknown, experimenting with it may help to get better results. The following

graphs show the results of ME approximation of the lognormal distribution with σ = 0.5

using up to the 20th function functions, the first figure using (a, b) = (0, 2) and the second

using (a, b) = (0, 6) respectively.
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Figure 3.2: ME approximation with different (a, b)
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Chapter 4

Multilevel Monte Carlo method

Following the discussion in Chapter 3, instead of simulating random samples of PnL

directly, we try to first recover its distribution using the ME method. In order to obtain

the moments required for the ME reconstruction, in this section, we will discuss how the

MLMC method can estimate the moments with a relatively low cost, i.e. O(ε−2). As K

increases, the cost using MLMC would stay roughly the same.

4.1 MLMC and the complexity theorem

MLMC is a powerful technique introduced in [5]. It is used to reduce the computational

cost by performing most calculations with low accuracy at low cost, and relatively few

calculations with high accuracy at high cost. We want to estimate the expectation of

an arbitrary random variable E[P ] and there exist some approximations Pl to P at dif-

ferent accuracies that can be obtained at different costs. l represents the parameter of

approximation, for example, it can be the grid space in solving PDE or SPDE.

For a given L, we have the following equality

E[PL] = E[P0] +
L∑
l=1

E[Pl − Pl−1] (4.1.1)

and we can form an estimator for E[PL], where E[Pl −Pl−1] are estimated independently

and Pl and Pl−1 are formed using the same random factor such that these two values are

close, thus the variance of Pl − Pl−1 is low.

An estimator based on N0 simulations for E[P0] is

Ŷ0 =
1

N0

N0∑
n=1

P
(0,n)
0
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An estimator of E[Pl − Pl−1] using Nl independent samples is

1

Nl

Nl∑
n=1

(P
(l,n)
l − P (l,n)

l−1 )

Combining them gives an estimator for E[PL]

Ŷ =
1

N0

N0∑
n=1

P
(0,n)
0 +

L∑
l=1

[
1

Nl

Nl∑
n=1

(
P

(l,n)
l − P (l,n)

l−1

)]
(4.1.2)

Let C0, V0 denote the cost and variance of one sample of P0, and Cl, Vl denote those of

Pl − Pl−1, then the total cost and variance of Ŷ are
∑L

l=0NlCl and
∑L

l=0N
−1
l Vl. The

mean square error (MSE) of Ŷ as an approximation to E[P ] is

MSE = E[(Ŷ − E[P ])2] = V[Ŷ ] + (E[Ŷ ]− E[P ])2 (4.1.3)

the first item corresponding to the variance of the estimator, the second corresponding

the the bias. We also have

E[Ŷ ] = E[PL], V[Ŷ ] =
L∑
l=0

N−1l Vl, Vl = V[Pl − Pl−1] (4.1.4)

One sufficient condition to ensure the MSE to be less than ε2 is that both V[Ŷ ] and

(E[Ŷ ] − E[P ])2 are less than 1
2
ε2. This idea leads to the following complexity theorem

introduced in [5].

Theorem 4.1.1 (MLMC, [6]) Let P denote a random variable, and Pl denote the cor-

responding level l approximation. If there exist independent estimators Yl based on Nl

Monte Carlo samples, each with expected cost Cl and variance Vl, and positive constants

α, β, γ, c1, c2, c3 such that α ≥ 1
2

min(β, γ) and

1. |E[Pl − P ]| ≤ c12
−αl

2. E[Yl] =

{
E[P0], l = 0

E[Pl − Pl−1], l ≥ 1

3. Vl ≤ c22
−βl

4. Cl ≤ c32
γl

then there exists a positive constant c4 such that for any ε < e−1 there are values L and

Nl for which the multilevel estimator

Y =
L∑
l=0

Yl

13



has a mean square error with bound

E
[
(Ŷ − E[P (X)])2

]
≤ ε2

with a computational cost C with bound

E[C] ≤


c4ε
−2, β > γ

c4ε
−2(log ε)2, β = γ

c4ε
−2−(γ−β)/α, β < γ

(4.1.5)

The proof of this theorem consist of two parts: first, L is chosen such that (E[Ŷ ]−E[P ])2 <
1
2
ε2; then the optimal number of samples Nl on level l is proportional to 2−(β+γ)l/2 and

the constant is chosen so that V[Ŷ ] < 1
2
ε2, and Nl is rounded up to the nearest integer.

The cost on level l is proportional to 2(γ−β)l/2. Particularly, when β > γ, most of the

calculations are performed on the coarsest level. More details can be found in [5] and [6].

In the context of estimating VaR, the first step is to estimate the expectation of some

basis function φr on PnL

µr = E

[
φr

(
K∑
k=1

Lk(S)

)]
, 0 ≤ r ≤ R (4.1.6)

then the µr can be used for the ME reconstruction. We will show later that we can form

an MLMC estimator for the moments with α = 1, β = 2 and γ = 1, thus the cost is

O(ε−2).

Conditional on S, let X be a discrete uniform random variable from the sample {Lk}Kk=1,

i.e.

P[X = Lk(S)|S] =
1

K
, k = 1, ..., K (4.1.7)

and {X(q)}Qq=1 is a random sample of X, then P = φr(
∑K

k=1 Lk(S)) can be seen as a

conditional expectation

P = φr(E(
K

Q

Q∑
q=1

X(q)|S)) (4.1.8)

From equation (4.1.8), we can form estimators of different accuracies using different Q.

As a starting point, we assume that K is a power of M = 2. Denote Ml = 2l and

Pl = φr(K
1

Ml

Ml∑
m=1

X(m)|S)) (4.1.9)

is the level l approximation to P . In (4.1.9), though X(m) is a random sample from

{Lk}Kk=1, we don’t really need to know all the values of Lk. We only need to randomly
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select the indices from 1, ..., K and reprice the positions whose indices are selected in

{X(m)}Ml
m=1. Following the idea in [6], we can use an antithetic approach to construct a

low variance estimate for E[Yl] = E[Pl−Pl−1]. The antithetic method have been used by

several authors, e.g. [4] and [8].

Denote f = φr as the polynomial function to be estimated. On level l, we first select

Ml samples for the finer level, and then split them into two groups of equal size for the

coarser levels and form Yl as:

Yl = f

(
K

Ml

Ml∑
m=1

X(m)(S)

)
− 1

2
f

(
K

Ml−1

Ml−1∑
m=1

X(m)(S)

)
− 1

2
f

 K

Ml−1

Ml∑
m=Ml−1+1

X(m)(S)


(4.1.10)

We naturally have

E

[
f

(
K

Ml

Ml∑
m=1

X(m)(S)

)]
= E[Pl] (4.1.11)

E

1

2
f

(
K

Ml−1

Ml−1∑
m=1

X(m)(S)

)
+

1

2
f

 K

Ml−1

Ml∑
m=Ml−1+1

X(m)(S)

 = E[Pl−1] (4.1.12)

The estimator of E[Yl] based on Nl random samples is:

Ŷl =
1

Nl

Nl∑
n=1

[
f

(
K

Ml

Ml∑
m=1

X(n,m)(S(n))

)

−1

2
f

(
K

Ml−1

Ml−1∑
m=1

X(n,m)(S(n))

)
− 1

2
f

 K

Ml−1

Ml∑
m=Ml−1+1

X(n,m)(S(n))

 (4.1.13)

Until now, we have formed the estimators satisfying the second condition in Theorem

4.1.1. Next, in order to decide the optimal number of simulations to be carried out on

each level, we need some knowledge on the constants α, β and γ as in Theorem 4.1.1.

Only considering the cost of evaluating the BS formula and omitting the other additional

calculations, we have naturally Cl = 2l, as we only reprice the positions whose indices

are sampled according to X, thus γ = 1.

To calculate α, we will try to estimate the speed at which |E[Yl]| decreases. As

|E[PL − P ]| = |
∞∑
l=L

E[Pl − Pl+1]| ≤
∞∑
l=L

|E[Yl+1]|

then if |E[Yl+1]| is O(2−αl), |E[PL − P ]| is also O(2−αl). We write

E[Yl] = E[E[Yl|S]] (4.1.14)
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The variance of Yl comes from two sources: the randomness of the outer-level risk factor

S and the inner-level random sampling of the positions. Then according to the law of

total variance,

V(Yl) = E [V(Yl|S)] + V[E(Yl|S)] (4.1.15)

When sampling the Ml positions from the finite population, we can use either sampling

with replacement or without replacement: with replacement means that the samples are

independently selected and without replacement means that the samples are mutually

different (under the condition that the number of samples does not exceed the number of

positions). We will show in the following sections that there is no big difference in terms

of Cl and Vl between these two methods.

We will prove in the following two subsections that α = 1 and β = 2 for both sampling

with replacement and without replacement, thus the computational complexity to ensure

the moments are within an error of ε isO(ε−2). We also want to argue that as K increases,

if nothing else changes this cost does not scale with K. However, it is quite tricky to

define a limiting process for K with all the other factors staying the same. As we increase

K, the portfolio must have more different positions, hence the new positions will have

an effect on the variance of Pl. In order to eliminate the effects of those newly added

positions, we construct the portfolios in a careful way such that as we double K to 2K,

the newly added positions come from the same universe of options, i.e. their strike prices

and maturity dates follow a similar distribution to that of the already existing positions.

For example, if we have two call options with strike prices K1 and K2 in the portfolio of

size K, we add an option with strike price 1
2
(K1 + K2) to the portfolio. The details of

how the testing portfolios are formed will be shown in Chapter 5.

We will also show numerically if the 1st order moment of PnL can be estimated within an

accuracy of ε, with the same number of samples on each level, the estimations of the other

moments can achieve an accuracy of diε, d = 2, ..., R. Thus knowing this, we estimate the

different moments at the same time with little cost. With all these moment functions,

the VaR will be estimated within the accuracy of cε, thus the error that translate from

the moments estimation to the VaR estimation keeps the same order. Thus the cost of

MLMC-ME stays at O(ε−2), while the cost of standard MC method is O(ε−2K). Due to

time limit, we won’t try to determine how c can be determined from the other factors in

the scope of this project.
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4.2 Sub-sampling with replacement

We want to prove in this section that E[Yl] ≈ c12
−l and V[Yl] ≈ c22

−2l and c1, c2 do not

depend on K, if the X(m) are sampled with replacement, i.e. independently.

