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Monte Carlo methods are a very general and useful approach for the estima-
tion of expectations arising from stochastic simulation. However, they can
be computationally expensive, particularly when the cost of generating in-
dividual stochastic samples is very high, as in the case of stochastic PDEs.
Multilevel Monte Carlo is a recently developed approach which greatly reduces
the computational cost by performing most simulations with low accuracy at
a correspondingly low cost, with relatively few simulations being performed
at high accuracy and a high cost.

In this article, we review the ideas behind the multilevel Monte Carlo method,
and various recent generalisations and extensions, and discuss a number of
applications which illustrate the flexibility and generality of the approach and
the challenges in developing more efficient implementations with a faster rate
of convergence of the multilevel correction variance.
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1. Introduction

1.1. Stochastic modelling and Monte Carlo simulation

Stochastic modelling and simulation is a growing area in applied mathe-
matics and scientific computing. One large application area is in computa-
tional finance, in the pricing of financial derivatives and quantitative risk
management (Glasserman 2004, Asmussen and Glynn 2007). Another is
Uncertainty Quantification in engineering and science, which has led to a
new SIAM journal and associated annual conferences. Stochastic modelling
is also important in diverse areas such as biochemical reactions (Anderson
and Higham 2012) and plasma physics (Rosin, Ricketson, Dimits, Caflisch
and Cohen 2014).

When the dimensionality of the uncertainty (or the number of uncertain
input parameters) is low, it can be appropriate to model the uncertainty
using the Fokker-Planck PDE and use stochastic Galerkin, stochastic collo-
cation or polynomial chaos methods (Xiu and Karniadakis 2002, Babuška,
Tempone and Zouraris 2004, Babuška, Nobile and Tempone 2010, Gun-
zburger, Webster and Zhang 2014). When the level of uncertainty is low,
and its effect is largely linear, then moment methods can be an efficient
and accurate way in which to quantify the effects on uncertainty (Putko,
Taylor, Newman and Green 2002). However, when the uncertainty is high-
dimensional and strongly nonlinear, Monte Carlo simulation remains the
preferred approach.

At its simplest, Monte Carlo simulation is extremely simple. To estimate
E[P ], a simple Monte Carlo estimate is just an average of values P (ω) for
N independent samples ω coming from a given probability space (Ω,F ,P),

N−1
N∑

n=1

P (ω(n)).

The variance of this estimate is N−1
V[P ], so the r.m.s. error is O(N−1/2)

and an accuracy of ε requires N=O(ε−2) samples. This is the weakness of
Monte Carlo simulation; its computational cost can be very high, particu-
larly when each sample P (ω) might require the approximate solution of a
PDE, or a computation with many timesteps.

One approach to addressing this high cost is the use of Quasi-Monte Carlo
(QMC) methods, in which the samples are not chosen randomly and inde-
pendently, but are instead selected very carefully to reduce the error. In the
best cases, the error may be O(N−1), up to logarithmic terms, giving a very
substantial reduction in the number of samples required for a given accu-
racy. The QMC approach was surveyed in Acta Numerica 2013 (Dick, Kuo
and Sloan 2013). In this article, we cover a different approach to improving
the computational efficiency, the multilevel Monte Carlo (MLMC) method,
and we include a brief discussion of the combination of the two approaches.
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1.2. Control variates and two-level MLMC

One of the classic approaches to Monte Carlo variance reduction is through
the use of a control variate (Glasserman 2004). Suppose we wish to estimate
E[f ], and there is a control variate g which is well correlated to f and has
a known expectation E[g]. In that case, we can use the following unbiased
estimator for E[f ] based on N independent samples ω(n):

N−1
N∑

n=1

{
f(ω(n))− λ

(
g(ω(n))− E[g]

)}
.

The optimal value for λ is ρ
√

V[f ] /V[g], where ρ is the correlation between
f and g, and the variance of the control variate estimator is reduced by
factor 1−ρ2 compared to the standard estimator.

A two-level version of MLMC is very similar. If we want to estimate E[P1]
but it is much cheaper to simulate P0 which approximates P1, then since

E[P1] = E[P0] + E[P1 − P0]

we can use the unbiased two-level estimator

N−1
0

N0∑

n=1

P
(n)
0 + N−1

1

N1∑

n=1

(
P

(n)
1 −P

(n)
0

)
.