For a given S, when Ml−1 is large, K
Ml−1

∑Ml−1

m=1 X(m)(S) is equal to a constant times the

average of Ml−1 independent random samples, thus according Central Limit Theorem, it

follows asymptotically normal distribution conditional on S with mean

E

[
K

Ml−1

Ml−1∑
m=1

X(m)|S

]
=

K∑
k=1

Lk(S) , L(S) (4.2.1)

and variance

V

[
K

Ml−1

Ml−1∑
m=1

X(m)|S

]

=
K2

Ml−1
V [X|S]

=
K2

Ml−1
{E[X2|S]− (E[X|S])2}

=
1

Ml−1

[
K

K∑
k=1

Lk(S)2 − (
K∑
k=1

Lk(S))2

]
,

1

Ml−1
V (S)

(4.2.2)

Hence we can write

K

Ml−1

Ml−1∑
m=1

X(m)(S)− L(S) ≈

√
V (S)

Ml−1
Z1 (4.2.3)

where Z1 follows the standard normal distribution. Similarly we write

K

Ml−1

Ml∑
Ml−1+1

X(m)(S)− L(S) ≈

√
V (S)

Ml−1
Z2 (4.2.4)

If f is twice differentiable, which is the case as f is one of the basis functions, a Taylor

expansion of Yl gives

Yl ≈ −
1

4
f
′′
(L(S))

V (S)

Ml−1
(Z1 − Z2)

2 (4.2.5)

Z1 and Z2 are independent of S; the sub-sampling is performed with replacement, thus

Z1 and Z2 are also independent. We always have

E[(Z1 − Z2)
2] = 2, V[(Z1 − Z2)

2] = 8 (4.2.6)

thus

E[Yl|S] = E
[
−1

4
f
′′
(L(S))

V (S)

Ml−1
(Z1 − Z2)

2|S
]

= −1

2
f
′′
(L(S))

V (S)

Ml−1
(4.2.7)
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V[Yl|S] = V
[
−1

4
f
′′
(L(S))

V (S)

Ml−1
(Z1 − Z2)

2|S
]

=
1

2
f ′′(L(S))2

V (S)2

M2
l−1

(4.2.8)

Plugging (4.2.7) and (4.2.8) into (4.1.14) we have

E[Yl] = E[E[Yl|S]] = E
[
−1

2
f
′′
(L(S))

V (S)

Ml−1

]
= − 1

2l
E[f

′′
(L(S))V (S)] (4.2.9)

We can see that E[Yl] ≈ c12
−l thus α = 1 and c1 = −E

[
f
′′
(L(S))V (S)

]
.

Plugging (4.2.7) and (4.2.8) into (4.1.15) we have

V[Yl] = V[E(Yl|S)] + E[V(Yl|S)]

=
1

4
V[f

′′
(L(S))

V (S)

Ml−1
] +

1

2
E[f

′′
(L(S))

V (S)2

M2
l−1

]

=
1

22l
V[f

′′
(L(S))V (S)] + 2

1

22l
E[f

′′
(L(S))2V (S)2]

(4.2.10)

From here we can see that V[Yl] ≈ c22
−2l thus β = 2 and

c2 = V[f
′′
(L(S))V (S)] + 2E[f

′′
(L(S))2V (S)2] (4.2.11)

where

V (S) = K
K∑
k=1

L2
k(S)−

(
K∑
k=1

Lk(S)

)2

, L(S) =
K∑
k=1

Lk(S)

Though we don’t know how much c1 and c2 are exactly, we only need c1 and c2 to be

independent of l and K. The independence with l is natural. The independence with

K when K tends to infinity needs some condition on the portfolio. When we double K,

we add the positions that are different but come from the same prior distribution, and

at the same time halve the weighting of every position. In this way, in L(s), each of the

items in the sum will be roughly halved, but the number of items will be doubled, thus

L(S) does not change much overall. Similarly V (S) will not change much either. This

means that the constants in the MLMC cost analysis will not change, thus the cost will

stay roughly the same, compared to the standard Monte Carlo case whether the cost will

be simply doubled.

4.3 Sub-sampling without replacement

When the sub-sampling is done without replacement, all the X(m) must have distinct

values for a given S. We first present two theorems on the sample mean when sampling

without replacement. The first theorem follows the deduction in [19].
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Theorem 4.3.1 X is a discrete random variable that can take values from L1,...,LK

with equal probability, X̄ = 1
M

∑M
m=1X(m) is the average of M random samples without

replacement and M ≤ K, then

V[X̄] =
K −M
M(K − 1)

V[X] (4.3.1)

Proof: First the expectation and variance of X are

E[X] =
1

K

K∑
m=1

Lm, V[X] =
1

K

K∑
m=1

L2
m −

(
1

K

K∑
m=1

Lm

)2

(4.3.2)

The expectation of X̄ is the same as X, the variance is

V[X̄] =
1

M2

∑
m,n

Cov(X(m), X(n))

=
1

M2

[
M∑
m=1

V[X(m)] +
∑
m6=n

Cov(X(m), X(n))

]

=
1

M
V[X] +

M − 1

M
Cov(X(1), X(2))

(4.3.3)

Now,
Cov(X(1), X(2)) = E[X(1)X(2)]− (E[X])2

=
1

K(K − 1)

∑
m6=n

LmLn − (
1

K

K∑
m=1

Lm)2

=
1

K(K − 1)

( K∑
m=1

Lm

)2

−
K∑
m=1

L2
m

− 1

K2

(
K∑
m=1

Lm

)2

=
1

K2(K − 1)

( K∑
m=1

Lm

)2

−K
K∑
m=1

L2
m


= − 1

K − 1
V[X]

(4.3.4)

Plugging this into (4.3.3), we have

V(X̄) =
K −M
M(K − 1)

V(X) (4.3.5)

2

Theorem 4.3.2 X is a discrete random variable that can take values from L1,...,LK

with equal probability, X̄1 = 1
M

∑M
m=1X(m) and X̄2 = 1

M

∑2M
m=M+1X(m) are the averages
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of the first and second halves of 2M random samples selected without replacement and

2M ≤ K, then

Cov(X̄1, X̄2) = − 1

K − 1
V[X], Corr(X̄1, X̄2) = − M

K −M
(4.3.6)

Proof:

Cov(X̄1, X̄2)

= Cov(
1

M

M∑
m=1

X(m),
1

M

2M∑
n=M+1

X(n))

= E

[
1

M

M∑
m=1

X(m)
1

M

2M∑
n=M+1

X(n)

]
− (E[X])2

= E

[
1

M

M∑
m=1

X(m)E

[
1

M

2M∑
n=M+1

X(n)|X(1), ..., X(M)

]]
− (E[X])2

= E

[
1

M

M∑
m=1

X(m)
1

K −M
(KE[X]−

M∑
m=1

X(m))

]
− (E[X])2

=
M

K −M
(E[X])2 − M

K −M
E

( 1

M

M∑
m=1

X(m)

)2


(4.3.7)

From (4.3.5),

E

( 1

M

M∑
m=1

X(m)

)2
 = V

( 1

M

M∑
m=1

X(m)

)2
+ (E[X])2 =

K −M
M(K − 1)

V[X] + (E[X])2

(4.3.8)

Plugging this into (4.3.7), we have

Cov(X̄1, X̄2) = − 1

K − 1
V(X) (4.3.9)

Additionally,

Corr(X̄1, X̄2) = − M

K −M
(4.3.10)

2

When the sampling is performed without replacement, the expectation and variance of
K

Ml−1

∑Ml−1

m=1 X(m) are respectively:

E

[
K

Ml−1

Ml−1∑
m=1

X(m)(S)

]
= L(S), V

[
K

Ml−1

Ml−1∑
m=1

X(m)(S)

]
=

K −Ml−1

(K − 1)Ml−1
V (S)

(4.3.11)
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According to [11] and [16], under some conditions the normalised sample mean

K
Ml−1

∑Ml−1

m=1 X(m)(S)− L(S)√
K−Ml−1

(K−1)Ml−1
V (S)

also follows asymptotically normal distribution. We simply assume these conditions hold

and write

K

Ml−1

Ml−1∑
m=1

X(m)(S)− L(S) =

√
K −Ml−1

(K − 1)Ml−1
V (S)Z1 (4.3.12)

and similarly

K

Ml−1

Ml∑
m=Ml−1+1

X(m)(S)− L(S) =

√
K −Ml−1

(K − 1)Ml−1
V (S)Z2 (4.3.13)

where Z1 and Z2 follow standard normal distribution and

Corr(Z1, Z2) = Corr(
1

Ml−1

Ml−1∑
m=1

X(m),
1

Ml−1

Ml∑
m=Ml−1+1

X(m)) = − Ml−1

K −Ml−1

On the coarse levels, Ml−1 are relatively small and the correlation is approximately 0; on

the fine levels, M` are closes to K
2

thus the correlation is closer to −1.We also assume

without proof (Z1, Z2) follows multivariate normal distribution with correlation matrix

[σij]2×2 =

[
1 Corr(Z1, Z2)

Corr(Z1, Z2) 1

]
According to the properties of multivariate random variable in [19], we have

E[Z4
1 ] = E[Z4

2 ] = 3σ2
11 = 3

E[Z3
1Z2] = E[Z1Z

3
2 ] = 3σ11σ12 = 3 Corr(Z1, Z2)

E[Z2
1Z

2
2 ] = σ11σ22 + 2σ2

12 = 1 + 2 Corr(Z1, Z2)
2

The same as sampling with replacement, we have

Yl ≈ −
1

4
f
′′
(L(S))

K −Ml−1

K − 1

V (S)

Ml−1
(Z1 − Z2)

2 (4.3.14)

then

E[(Z1 − Z2)
2] = E[Z2

1 ] + E[Z2
2 ]− 2E[Z1Z2] =

2K

K −Ml−1
(4.3.15)

V[(Z1 − Z2)
2] = E[(Z1 − Z2)

4]− (E[(Z1 − Z2)
2])2

= E[Z4
1 − 4Z3

1Z2 + 6Z2
1Z

2
2 − 4Z1Z

3
2 + Z4

2 ]− (E[(Z1 − Z2)
2])2

= 8[1− Corr(Z1, Z2)]
2

=
8K2

(K −Ml−1)2

(4.3.16)
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Plugging (4.3.15) and (4.3.16) into (4.1.14) we have

E[Yl] = E[E[Yl|S]]

= E[−1

4
f
′′
(L(S))

V (S)

Ml−1
(Z1 − Z2)

2]

= − 1

2l
K

K − 1
E[f

′′
(L(S))V (S)]

(4.3.17)

We can see that E[Yl]| ≈ c12
−l thus α = 1 and

c1 =
∣∣− K

K − 1
E[f

′′
(L(S))V (S)]

∣∣
Plugging (4.3.15) and (4.3.16) into (4.1.15), we have

V[Yl] = V[E(Yl|S)] + E[V(Yl|S)]

=
1

4
V
[
f
′′
(L(S))

V (S)

Ml−1

K

K − 1

]
+

1

2
E
[
f
′′
(L(S))

V (S)2

M2
l−1

K2

(K − 1)2

]
=

1

22l
V[f

′′
(L(S))V (S)

K

K − 1
] + 2

1

22l
E[f

′′
(L(S))2V (S)2

K2

(K − 1)2
]

≈ 1

22l
V[f

′′
(L(S))V (S)] + 2

1

22l
E[f

′′
(L(S))2V (S)2]

(4.3.18)

From here we can see that the variance of the MLMC estimator when doing sampling

without replacement is nearly equal to the case with replacement, and β = 2 is also true

in the case of sampling without replacement.

One difference between sampling with replacement and without replacement is: with

replacement, the levels can be as many as needed, depending on the accuracy requirement;

without replacement, the maximum of levels is lmax = log2K, as the number of samples

cannot exceed the size of the population. When the level goes up to log2K, the MLMC

estimator is unbiased.

Another thing to mention is that, until now, we have only considered the portfolio with

K equal to a power of 2. When this is not the case, sampling with replacement can be

generalised easily: it does not require K equal to a power of 2. For sampling without

replacement, the estimator on the last level needs some adjustment. We propose two

solutions. Assume 2L < K < 2L+1. the levels can range from 0 to L + 1. The first way

is to change the level L+ 1 estimator to

YL+1 = f

(
K

K

K∑
m=1

X(m)(S)

)
− f

(
K

ML

ML∑
m=1

X(m)(S)

)
(4.3.19)

This correction makes the MLMC estimator unbiased as before, but the variance on the

final level does not follow the previous behaviour, i.e. V[YL+1] 6= 2−2V[YL], but it should

22



be very small anyway. The second adjustment is to couple some of the positions, i.e. if

we have the option indices from 1 to K, options (1, 2L + 1) will be regarded as the first

position, options (2, 2L + 2) will be regarded as the second, ..., options (K − 2L, K) will

be the 2L position, so that the population size when sampling without replacement is

reduced to 2L, thus we can follow the previous steps. When a pair is selected during the

sub-sampling, e.g. the last position is selected, then options (K − 2L, K) will both be

repriced.

4.4 Delta-Gamma-Theta approximation as control vari-

ate

The control variate method is a variance reduction technique when some highly correlated

or anticorrelated variate is available, whose expectation is known or cheap to estimate.

Generally if we want to approximate E[f ] using the simple average of Monte Carlo sam-

ples. There is another random variable g for which we know the expectation, then another

unbiased estimator based on the simple average f̄ ′ of N random samples of the variable

f ′ = f − ν(g − E[g])

satisfying E[f ′] = E[f ]. The variance of f ′ is

V[f − λ(g − E[g])] = V[f ]− 2ν Cov[f, g] + ν2V[g]

The minimum variance is V[f ](1−Corr[f, g]2) and it is achieved when ν = Cov[f,g]
V[g] . Hence

when the absolute value of the correlation is high, the use of control variate can be greatly

reduce the variance, thus the computational cost.

In our context, Delta-Gamma-Theta (DGT) approximation is a very natural control

variate for the accurate PnL for further variance reduction. It has been used by several

authors, e.g. in [13]. Denote ∆k, Γk and Θk, k = 1, ..., K as the Delta, Gamma, Theta

of each of the positions in the portfolio. The DGT approximation of a single position is

simply the Taylor expansion of the option value function, i.e.

LDGTk (S) = ∆k ∗∆S +
1

2
Γk ∗∆S2 + Θk ∗∆t

where ∆S = S − S0. The Delta, Gamma and Theta of the portfolio are simply the sum

of those of all the positions:

∆ =
K∑
k=1

∆k, Γ =
K∑
k=1

Γk, Θ =
K∑
k=1

Θk, (4.4.1)
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then the DGT approximation of the portfolio PnL is

LDGT (S) = ∆ ∗∆S +
1

2
Γ ∗∆S2 + Θ ∗∆t (4.4.2)

We write L(S) and LDGT (S) simply as L and LDGT . The Greek letters are calculated by

the banks on a regular basis, thus can be achieved without any additional cost. A simple

simulation shows that the correlation between L and LDGT is close to 1, so we take ν = 1

and write

E[φr(L)] = E[φr(L
DGT )] + E[φr(L)− φr(LDGT )] (4.4.3)

According to equation (4.4.2), LDGT is in fact a second order polynomial function of S. If

{φr}Rr=1 are the monomials or Legendre polynomials, φr(L) is also a polynomial function

of S. As S follows the lognormal distribution, the expectation of the form E[Sr] are

explicitly known according to [18], thus φr(L) can be calculated explicitly. If {φr}Rr=1 are

the Fourier functions, then E[Xr] can be calculated by numerical integration.

Thus instead of constructing an estimator for E[φr(L)], we try to construct an estima-

tor for E[φr(L) − φr(L
DGT )]. To estimate E[φr(L) − φr(L

DGT )], we use the previously

mentioned MLMC method, the level l estimator of E[φr(L)− φr(LDGT )] is

Y DGT
l = f

(
K

Ml

Ml∑
m=1

X(n,m)(S(n))

)
− f

(
K

Ml

Ml∑
m=1

XDGT
(n,m)(S(n))

)

− 1

2

[
f

(
K

Ml−1

Ml−1∑
m=1

X(n,m)(S(n))

)
− f

(
K

Ml−1

Ml−1∑
m=1

XDGT
(n,m)(S(n))

)]

− 1

2

f
 K

Ml−1

Ml∑
m=Ml−1+1

X(n,m)(S(n))

− f
 K

Ml−1

Ml∑
m=Ml−1+1

XDGT
(n,m)(S(n))


(4.4.4)

Note that theX andXDGT are sampled simultaneously, i.e. for a given S(n), (X(n,m), X
DGT
(n,m))

is a random sample from the uniform distribution on {(Lk, LDGTk )}Kk=1. The numerical

results in section 5 will show that the variance of Y DGT
l will be much smaller than that

of Yl: c2 will be reduced greatly and β will stay the same, thus it is an effective way to

reduce the computational cost for the level l estimator.

To conclude this chapter, we present the MLMC algorithm to estimate the moments

within an accuracy of ε from [6] in Algorithm 2. On level l, the sub-sampling algorithm

to estimate Ŷl based on Nl samples is shown as Algorithm 3, where DGT is a dummy of

whether the DGT approximation is used.
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Algorithm 2: MLMC algorithm

Build the testing portfolio and calculate the values and greeks of each position;
Estimate α, β, γ with a given number of samples;
Start with L = 1 and initialise L and Nl for l = 0, ..., L;
while extra samples need to be evaluated do

evaluate more samples on each level;

update Ŷl, Vl, l = 0, ..., L;
calculate optimal Nl using:

N∗l =
⌈
ε−2
√
Vl/Cl

∑
l

√
VlCl

⌉
;

weak convergence test;
if not converged, set L = L+ 1 and initialise Nl;

end

Set Ŷ =
∑

l ŶL;

Algorithm 3: Sub-sampling algorithm

Initialise f = φr, DGT = 0 or 1;
Generate Nl samples of S;
for i = 1 to Nl do

Generate M l random samples from the finite population 1 to K: I(i,1),...,I(i,Ml);
for j = 1 to Ml do

Reprice position I(i,j) and calculate PnL: X(i,j);
if DGT then

Calculate DGT approximation of position Ij: X
DGT
(i,j) ;

else

end

end
if DGT then

Calculate Pf(i) = f( K
Ml

∑Ml

j=1X(i,j))− f( K
Ml

∑Ml

j=1X
DGT
(i,j) );

Calculate Pc
(1)
(i) = f( K

Ml/2

∑Ml/2
j=1 X(i,j))− f( K

Ml/2

∑Ml/2
j=1 XDGT

(i,j) );

Calculate Pc
(2)
(i) = f( K

Ml/2

∑Ml

j=Ml/2+1X(i,j))− f( K
Ml/2

∑Ml

j=Ml/2+1X
DGT
(i,j) );

else

Calculate Pf(i) = f( K
Ml

∑Ml

j=1X(i,j));

Calculate Pc
(1)
(i) = f( K

Ml/2

∑Ml/2
j=1 X(i,j));

Calculate Pc
(2)
(i) = f( K

Ml/2

∑Ml

j=Ml/2+1X(i,j));

end

Calculate Y
(i)
l = Pf(i) − 1

2
Pc

(1)
(i) −

1
2
Pc

(2)
(i) ;

end
if DGT then

Calculate Ŷl = 1
Nl

∑Nl
i=1 Y

(i)
l + E[Y DGT

l ];

else

Calculate Ŷl = 1
Nl

∑Nl
i=1 Y

(i)
l ;

end
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Chapter 5

Numerical results

In the numerical experiments, we consider portfolios composed of only call options on a

single stock with current stock price S0 = 100, interest rate r = 0.05, volatility σ = 0.2.

The stock price under the physical measure follows lognormal distribution with annualised

drift µ = 0.1. We consider a VaR calculation horizon of 5 days, i.e. 5
252

year. Table 5.1

shows the three portfolios of different K that we use to obtain the results in this paper.

For the ME reconstruction, we use the Fourier functions with R = 10.

K Portfolio value Weighting Strike price Maturity

512 (29) 10,000 1
512

from 84 to 116

equally spaced by 2

from 0.68 to 1.32

equally spaced by 0.02

1024 (210) 10,000 1
1024

from 84 to 116

equally spaced by 1

from 0.68 to 1.32

equally spaced by 0.02

2048 (211) 10,000 1
2048

from 84 to 116

equally spaced by 0.5

from 0.68 to 1.32

equally spaced by 0.02

Table 5.1: Portfolios of different K

5.1 Matlab program

From the MLMC software provided provided in [6], adjustments are made to cater for

this project.

First in order to verify that all the R+ 1 moment functions will behave in the same way

in terms of weak convergence and variance, the MLMC standard plot is generated for

each of moment functions, either sampling with or without replacement, with or without

DGT approximation. The program will do this for the three testing portfolios. The
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program will also record the variances of the estimators on each level under the different

circumstances and save them for plotting purposes. The code is provided in appendix

A.1.

After confirming that each of moment functions behaves in the same way with α = 1 and

β = 2, we adjust the code that it can generate the estimations for all the moments at

the same time using the same random samples. When deciding the optimal number of

samples needed on each level for a given ε, we adjust the program so as to target at the

first moment function, then the error of the other moment functions will be scaled by a

constant. With these estimated moment values, we run the ME algorithm to reconstruct

the distribution and calculate the VaR. The program will also estimate the VaR using

MC method with the same cost and calculate the accurate VaR. Another function is

designed to carry out this estimation for a given number of times in order to estimate

the RMSE of the MLMC-ME estimator and MC estimator. The program will also save

the independent estimates for future plotting purposes. The Matlab codes are provided

in appendix A.2.

Some other scripts are also designed to generate the plots in the following sections and

will be presented in appendix A.3.

5.2 MLMC estimator

We first want to verify our previous conclusions in section 4 with the portfolios that we

have constructed

1. the variance of the MLMC estimators on each level will not change with K

2. there is no big difference in variance between sampling with replacement and sam-

pling without replacement

3. DGT approximation can greatly reduce the variance of the estimators

Figure 5.1 shows the comparison of variances of each level estimator when K is equal to

512, 1024 and 2048 respectively, either sampling with or without replacement, with or

without DGT approximation. In each of the four graphs, we can tell that the variance

is nearly the same on the same level for different K, showing that c2 does not change

with K. Comparing the upper two graphs or the lower two graphs, it is clear that there

is no difference between the variances when sub-sampling with replacement and without

replacement. Comparing the left two graphs or the right two graphs, we can tell that the
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DGT approximation does not change of speed of variance reduction on each level, but

reduces c2 roughly by a factor of 10−3.

4 6 8 10 12

level l

10-12

10-10

10-8

10-6

10-4

va
ria

nc
e

Replacement:true
DGT:false

K=512
K=1024
K=2048

4 6 8 10 12

level l

10-12

10-10

10-8

10-6

10-4

va
ria

nc
e

Replacement:false
DGT:false

K=512
K=1024
K=2048

4 6 8 10 12

level l

10-14

10-12

10-10

10-8

va
ria

nc
e

Replacement:true
DGT:true

K=512
K=1024
K=2048

4 6 8 10 12

level l

10-14

10-12

10-10

10-8

va
ria

nc
e

Replacement:false
DGT:true

K=512
K=1024
K=2048

Figure 5.1: Variance of each level for different K

Figure 5.2 shows the MLMC standard plot when estimating the 2nd order Fourier function

sampling without replacement and with DGT approximation, and 5 × 104 samples are

used to generate this plot. The other moment functions show the same trend, thus we

won’t show them here.

In the upper left graph, the solid line represents the variance of P̂l on each level and the

dotted line represents the variance of P̂l − P̂l−1. Seen from the dotted line, log2variance

drops from −30 to −40 when l increases from 1 to 6, the slope is -2, verifying our

conclusion that β is equal to 2. In the upper right graph, the solid line represents the

absolute of the mean of P̂l on each level and the dotted line represents that of P̂l − P̂l−1.
Seen from the dotted line, log2|mean| drops from −16 to −21 when l increases from 1 to

6, verifying our conclusion that α is equal to 1.

The middle left graph shows no problem with the consistency. The middle right graph

shows the kurtosis of the MLMC estimator on each level. On some level, the kurtosis
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can be as high as several thousand. Particularly, the kurtosis is usually higher for the

MLMC estimators with DGT approximation than without DGT approximation. This is

not surprising, as when DGT approximation is used, most of the samples on each level

are close to 0, usually when the stock price does not show extreme change, and only a

few samples are not close to 0, thus yielding a high kurtosis. This also indicates that

importance sampling, i.e. simulating more samples in the tails, may help to reduce the

kurtosis.

The lower left graph shows the number of simulations needed on each level to achieve

the given accuracy. It can be seen that Nl decreases with l. In addition, the maximum

number of levels also increases as ε decreases. The lower right graph shows the value of

ε2Cost for each ε. The dotted line is flat, verifying that the cost for the MLMC estimator

is O(ε−2).
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Figure 5.2: MLML plot of 2nd order moment
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We have plotted the same graph for all the moment functions up to the order 10. One

observation is that the variance of the estimators usually increase as r increases, while

β = 2 is true for all the moments. If using Fourier functions, the kurtosis is slightly

higher for the higher moments; if using Legendre or monomials polynomials, the kurtosis

increases extremely fast as r increases.

5.3 ME reconstruction

The following two graphs show the numerical results related to the ME distribution

reconstruction. Figure 5.3 gives a straightforward example of the recovered PnL distri-

bution, using the Fourier moments estimated by MLMC using R = 10 and allowing for

a fairly small ε for the moments, versus the smoothed empirical distribution from plain

MC samples. The ME approximation is fairly accurate in this example.
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Figure 5.3: Empirical distribution of PnL v.s. ME reconstruction

Figure 5.4 is generated by changing the target ε of the first-order moment and then

calculating the RMSE of the VaR estimations. This graph shows numerically how the

errors in the moment estimations will translate into the errors in VaR estimation. When

we talk about the errors in the moments, we take the error of the 1st moment as the

benchmark, the errors in the other moments are usually scaled by a constant. The slope

of the loglog plot of RMSE of moments versus the RMSE of VaR is roughly 1, showing

that the two RMSEs will be at the same order. It is also noteworthy that the RMSE is
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usually bigger for the more extreme quantiles. This is also true for the MC method. This

confirms our conclusion that the order of the cost for estimating the VaR at accuracy ε

is O(ε−2), the same as estimating the moments. Note that in this plot, we deliberately

use a very large ε for the moment estimation, so that this error can dominate the errors

rising from other steps, e.g. the choice of R, the accuracy of the Newton step etc. The

target errors for the 1st order moment are 0.04, 0.02, 0.01 and 0.005 and K is equal to

512.
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Figure 5.4: Linear relationship between RMSE of moments and RMSE of VaR

5.4 VaR variance

In this section we compare the cost and accuracy to estimate the VaR using MLMC-ME

and MC methods respectively. For simplicity, instead of fixing the required accuracy, we

fix the calculation cost and compare the accuracy of the VaR estimators. As we only use

call options in our mock portfolios, the accurate VaR values are available. As the call

option values are monotonously increasing functions of stock price, the quantile of PnL

is simply the PnL calculated using the corresponding quantile of stock price. With the

accurate VaR, we are able to estimate the root mean squared error (RMSE) of the MLMC-

ME and MC estimators. The following graphs show the accuracy of MC, MLMC-ME

and MLMC-ME estimators of 0.01-VaR, 0.05-VaR, 0.1-VaR and 0.3-VaR using around

5× 105 calculations. The MLMC-ME estimators usually have a stable RMSE across all

the three portfolios, while the MC estimators will have higher RMSE when K increases.
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In addition, the MLMC-ME with DGT approximation has a lower RMSE than without

DGT approximation.
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Figure 5.5: RMSE of MC and ME-MLMC estimators
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Chapter 6

Conclusion and future work

In this paper, we have shown that the MLMC-ME method can achieve a cost of O(ε−2)

when estimating VaR to the accuracy of ε and this does not depend on K, which is the

number of potions in the portfolio, while the MC method requires a cost of O(ε−2K).

When K is big, MLMC-ME can result in huge computational cost savings.

Due to time limit, there are still some aspects that need future work. Even though we have

carried out some numerical experiments on the accuracy of moments estimation and the

accuracy of VaR, the rigorous relationship between them still needs to be explored. There

are various steps in between where additional errors can arise. We need to understand how

the errors will translate first from the moments estimation to the distribution estimation,

then from the distribution to the VaR estimation. The first step can be affected by the

choice of R, φ, the Newton steps, the shape of the distribution etc. The second step can

be influenced by the VaR level α and the shape of the distribution.

Additionally, we simply assume the stock price follows lognormal distribution, but in

reality, estimating the distribution of the risk factor itself is already non-trivial work.

Usually these distributions have fat tails, thus may require us to explore further how the

ME approximation will perform in the tails.
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Appendix A

Matlab Code

The code of Maximum Entropy algorithm can be download from Prof. Alexey Chernov’s

website: https://www.uni-oldenburg.de/fileadmin/user_upload/mathe/personen/

alexey.chernov/GeneralizedMaxEnt/GeneralizedMaxEnt.zip. We just build more

tests based on this algorithm, thus won’t show them here. The algorithm consists of

the following functions:

• MonomialArray.m: function to evaluate the monomials

• LegendreArray.m: function to evaluate the Legendre polynomials

• FourierArray.m: function to evaluate the Fourier functions

• GLquad.m: function to compute the nodes and weights of Gauss-Legendre Quadra-

ture Rule on an interval

• generalizedME.m: function to compute the lambda using Newton method

• test.m: test cases

The code of Multilevel Monte Carlo can be found on Prof. Mike Giles’s website: http:

//people.maths.ox.ac.uk/~gilesm/mlmc/. The original algorithm consists of the fol-

lowing functions:

• mlmc.m: function to calculate the number of simulations on each level to achieve

the given accuracy

• mlmc test.m: function to estimate the weak error and variance of each level;

estimate α, β, γ

• mlmc plot.m: function to plot MLMC results

• opre.m: function specified to the application
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The Matlab codes used in the project are listed below.

A.1 Moment estimation

The scripts moment.m, mlmc test moment.m and mlmc test.m are used to run the

standard MLMC tests on each of the moment functions, either sampling with or without

replacement, either with or without DGT approximation for the three testing portfolios.

portfolio.m is used to initialise the portfolio for a given number of strike prices and

maturities.

moment.m

1 function moment
2 close all; clear all;
3 addpath('..');
4 rng('default');
5 global Poly;
6 global S0 r sig K T dK dT nT nK; % parameter to specify the ...

financial option
7 global nPos;
8 global pos V0 ∆0 gamma0 theta0;
9 global horizon drift;

10 global p;
11 global M;
12 global a b;
13 global DG;
14 global varWR varWOR varWR DG varWOR DG levels j;
15

16 levels=zeros(20,3);
17 varWR=zeros(20,3);varWOR=zeros(20,3);
18 varWR DG=zeros(20,3);varWOR DG=zeros(20,3);
19 for DG=0:1
20 for replacement=0:1
21 for j=1:3
22 nK=2ˆ(3+j);
23 nT=2ˆ5;
24 portfolio(nK,nT);
25

26 M = 2; % refinement cost factor
27 N0 = 1000; % initial samples on coarse levels
28 Lmin = 4; % minimum refinement level
29 Lmax = round(log(nPos)/log(2)); % maximum refinement ...

level
30 Lstart = 3; %starting level
31

32 N =50000; % samples for convergence tests
33 L = Lmax; % levels for convergence tests
34 Eps = 0.0002*[ 0.005 0.01 0.02 0.05 0.1 ];
35

36 % Poly = @LegendrePArray;
37 % Poly = @MonomialsArray;
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38 Poly = @FourierArray;
39

40 R=10;
41 a=-10000;
42 b=10000;
43 if DG
44 moments=[0];
45 else
46 moments=[1];
47 end
48

49 for p=1:R
50 %moments
51 fprintf(1,'\n ---- Order-%d moments ---- \n',p);
52 filename = ['moments' num2str(p) ' ' num2str(replacement)...
53 ' ' num2str(DG) ' ' num2str(nK) ' ' num2str(nT) ...
54 ' ' num2str(dK) ' ' num2str(dT)];
55 fp = fopen([filename '.txt'],'w');
56

57 temp=mlmc test moment(@opre l, M, N,L, N0,Eps,Lmin,Lmax,...
Lstart,fp, replacement);

58 moments=[moments, temp];
59 fclose(fp);
60

61 nvert = 3;
62 mlmc plot(filename, nvert);
63 print('-deps2',[filename '.eps'])
64 % size = size(3:4);
65 % set(gcf,'PaperSize',size)
66 % set(gcf,'PaperPosition',[0,0,6,8.4])
67 % print('-deps2','test.eps')
68 end
69 end
70 end
71 if DG;
72 N1=2000000;
73 ret = sig*sqrt(horizon)*normrnd(0,1, N1, 1)+ (drift-0.5*...

sigˆ2)*horizon;
74 S = S0*exp(ret);
75 PnL DG=(∆0'*pos)*(S-S0)...
76 +0.5*gamma0'*pos*power(S-S0,2)...
77 +theta0'*pos*horizon;
78 moments DG=Poly(PnL DG,p,a,b);
79 moments=moments+mean(moments DG);
80 end
81 end
82

83 %-------------------------------------------------------
84 %
85 % level l estimator for Operations Research paper
86 %
87

88 function sums = opre l(l,N, Lstart,replacement)
89 % rng('default');
90 global Poly;
91 global S0 r sig K T; % parameter to specify the financial ...

option
92 global nPos;
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93 global type pos V0 ∆0 gamma0 theta0;
94 global horizon drift drift2;
95 global p;
96 global M;
97 global a b;
98 global DG;
99

100 nf = Mˆl;
101 nc = nf/M;
102 sums(1:6) = 0;
103

104 for N1 = 1:3000:N
105 N2 = min(3000,N-N1+1);
106 ret = sig*sqrt(horizon)*normrnd(0,1, N2, 1)+ (drift-0.5*sig...

ˆ2)*horizon;
107 S = S0*exp(ret);
108 subf = zeros(N2, nf);
109 for i=1:N2
110 subf(i,:)=randsample(nPos,nf,replacement);
111 end
112

113 V1 = zeros(N2, nf);
114 V2 = zeros(N2, nf);
115 V = zeros(N2, nf);
116 PnL = zeros(N2, nf);
117 PnL DG = zeros(N2, nf);
118 PnL f = zeros(N2, 1);
119 PnL f DG = zeros(N2, 1);
120 PnL c =zeros(N2, M);
121 PnL c DG =zeros(N2, M);
122 Pf = zeros(N2,p+1);
123 Pc = zeros(N2,p+1);
124

125 for i=1:nf
126 V(:,i)=blsprice(S, K(subf(:,i)), r, T(subf(:,i))-horizon,...

sig);
127 PnL(:,i)= (V(:,i)-V0(subf(:,i))).*pos(subf(:,i));
128 PnL DG(:,i)= (∆0(subf(:,i)).*(S-S0)...
129 +0.5*gamma0(subf(:,i)).*power(S-S0,2)...
130 +theta0(subf(:,i))*horizon).*pos(subf(:,i));
131 end
132 PnL f = sum(PnL, 2)/nf*nPos;
133 PnL f DG = sum(PnL DG, 2)/nf*nPos;
134 if DG
135 Pf = Poly(PnL f,p,a,b)-Poly(PnL f DG,p,a,b);
136 else
137 Pf = Poly(PnL f,p,a,b);
138 end
139 if l>Lstart
140 PnL c = zeros(N2, M);
141 for j=1:M
142 PnL c(:,j)=sum(PnL(:,nc*(j-1)+1:nc*j),2)/nc*nPos;
143 PnL c DG(:,j)=sum(PnL DG(:,nc*(j-1)+1:nc*j),2)/nc*...

nPos;
144 if DG
145 Pc = Pc+Poly(PnL c(:,j),p,a,b)/M-Poly(PnL c DG(:,...

j),p,a,b)/M;
146 else
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147 Pc = Pc+Poly(PnL c(:,j),p,a,b)/M;
148 end
149 end
150 end
151

152 sums(1) = sums(1) + sum(Pf(:,p+1)-Pc(:,p+1));
153 sums(2) = sums(2) + sum((Pf(:,p+1)-Pc(:,p+1)).ˆ2);
154 sums(3) = sums(3) + sum((Pf(:,p+1)-Pc(:,p+1)).ˆ3);
155 sums(4) = sums(4) + sum((Pf(:,p+1)-Pc(:,p+1)).ˆ4);
156 sums(5) = sums(5) + sum(Pf(:,p+1));
157 sums(6) = sums(6) + sum(Pf(:,p+1).ˆ2);
158 end

mlmc test moment.m

1 %
2 % function mlmc test(mlmc fn,M, N,L, N0,Eps,Lmin,Lmax, fp)
3 %
4 % multilevel Monte Carlo test routine
5 %
6 % sums = mlmc fn(l,N) low-level routine
7 %
8 % inputs: l = level
9 % N = number of paths

10 %
11 % output: sums(1) = sum(Pf-Pc)
12 % sums(2) = sum((Pf-Pc).ˆ2)
13 % sums(3) = sum((Pf-Pc).ˆ3)
14 % sums(4) = sum((Pf-Pc).ˆ4)
15 % sums(5) = sum(Pf)
16 % sums(6) = sum(Pf.ˆ2)
17 %
18 % M = refinement cost factor (2ˆgamma in general MLMC Thm)
19 %
20 % N = number of samples for convergence tests
21 % L = number of levels for convergence tests
22 %
23 % N0 = initial number of samples for MLMC calcs
24 % Eps = desired accuracy array for MLMC calcs
25 %
26

27 function Pa=mlmc test moment(mlmc fn,M, N,L, N0,Eps,Lmin,Lmax,Lstart,...
fp, replacement)

28 global dK dT nK nT; % parameter to specify the financial option
29 global varWR varWOR varWR DG varWOR DG levels j;
30 global DG;
31 %
32 % first, convergence tests
33 %
34 PRINTF2(fp,'\n');
35 PRINTF2(fp,'...

**********************************************************\n')...
;

36 PRINTF2(fp,'*** Convergence tests, kurtosis, telescoping sum ...
check ***\n');

37 PRINTF2(fp,'...
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**********************************************************\n')...
;

38 PRINTF2(fp, 'dK: %f dT: %f nK: %d nT: %d replacement: %s DG: %...
s\n', ...

39 dK, dT, nK, nT,int2str(replacement),int2str(DG));
40 PRINTF2(fp,'\n l ave(Pf-Pc) ave(Pf) var(Pf-Pc) var(Pf)'...

);
41 PRINTF2(fp,' kurtosis check \n-------------------------');
42 PRINTF2(fp,'--------------------------------------------------\n'...

);
43

44 % rng('default'); % reset random number generator
45 P=0;
46 del1 = [];
47 del2 = [];
48 var1 = [];
49 var2 = [];
50 kur1 = [];
51 chk1 = [];
52 cost = [];
53 est=[];
54

55 for l = Lstart:Lmax
56 % disp(sprintf('%d',l))
57 tic;
58 sums = feval(mlmc fn,l,N, Lstart, replacement);
59 cost = [ cost toc ];
60 sums = sums/N;
61 if (l==Lstart)
62 kurt = 0.0;
63 else
64 kurt = ( sums(4) ...
65 - 4*sums(3)*sums(1) ...
66 + 6*sums(2)*sums(1)ˆ2 ...
67 - 3*sums(1)*sums(1)ˆ3 ) ...
68 / (sums(2)-sums(1)ˆ2)ˆ2;
69 end
70

71 del1 = [del1 sums(1)];
72 del2 = [del2 sums(5)];
73 var1 = [var1 sums(2)-sums(1)ˆ2 ];
74 var2 = [var2 sums(6)-sums(5)ˆ2 ];
75 var2 = max(var2, 1e-10); % fix for cases with var=0
76 kur1 = [kur1 kurt ];
77

78 if l==Lstart
79 check = 0;
80 else
81 check = abs( del1(l-Lstart+1) + del2(l-Lstart) -...

del2(l-Lstart+1)) ...
82 / ( 3.0*(sqrt(var1(l-Lstart+1)) + sqrt(var2(l-Lstart)) +...

sqrt(var2(l-Lstart+1)) )...
83 /sqrt(N));
84 end
85 chk1 = [chk1 check];
86

87

88 PRINTF2(fp,'%2d %8.4e %8.4e %8.4e %8.4e %8.4e %8.4e \n',...
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...
89 l,del1(l-Lstart+1),del2(l-Lstart+1),var1(l-Lstart+1),...

...
90 var2(l-Lstart+1),kur1(l-Lstart+1),chk1(l-Lstart+1));
91 P=P+del1(l-Lstart+1);
92 end
93

94

95 %
96 % print out a warning if kurtosis or consistency check looks bad
97 %
98

99 if ( kur1(end) > 100.0 )
100 PRINTF2(fp,'\n WARNING: kurtosis on finest level = %f \n',kur1...

(end));
101 PRINTF2(fp,' indicates MLMC correction dominated by a few rare ...

paths; \n');
102 PRINTF2(fp,' for information on the connection to variance of ...

sample variances,\n');
103 PRINTF2(fp,' see http://mathworld.wolfram.com/...

SampleVarianceDistribution.html\n\n');
104 end
105

106 if ( max(chk1) > 1.0 )
107 PRINTF2(fp,'\n WARNING: maximum consistency error = %f \n',max(...

chk1));
108 PRINTF2(fp,' indicates identity E[Pf-Pc] = E[Pf] - E[Pc] not ...

satisfied \n\n');
109 end
110

111 %
112 % use linear regression to estimate alpha, beta and gamma
113 %
114

115 L1 = 2;
116 L2 = L-Lstart+1;
117 % L2 = L;
118 pa = polyfit(L1:L2,log2(abs(del1(L1:L2))),1); alpha = -pa(1);
119 pb = polyfit(L1:L2,log2(abs(var1(L1:L2))),1); beta = -pb(1);
120 if replacement
121 if DG
122 varWR DG(1:(L2-L1+1),j)=var1(L1:L2);
123 else
124 varWR(1:(L2-L1+1),j)=var1(L1:L2);
125 end
126 else
127 if DG
128 varWOR DG(1:(L2-L1+1),j)=var1(L1:L2);
129 else
130 varWOR(1:(L2-L1+1),j)=var1(L1:L2);
131 end
132 end
133 levels(1:(L2-L1+1),j)=L1+Lstart-1:L2+Lstart-1;
134 % just last two points to minimise effect of MATLAB overhead
135 gamma = log2(cost(end)/cost(end-1));
136

137 PRINTF2(fp,'\n...
******************************************************\n');
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138 PRINTF2(fp,'*** Linear regression estimates of MLMC parameters ...

***\n');
139 PRINTF2(fp,'...

******************************************************\n');
140 PRINTF2(fp,'\n alpha = %f (exponent for MLMC weak convergence)\n...

',alpha);
141 PRINTF2(fp,' beta = %f (exponent for MLMC variance) \n',beta);
142 PRINTF2(fp,' gamma = %f (exponent for MLMC cost) \n',gamma);
143

144 %
145 % second, mlmc complexity tests
146 %
147

148 PRINTF2(fp,'\n');
149 PRINTF2(fp,'***************************** \n');
150 PRINTF2(fp,'*** MLMC complexity tests *** \n');
151 PRINTF2(fp,'***************************** \n\n');
152 PRINTF2(fp,' eps value mlmc cost std cost savings ...

N l \n');
153 PRINTF2(fp,'...

----------------------------------------------------------- \n...
');

154

155 rng('default'); % reset random number generator
156

157 alpha = max(alpha,0.5);
158 beta = max(beta,0.5);
159 gamma = log2(M);
160 theta = 0.25;
161

162 for i = 1:length(Eps)
163 eps = Eps(i);
164 [P, Nl] = mlmc moment(Lmin,Lmax,Lstart,N0,eps,mlmc fn,alpha,...

beta,gamma,replacement);
165 if i==1; Pa=P; end;
166 l = length(Nl)-1;
167

168 mlmc cost = sum(Nl.*M.ˆ(0:l));
169 l2 = min(l+1,length(var2));
170 std cost = var2(l2)*Mˆl / ((1.0-theta)*epsˆ2);
171

172

173 PRINTF2(fp,'%.3e %.3e %.3e %.3e %7.2f ', ...
174 eps, P, mlmc cost, std cost, std cost/mlmc cost);
175 PRINTF2(fp,'%9d',Nl);
176 PRINTF2(fp,'\n');
177 end
178

179 PRINTF2(fp,'\n');
180

181 end
182

183 %
184 % function to print to both a file and stdout
185 %
186

187 function PRINTF2(fp,varargin)
188 fprintf(fp,varargin{:});
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189 fprintf( 1,varargin{:});
190 end

mlmc moment.m

1 % function [P, Nl] = mlmc(Lmin,Lmax,N0,eps,mlmc l, alpha,beta,gamma)
2 %
3 % multi-level Monte Carlo estimation
4 %
5 % P = value
6 % Nl = number of samples at each level
7 %
8 % Lmin = minimum level of refinement ≥ 2
9 % Lmax = maximum level of refinement ≥ Lmin

10 % N0 = initial number of samples > 0
11 % eps = desired accuracy (rms error) > 0
12 %
13 % alpha -> weak error is O(2ˆ{-alpha*l})
14 % beta -> variance is O(2ˆ{-beta*l})
15 % gamma -> sample cost is O(2ˆ{gamma*l}) > 0
16 %
17 % if alpha, beta are not positive then they will be estimated
18 %
19 % mlmc l = function for level l estimator
20 %
21 % sums = mlmc fn(l,N) low-level routine
22 %
23 % inputs: l = level
24 % N = number of paths
25 %
26 % output: sums(1) = sum(Y)
27 % sums(2) = sum(Y.ˆ2)
28 % where Y are iid samples with expected value:
29 % E[P 0] on level 0
30 % E[P l - P {l-1}] on level l>0
31

32 function [P, Nl] = mlmc moment(Lmin,Lmax,Lstart, N0,eps,mlmc l, ...
alpha 0,beta 0,gamma,replacement)

33

34 %
35 % check input parameters
36 %
37 if (Lmin<2)
38 error('error: needs Lmin ≥ 2');
39 end
40

41 if (Lmax<Lmin)
42 error('error: needs Lmax ≥ Lmin');
43 end
44

45 if (Lmin<Lstart)
46 error('error: needs Lstart ≥ Lmin');
47 end
48

49 if (N0≤0 | | eps≤0 | | gamma ≤ 0)
50 error('error: needs N>0, eps>0, gamma>0 \n');
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51 end
52

53 %
54 % initialisation
55 %
56 alpha = max(0, alpha 0);
57 beta = max(0, beta 0);
58

59 theta = 0.25;
60

61 L = Lmin-Lstart;
62

63 Nl(1:L+1) = 0;
64 suml(1:2,1:L+1) = 0;
65 dNl(1:L+1) = N0;
66

67 while sum(dNl) > 0
68

69 %
70 % update sample sums
71 %
72 for l=0:L
73 if dNl(l+1) > 0
74 sums = feval(mlmc l,l+Lstart,dNl(l+1),Lstart,...

replacement);
75 Nl(l+1) = Nl(l+1) + dNl(l+1);
76 suml(1,l+1) = suml(1,l+1) + sums(1);
77 suml(2,l+1) = suml(2,l+1) + sums(2);
78 end
79 end
80

81 %
82 % compute absolute average and variance
83 %
84 ml = abs( suml(1,:)./Nl);
85 Vl = max(0, suml(2,:)./Nl - ml.ˆ2);
86

87 %
88 % fix to cope with possible zero values for ml and Vl
89 % (can happen in some applications when there are few samples)
90 %
91 for l = 3:L+1
92 ml(l) = max(ml(l), 0.5*ml(l-1)/2ˆalpha);
93 Vl(l) = max(Vl(l), 0.5*Vl(l-1)/2ˆbeta);
94 end
95

96 %
97 % use linear regression to estimate alpha, beta if not given
98 %
99 if alpha 0 ≤ 0

100 A = repmat((1:L)',1,2).ˆrepmat(1:-1:0,L,1);
101 x = A \ log2(ml(2:end))';
102 alpha = max(0.5,-x(1));
103 end
104

105 if beta 0 ≤ 0
106 A = repmat((1:L)',1,2).ˆrepmat(1:-1:0,L,1);
107 x = A \ log2(Vl(2:end))';
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108 beta = max(0.5,-x(1));
109 end
110 %
111 % set optimal number of additional samples
112 %
113 Cl = 2.ˆ(gamma*(0:L))*2ˆLstart;
114 Ns = ceil( sqrt(Vl./Cl) * sum(sqrt(Vl.*Cl)) ...
115 / ((1-theta)*epsˆ2) );
116 dNl = max(0, Ns-Nl);
117 %
118 % if (almost) converged, estimate remaining error and decide
119 % whether a new level is required
120 %
121 if sum( dNl > 0.01*Nl ) == 0
122 rem = ml(L+1) / (2ˆalpha - 1);
123

124 if rem > sqrt(theta)*eps
125 if (L==Lmax-Lstart)
126 fprintf(1,'*** failed to achieve weak convergence *** \n');
127 else
128 L = L+1;
129 Vl(L+1) = Vl(L) / 2ˆbeta;
130 Nl(L+1) = 0;
131 suml(1:4,L+1) = 0;
132

133 Cl = 2.ˆ(gamma*(0:L));
134 Ns = ceil( sqrt(Vl./Cl) * sum(sqrt(Vl.*Cl)) ...
135 / ((1-theta)*epsˆ2) );
136 dNl = max(0, Ns-Nl);
137 end
138 end
139 end
140 end
141

142 %
143 % finally, evaluate multilevel estimator
144 %
145 P = sum(suml(1,:)./Nl);
146 end

portfolio.m

1 function portfolio(nK,nT)
2 global S0 r sig K T dK dT; % parameter to specify the ...

financial option
3 global nPos;
4 global type pos V0 ∆0 gamma0 theta0;
5 global horizon drift drift2;
6 % model parameters
7 S0 = 100;
8 r = 0.05;
9 sig = 0.2;

10

11 % contract parameters\
12 % nL=10;
13 % nK=2ˆ(nL/2+1);
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14 % nT=2ˆ(nL/2);
15 nPos=nT*nK;
16

17 dK=1/(nK/2ˆ5);
18 K = 100-dK*(nK/2-1):dK:100+dK*nK/2;
19 dT=0.02/(nT/2ˆ5);
20 T = 1-dT*(nT/2-1):dT:1+dT*nT/2;
21 K = repmat(K, 1, nT)';
22 T = repelem(T, nK)';
23

24 % VaR settings
25 horizon = 5/252;
26 drift =0.1;
27 drift2=-0.2;
28

29 V0 =blsprice(S0, K, r, T, sig);
30 ∆0 = bls∆(S0, K, r, T, sig);
31 gamma0 = blsgamma(S0, K, r, T, sig);
32 theta0 = blstheta(S0, K, r, T, sig);
33

34 % positions
35 pos=1e+04/nPos./V0;
36 type=[ones(nPos,1)];
37

38 value p = V0'*pos;
39 ∆ p = ∆0'*pos;
40 gamma p = gamma0'*pos;
41 theta p = theta0'*pos;

A.2 VaR estimation

This is the series of scripts function estimate VaR using the MC and MLMC-ME method.

estimation.m is used to run independent estimations using the two methods. VaR est.m

1 function VaR est
2 close all; clear all;
3 addpath('..');
4 rng('default');
5 global Poly;
6 global S0 r sig K T dK dT nT nK; % parameter to specify the ...

financial option
7 global nPos;
8 global pos V0 ∆0 gamma0 theta0;
9 global horizon drift;

10 global p;
11 global M;
12 global a b;
13 global DG;
14 % global varMLMC varMC;
15 % global varWR varWOR levels j;
16 % levels=zeros(20,4);varWR=zeros(20,4);varWOR=zeros(20,4);
17
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18 % Poly = @LegendrePArray;
19 % Poly = @MonomialsArray;
20 Poly = @FourierArray;
21

22 R=10;
23 a=-10000;
24 b=10000;
25

26 for DG=1:1
27 for replacement=0:0
28 for j=1:1
29 nK=2ˆ(3+j);
30 nT=2ˆ5;
31 portfolio(nK,nT);
32

33 M = 2; % refinement cost factor
34 N0 = 1000; % initial samples on coarse levels
35 Lmin = 4; % minimum refinement level
36 Lmax = round(log(nPos)/log(2)); % maximum refinement level
37 Lstart = 3; %starting level
38

39 N =5e+04; % samples for convergence tests
40 L = Lmax; % levels for convergence tests
41 Eps = 0.01*[ 0.005 0.01 0.02 0.05 0.1 ];
42

43 for p=1:R
44 %moments
45 fprintf(1,'\n ---- Order-%d moments ---- \n',p);
46 filename = ['moments' num2str(p) ' ' num2str(replacement)...
47 ' ' num2str(DG) ' ' num2str(nK) ' ' num2str(nT) ...
48 ' ' num2str(dK) ' ' num2str(dT)];
49 fp = fopen([filename '.txt'],'w');
50

51 moments=mlmc test VaR(@opre l, M, N,L, N0,Eps,...
52 Lmin,Lmax,Lstart,fp, replacement);
53 fclose(fp);
54

55 nvert = 3;
56 mlmc plot(filename, nvert);
57 print('-deps2',[filename '.eps'])
58 end
59 end
60 end
61 if DG;
62 N1=500000;
63 ret = sig*sqrt(horizon)*normrnd(0,1, N1, 1)+ (drift-0.5*sig...

ˆ2)*horizon;
64 S = S0*exp(ret);
65 PnL DG=(∆0'*pos)*(S-S0)...
66 +0.5*gamma0'*pos*power(S-S0,2)...
67 +theta0'*pos*horizon;
68 moments DG=Poly(PnL DG,p,a,b);
69 moments=moments+mean(moments DG);
70 end;
71 end
72

73 % var plot(levels(4:end,:), varWR(4:end,:), varWOR(4:end,:))
74 pr=[0.001 0.005 0.01 0.05 0.1 0.3 0.5];
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75

76 %accurate VaR
77 ret q=norminv(pr,(drift-0.5*sigˆ2)*horizon,sig*sqrt(horizon));
78 S q=S0*exp(ret q);
79 for i=1:length(pr)
80 VaR acc(i)=(sum(blsprice(S q(i), K, r, T-horizon, sig).*pos)-sum(...

V0.*pos));
81 end
82

83 %VaR using MC
84 VaR MC=empiricalDist(pr);
85

86 %VaR using MLMC
87 [x,w] = GLquad(100*R,a,b); % Gaussian quadrature of ...

sufficiently high order
88 phi = Poly(x,R,a,b); % evaluate polynomials at...

quadrature points
89 % Maximum Entropy method
90 [lambda,pp,entr,Nstep] = generalizedME(moments',phi,w,0.5,10ˆ-9,1000)...

;
91 % plot results
92 t = linspace(a,b,10000)'; % plot-points at the x-...

axis
93 phi = Poly(t,R,a,b); % evaluate polynomials at...

plot-points
94 density = exp(phi*lambda); % evaluate Maximum ...

Entropy density
95 hold on;plot(t,density,'-b'); % plot Maximum Entropy ...

density
96 legend('emprical density','smoothed density function', 'maximum ...

entropy approximation');
97 for i=1:length(pr)
98 ind=find(cumsum(density)*(b-a)/10000>pr(i),1);
99 VaR MLMC(i)=t(ind);

100 end
101

102

103 %-------------------------------------------------------
104 %
105 % level l estimator for Operations Research paper
106 %
107 %-------------------------------------------------------
108

109 function sums = opre l(l,N, Lstart,replacement)
110 rng('default');
111 global Poly;
112 global S0 r sig K T; % parameter to specify the financial ...

option
113 global nPos;
114 global pos V0 ∆0 gamma0 theta0;
115 global horizon drift;
116 global p;
117 global M;
118 global a b;
119 global DG;
120

121 nf = Mˆl;
122 nc = nf/M;
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123

124

125 sums(1:6,1:p+1) = 0;
126

127 for N1 = 1:4000:N
128 N2 = min(4000,N-N1+1);
129 ret = sig*sqrt(horizon)*normrnd(0,1, N2, 1)+ (drift-0.5*sig...

ˆ2)*horizon;
130 S = S0*exp(ret);
131 subf = zeros(N2, nf);
132 for i=1:N2
133 subf(i,:)=randsample(nPos,nf,replacement);
134 end
135

136 V1 = zeros(N2, nf);
137 V2 = zeros(N2, nf);
138 V = zeros(N2, nf);
139 PnL = zeros(N2, nf);
140 PnL DG = zeros(N2, nf);
141 PnL f = zeros(N2, 1);
142 PnL f DG = zeros(N2, 1);
143 PnL c =zeros(N2, M);
144 PnL c DG =zeros(N2, M);
145 Pf = zeros(N2,p+1);
146 Pc = zeros(N2,p+1);
147

148 for i=1:nf
149 V(:,i)=blsprice(S, K(subf(:,i)), r, T(subf(:,i))-horizon,...

sig);
150 PnL(:,i)= (V(:,i)-V0(subf(:,i))).*pos(subf(:,i));
151 PnL DG(:,i)= (∆0(subf(:,i)).*(S-S0)...
152 +0.5*gamma0(subf(:,i)).*power(S-S0,2)...
153 +theta0(subf(:,i))*horizon).*pos(subf(:,i));
154 end
155 PnL f = sum(PnL, 2)/nf*nPos;
156 PnL f DG = sum(PnL DG, 2)/nf*nPos;
157 if DG
158 Pf = Poly(PnL f,p,a,b)-Poly(PnL f DG,p,a,b);
159 else
160 Pf = Poly(PnL f,p,a,b);
161 end
162 if l>Lstart
163 PnL c = zeros(N2, M);
164 for j=1:M
165 PnL c(:,j)=sum(PnL(:,nc*(j-1)+1:nc*j),2)/nc*nPos;
166 PnL c DG(:,j)=sum(PnL DG(:,nc*(j-1)+1:nc*j),2)/nc*...

nPos;
167 if DG
168 Pc = Pc+Poly(PnL c(:,j),p,a,b)/M-Poly(PnL c DG(:,...

j),p,a,b)/M;
169 else
170 Pc = Pc+Poly(PnL c(:,j),p,a,b)/M;
171 end
172 end
173 end
174

175 sums(1,:) = sums(1,:) + sum(Pf-Pc);
176 sums(2,:) = sums(2,:) + sum((Pf-Pc).ˆ2);
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177 sums(3,:) = sums(3,:) + sum((Pf-Pc).ˆ3);
178 sums(4,:) = sums(4,:) + sum((Pf-Pc).ˆ4);
179 sums(5,:) = sums(5,:) + sum(Pf);
180 sums(6,:) = sums(6,:) + sum(Pf.ˆ2);
181

182 end

mlmc test VaR.m

1 %
2 % function mlmc test(mlmc fn,M, N,L, N0,Eps,Lmin,Lmax, fp)
3 %
4 % multilevel Monte Carlo test routine
5 %
6 % sums = mlmc fn(l,N) low-level routine
7 %
8 % inputs: l = level
9 % N = number of paths

10 %
11 % output: sums(1) = sum(Pf-Pc)
12 % sums(2) = sum((Pf-Pc).ˆ2)
13 % sums(3) = sum((Pf-Pc).ˆ3)
14 % sums(4) = sum((Pf-Pc).ˆ4)
15 % sums(5) = sum(Pf)
16 % sums(6) = sum(Pf.ˆ2)
17 %
18 % M = refinement cost factor (2ˆgamma in general MLMC Thm)
19 %
20 % N = number of samples for convergence tests
21 % L = number of levels for convergence tests
22 %
23 % N0 = initial number of samples for MLMC calcs
24 % Eps = desired accuracy array for MLMC calcs
25 %
26

27 function Pa=mlmc test VaR(mlmc fn,M, N,L, N0,Eps,Lmin,Lmax,Lstart,fp,...
replacement)

28 global dK dT nK nT; % parameter to specify the financial option
29 global nPos;
30 global p;
31 global M;
32 global varMLMC varMC;
33 global varWR varWOR levels j;
34 global DG;
35

36 %
37 % first, convergence tests
38 %
39 PRINTF2(fp,'\n');
40 PRINTF2(fp,'...

**********************************************************\n');
41 PRINTF2(fp,'*** Convergence tests, kurtosis, telescoping sum check ...

***\n');
42 PRINTF2(fp,'...

**********************************************************\n');
43 PRINTF2(fp, 'dK: %f dT: %f nK: %d nT: %d replacement: %s DG: %s\n'...
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, ...
44 dK, dT, nK, nT,int2str(replacement),int2str(DG));
45 PRINTF2(fp,'\n l ave(Pf-Pc) ave(Pf) var(Pf-Pc) var(Pf)');
46 PRINTF2(fp,' kurtosis check \n-------------------------');
47 PRINTF2(fp,'--------------------------------------------------\n');
48

49 % rng('default'); % reset random number generator
50 P=0;
51 del1 = [];
52 del2 = [];
53 var1 = [];
54 var2 = [];
55 kur1 = [];
56 chk1 = [];
57 cost = [];
58 est=[];
59 Pa=zeros(1,p+1);
60

61 for l = Lstart:Lmax
62 % disp(sprintf('%d',l))
63 tic;
64 sums total = feval(mlmc fn,l,N, Lstart, replacement);
65 cost = [ cost toc ];
66 sums total = sums total/N;
67 % Pa=Pa+sums total(1,:);
68 % sums=sums total(:,end);
69 sums=sums total(:,2);
70 if (l==Lstart)
71 kurt = 0.0;
72 else
73 kurt = ( sums(4) ...
74 - 4*sums(3)*sums(1) ...
75 + 6*sums(2)*sums(1)ˆ2 ...
76 - 3*sums(1)*sums(1)ˆ3 ) ...
77 / (sums(2)-sums(1)ˆ2)ˆ2;
78 end
79

80 del1 = [del1 sums(1)];
81 del2 = [del2 sums(5)];
82 var1 = [var1 sums(2)-sums(1)ˆ2 ];
83 var2 = [var2 sums(6)-sums(5)ˆ2 ];
84 var2 = max(var2, 1e-10); % fix for cases with var=0
85 kur1 = [kur1 kurt ];
86

87 if l==Lstart
88 check = 0;
89 else
90 check = abs( del1(l-Lstart+1) + del2(l-Lstart) - ...

del2(l-Lstart+1)) ...
91 / ( 3.0*(sqrt(var1(l-Lstart+1)) + sqrt(var2(l-Lstart)) + ...

sqrt(var2(l-Lstart+1)) )/sqrt(N));
92 end
93 chk1 = [chk1 check];
94

95

96 PRINTF2(fp,'%2d %8.4e %8.4e %8.4e %8.4e %8.4e %8.4e \n', ...
97 l,del1(l-Lstart+1),del2(l-Lstart+1),var1(l-Lstart+1),var2(l...

-Lstart+1),kur1(l-Lstart+1),chk1(l-Lstart+1));
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98 P=P+del1(l-Lstart+1);
99 end

100

101

102 %
103 % print out a warning if kurtosis or consistency check looks bad
104 %
105

106 if ( kur1(end) > 100.0 )
107 PRINTF2(fp,'\n WARNING: kurtosis on finest level = %f \n',kur1(end)...

);
108 PRINTF2(fp,' indicates MLMC correction dominated by a few rare ...

paths; \n');
109 PRINTF2(fp,' for information on the connection to variance of ...

sample variances,\n');
110 PRINTF2(fp,' see http://mathworld.wolfram.com/...

SampleVarianceDistribution.html\n\n');
111 end
112

113 if ( max(chk1) > 1.0 )
114 PRINTF2(fp,'\n WARNING: maximum consistency error = %f \n',max(chk1...

));
115 PRINTF2(fp,' indicates identity E[Pf-Pc] = E[Pf] - E[Pc] not ...

satisfied \n\n');
116 end
117

118 %
119 % use linear regression to estimate alpha, beta and gamma
120 %
121

122 L1 = 2;
123 L2 = L-Lstart+1;
124 % L2 = L;
125 pa = polyfit(L1:L2,log2(abs(del1(L1:L2))),1); alpha = -pa(1);
126 pb = polyfit(L1:L2,log2(abs(var1(L1:L2))),1); beta = -pb(1);
127 if replacement
128 varWR(1:(L2-L1+1),j)=var1(L1:L2);
129 else
130 varWOR(1:(L2-L1+1),j)=var1(L1:L2);
131 end
132 levels(1:(L2-L1+1),j)=L1:L2;
133 % just last two points to minimise effect of MATLAB overhead
134 gamma = log2(cost(end)/cost(end-1));
135

136 PRINTF2(fp,'\n******************************************************\...
n');

137 PRINTF2(fp,'*** Linear regression estimates of MLMC parameters ***\n'...
);

138 PRINTF2(fp,'******************************************************\n'...
);

139 PRINTF2(fp,'\n alpha = %f (exponent for MLMC weak convergence)\n',...
alpha);

140 PRINTF2(fp,' beta = %f (exponent for MLMC variance) \n',beta);
141 PRINTF2(fp,' gamma = %f (exponent for MLMC cost) \n',gamma);
142

143 %
144 % second, mlmc complexity tests
145 %
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146

147 PRINTF2(fp,'\n');
148 PRINTF2(fp,'***************************** \n');
149 PRINTF2(fp,'*** MLMC complexity tests *** \n');
150 PRINTF2(fp,'***************************** \n\n');
151 PRINTF2(fp,' eps value mlmc cost std cost savings ...

N l \n');
152 PRINTF2(fp,'...

----------------------------------------------------------- \n');
153

154 % rng('default'); % reset random number generator
155

156 alpha = max(alpha,0.5);
157 beta = max(beta,0.5);
158 gamma = log2(M);
159 theta = 0.25;
160

161 for i = 1:length(Eps)
162 eps = Eps(i);
163 [P, Nl] = mlmc together(Lmin,Lmax,Lstart,N0,eps,mlmc fn,alpha,beta,...

gamma,replacement);
164 if i==1; Pa=P; end;
165 l = length(Nl)-1;
166

167 mlmc cost = sum(Nl.*M.ˆ(0:l))*MˆLstart;
168 l2 = min(l+1,length(var2));
169 std cost = var2(l2) / (epsˆ2)*nPos;
170

171 PRINTF2(fp,'%.3e %.3e %.3e %.3e %7.2f ', ...
172 eps, P(end), mlmc cost, std cost, std cost/mlmc cost);
173 PRINTF2(fp,'%9d',Nl);
174 PRINTF2(fp,'\n');
175 end
176

177 PRINTF2(fp,'\n');
178

179 end
180

181 %
182 % function to print to both a file and stdout
183 %
184

185 function PRINTF2(fp,varargin)
186 fprintf(fp,varargin{:});
187 fprintf( 1,varargin{:});
188 end

mlmc VaR.m

1 %% function [P, Nl] = mlmc(Lmin,Lmax,N0,eps,mlmc l, alpha,beta,gamma)
2 %
3 % multi-level Monte Carlo estimation
4 %
5 % P = value
6 % Nl = number of samples at each level
7 %
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8 % Lmin = minimum level of refinement ≥ 2
9 % Lmax = maximum level of refinement ≥ Lmin

10 % N0 = initial number of samples > 0
11 % eps = desired accuracy (rms error) > 0
12 %
13 % alpha -> weak error is O(2ˆ{-alpha*l})
14 % beta -> variance is O(2ˆ{-beta*l})
15 % gamma -> sample cost is O(2ˆ{gamma*l}) > 0
16 %
17 % if alpha, beta are not positive then they will be estimated
18 %
19 % mlmc l = function for level l estimator
20 %
21 % sums = mlmc fn(l,N) low-level routine
22 %
23 % inputs: l = level
24 % N = number of paths
25 %
26 % output: sums(1) = sum(Y)
27 % sums(2) = sum(Y.ˆ2)
28 % where Y are iid samples with expected value:
29 % E[P 0] on level 0
30 % E[P l - P {l-1}] on level l>0
31

32 function [P, Nl] = mlmc VaR(Lmin,Lmax,Lstart, N0,eps,mlmc l, alpha 0,...
beta 0,gamma,replacement)

33 global p;
34 %
35 % check input parameters
36 %
37 if (Lmin<2)
38 error('error: needs Lmin ≥ 2');
39 end
40

41 if (Lmax<Lmin)
42 error('error: needs Lmax ≥ Lmin');
43 end
44

45 if (Lmin<Lstart)
46 error('error: needs Lstart ≥ Lmin');
47 end
48

49 if (N0≤0 | | eps≤0 | | gamma ≤ 0)
50 error('error: needs N>0, eps>0, gamma>0 \n');
51 end
52

53 %
54 % initialisation
55 %
56 alpha = max(0, alpha 0);
57 beta = max(0, beta 0);
58

59 theta = 0.25;
60

61 L = Lmin-Lstart;
62

63 Nl(1:L+1) = 0;
64 suml(1:2,1:L+1) = 0;
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65 dNl(1:L+1) = N0;
66 mo=zeros(Lmax-Lstart+1,p+1) ;
67

68 while sum(dNl) > 0
69

70 %
71 % update sample sums
72 %
73 for l=0:L
74 if dNl(l+1) > 0
75 sums = feval(mlmc l,l+Lstart,dNl(l+1),Lstart,...

replacement);
76 Nl(l+1) = Nl(l+1) + dNl(l+1);
77 % suml(1,l+1) = suml(1,l+1) + sums(1,end);
78 % suml(2,l+1) = suml(2,l+1) + sums(2,end);
79 suml(1,l+1) = suml(1,l+1) + sums(1,2);
80 suml(2,l+1) = suml(2,l+1) + sums(2,2);
81 mo(l+1,:)=mo(l+1,:)+sums(1,:);
82 end
83 end
84

85 %
86 % compute absolute average and variance
87 %
88 ml = abs( suml(1,:)./Nl);
89 Vl = max(0, suml(2,:)./Nl - ml.ˆ2);
90

91 %
92 % fix to cope with possible zero values for ml and Vl
93 % (can happen in some applications when there are few samples)
94 %
95 for l = 3:L+1
96 ml(l) = max(ml(l), 0.5*ml(l-1)/2ˆalpha);
97 Vl(l) = max(Vl(l), 0.5*Vl(l-1)/2ˆbeta);
98 end
99

100 %
101 % use linear regression to estimate alpha, beta if not given
102 %
103 if alpha 0 ≤ 0
104 A = repmat((1:L)',1,2).ˆrepmat(1:-1:0,L,1);
105 x = A \ log2(ml(2:end))';
106 alpha = max(0.5,-x(1));
107 end
108

109 if beta 0 ≤ 0
110 A = repmat((1:L)',1,2).ˆrepmat(1:-1:0,L,1);
111 x = A \ log2(Vl(2:end))';
112 beta = max(0.5,-x(1));
113 end
114 %
115 % set optimal number of additional samples
116 %
117 Cl = 2.ˆ(gamma*(0:L))*2ˆLstart;
118 Ns = ceil( sqrt(Vl./Cl) * sum(sqrt(Vl.*Cl)) ...
119 / ((1-theta)*epsˆ2) );
120 dNl = max(0, Ns-Nl);
121 %
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122 % if (almost) converged, estimate remaining error and decide
123 % whether a new level is required
124 %
125 if sum( dNl > 0.01*Nl ) == 0
126 rem = ml(L+1) / (2ˆalpha - 1);
127

128 if rem > sqrt(theta)*eps
129 if (L==Lmax-Lstart)
130 fprintf(1,'*** failed to achieve weak convergence *** \n');
131 else
132 L = L+1;
133 Vl(L+1) = Vl(L) / 2ˆbeta;
134 Nl(L+1) = 0;
135 suml(1:4,L+1) = 0;
136

137 Cl = 2.ˆ(gamma*(0:L));
138 Ns = ceil( sqrt(Vl./Cl) * sum(sqrt(Vl.*Cl)) ...
139 / ((1-theta)*epsˆ2) );
140 dNl = max(0, Ns-Nl);
141 end
142 end
143 end
144 end
145

146 %
147 % finally, evaluate multilevel estimator
148 %
149 % P = sum(suml(1,:)./Nl);
150 for l= 1:length(Nl)
151 mo(l,:)=mo(l,:)/Nl(l);
152 end
153 P=sum(mo);
154 end

empiricalDist.m

1 function VaR MC=empiricalDist(pr)
2 % rng('default');
3 global Poly;
4 global S0 r sig K T dK dT nT nK; % parameter to specify the ...

financial option
5 global nPos;
6 global type pos V0 ∆0 gamma0 theta0;
7 global horizon drift;
8 global p;
9 global M;

10 global a b;
11 global DG;%empirical distribution
12

13 nsample=840;
14

15 PnL=zeros(nsample,1);
16 ret = sig*sqrt(horizon)*normrnd(0,1, nsample, 1)+ (drift-0.5*sig...

ˆ2)*horizon;
17 S = S0*exp(ret);
18 for i=1:nsample
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19 V=blsprice(S(i), K, r, T-horizon, sig);
20 PnL(i,1)=sum(V.*pos)-sum(V0.*pos);
21 end
22 PnL sorted=sort(PnL);
23 ind=nsample*pr;
24 ind ceil=ceil(ind);
25 ind floor=max(floor(ind),ones(1, length(pr)));
26

27 VaR MC=0.5*(PnL sorted(ind floor)+PnL sorted(ind ceil));
28 nx = 1000;
29 xinput=linspace(min(PnL), max(PnL), nx);
30 freq = hist(PnL,nx);
31 prob = freq/nsample/(max(PnL)- min(PnL))*nx;
32 % empirical = bar(xinput, prob-1)
33 % uistack(empirical,'bottom')
34 figure()
35 grey = [0.6 0.6 0.6];
36 empirical = bar(xinput, prob, 'FaceColor',grey);
37 uistack(empirical,'bottom')
38 VaR MC=VaR MC';
39

40 hold on;
41 [f,xi] = ksdensity(PnL);
42 plot(xi,f, '-k', 'LineWidth',1.5);

estimation.m

1 VaR acc=[];
2 VaR MC=[];
3 VaR MLMC=[];
4 for i=1:1000
5 try
6 [a,b,c]=testMLMC new all;
7 VaR acc=a;
8 VaR MC = [VaR MC;b];
9 VaR MLMC = [VaR MLMC;c];

10 CATCH
11 end
12 end
13 % pr=[0.001 0.005 0.01 0.05 0.1 0.3 0.5];

A.3 Plotting scripts

The scripts to generate the figures in Chapter 5 are listed below.

• var plot.m is the function to generate figure 5.1.

• error plot.m is the function to generate figure 5.4 and 5.5.

var plot.m
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1 load var.mat;
2 set(0,'DefaultAxesColorOrder',[0 0 0]);
3 set(0,'DefaultAxesLineStyleOrder','--o|--x|--d|--*|--s');
4 levels=levels(:,1:3);
5 varWR=varWR(:,1:3);
6 varWOR=varWOR(:,1:3);
7 varWR DG=varWR DG(:,1:3);
8 varWOR DG=varWOR DG(:,1:3);
9 for i=1:4

10 subplot(2,2,i);
11 if i==1
12 plot(levels, log2(varWR));
13 title({'Replacement: true','DGT: false'});
14 elseif i==2
15 plot(levels, log2(varWOR));
16 title({'Replacement: false','DGT: false'});
17 elseif i==3
18 plot(levels, log2(varWR DG));
19 title({'Replacement: true','DGT: true'});
20 else
21 plot(levels, log2(varWOR DG));
22 title({'Replacement: false','DGT: true'});
23 end
24

25

26 for j=1:size(levels,2)
27 labels{j} = strcat('K=',num2str(power(2,max(levels(:,j)))));
28 end
29 legend(labels,'Location','NorthEast')
30 ylabel('log 2 variance')
31 ylabel('variance')
32 xlabel('level l');
33 end
34 print('-deps2',['var.eps'])

error plot.m

1 pr=[0.001 0.005 0.01 0.05 0.1 0.3 0.5];
2 error=0.01*[4 2 1 0.5 0.25 0.125 0.0625];
3 S(1)=load('4e-2.mat');
4 S(2)=load('2e-2.mat');
5 S(3)=load('1e-2.mat');
6 S(4)=load('5e-3 2.mat');
7 S(5) = load('25e-3.mat');
8 S(6) = load('125e-3 2.mat');
9 S(7) = load('625e-4.mat');

10 RMSE MLMC=zeros(7,7);
11 RMSE MC=zeros(7,7);
12 bias MLMC=zeros(7,7);
13 bias MC=zeros(7,7);
14

15 for i=1:7
16 [n,m]=size(S(i).VaR MLMC);
17 RMSE MLMC(i,:)=sqrt(mean((S(i).VaR MLMC-repmat(S(i).VaR acc,n...

,1)).ˆ2));
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18 RMSE MC(i,:)=sqrt(var(S(i).VaR MC-repmat(S(i).VaR acc,n,1)));
19 bias MLMC(i,:)=mean(S(i).VaR MLMC-repmat(S(i).VaR acc,n,1));
20 bias MC(i,:)=mean(S(i).VaR MC-repmat(S(i).VaR acc,n,1));
21 end
22 loglog(error(1:4), RMSE MLMC(1:4,3),'--o', 'LineWidth',1.5);hold on;
23 loglog(error(1:4), RMSE MLMC(1:4,4),'--x', 'LineWidth',1.5);hold on;
24 loglog(error(1:4), RMSE MLMC(1:4,5),'--d', 'LineWidth',1.5);hold on;
25 loglog(error(1:4), RMSE MLMC(1:4,6),'--*', 'LineWidth',1.5);
26 for i=1:4
27 labels{i} = strcat(num2str(pr(i+2)),'-VaR');
28 end
29 legend(labels,'Location','SouthEast')
30 ylabel('RMSE of VaR')
31 xlabel('RMSE of 1st order moment');
32 print -depsc RMSE colored.eps
33

34

35 E(1)=load('512.mat');
36 E(2)=load('1024.mat');
37 E(3)=load('2048.mat');
38

39 K=2ˆ9*[1 2 4];
40 for i=1:3
41 [n,m]=size(E(i).VaR MLMC);
42 RMSE MLMC2(i,:)=sqrt(mean((E(i).VaR MLMC-repmat(E(i).VaR acc,n...

,1)).ˆ2));
43 RMSE MC2(i,:)=sqrt(mean((E(i).VaR MC-repmat(E(i).VaR acc,n,1))....

ˆ2));
44 end
45

46

47 for i=1:4
48 subplot(2,2,i);
49 plot(K,RMSE MC2(:,i+2),'--o',K,RMSE MLMC2(:,i+2),'--x','LineWidth...

',1.5);
50 legend('MC', 'MLMC','Location','northwest');
51 title(strcat(num2str(pr(2+i)),'-VaR'));
52 xlabel('K');
53 ylabel('RMSE');
54 a=round(max(RMSE MC2(:,i+2))/100)+2;
55 ylim([0 500]);
56 end
57 print -depsc RMSE K colored.eps
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