Here P
(n)
1 −P

(n)
0 represents the difference between P1 and P0 for the same

underlying stochastic sample ω(n), so that P
(n)
1 −P

(n)
0 is small and has a

small variance; the precise construction depends on the application and
various examples will be shown later. The two key differences from the
control variate approach are that the value of E[P0] is not known, so has to
be estimated, and we use λ = 1.

If we define C0 and C1 to be the cost of computing a single sample of
P0 and P1−P0, respectively, then the total cost is N0 C0+N1 C1, and if
V0 and V1 are the variance of P0 and P1−P0, then the overall variance

is N−1
0 V0 + N−1

1 V1, assuming that
∑N0

n=1 P
(n)
0 and

∑N1
n=1

(
P

(n)
1 −P

(n)
0

)
use

independent samples.
Hence, treating the integers N0, N1 as real variables and performing a

constrained minimisation using a Lagrange multiplier, the variance is min-
imised for a fixed cost by choosing N1/N0 =

√
V1/C1 /

√
V0/C0.

1.3. Multilevel Monte Carlo

The multilevel generalisation is quite natural: given a sequence P0, . . . , PL−1

which approximates PL with increasing accuracy, but also increasing cost,
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we have the simple identity

E[PL] = E[P0] +

L∑

ℓ=1

E[Pℓ − Pℓ−1],

and therefore we can use the following unbiased estimator for E[PL],

N−1
0

N0∑

n=1

P
(0,n)
0 +

L∑

ℓ=1

{
N−1

ℓ

Nℓ∑

n=1

(
P

(ℓ,n)
ℓ −P

(ℓ,n)
ℓ−1

)}

with the inclusion of the level ℓ in the superscript (ℓ, n) indicating that
independent samples are used at each level of correction.

If we define C0, V0 to be the cost and variance of one sample of P0,
and Cℓ, Vℓ to be the cost and variance of one sample of Pℓ−Pℓ−1, then

the overall cost and variance of the multilevel estimator is
∑L

ℓ=0 NℓCℓ and∑L
ℓ=0N

−1
ℓ Vℓ, respectively.

For a fixed variance, the cost is minimised by choosing Nℓ to minimise

L∑

ℓ=0

(
NℓCℓ + µ2N−1

ℓ Vℓ

)

for some value of the Lagrange multiplier µ2. This gives Nℓ=µ
√
Vℓ /Cℓ. To

achieve an overall variance of ε2 then requires that µ= ε−2
∑L

ℓ=0

√
Vℓ Cℓ,

and the total computational cost is therefore

C = ε−2

(
L∑

ℓ=0

√
Vℓ Cℓ

)2

. (1.1)

It is important to note whether the product Vℓ Cℓ increases or decreases
with ℓ, i.e. whether or not the cost increases with level faster than the
variance decreases. If the product increases with level, so that the dominant
contribution to the cost comes from VL CL then we have C ≈ ε−2VL CL,
whereas if it decreases and the dominant contribution comes from V0C0 then
C ≈ ε−2V0 C0. This contrasts with the standard MC cost of approximately
ε−2V0 CL, assuming that the cost of computing PL is similar to the cost of
computing PL−PL−1, and that V[PL] ≈ V[P0].

This shows that in the first case the MLMC cost is reduced by factor
VL/V0, corresponding to the ratio of the variances V[PL−PL−1] and V[PL],
whereas in the second case it is reduced by factor C0/CL, the ratio of the
costs of computing P0 and PL−PL−1. If the product Vℓ Cℓ does not vary
with level, then the total cost is ε−2L2 V0C0 = ε−2L2 VL CL.
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1.4. Origins of MLMC method

The first work on multilevel Monte Carlo methods was by Heinrich for
parametric integration, the evaluation of functionals arising from the solu-
tion of integral equations, and weakly singular integral operators (Heinrich
1998, Heinrich and Sindambiwe 1999, Heinrich 2000, Heinrich 2001, Heinrich
2006). Parametric integration concerns the estimation of E[f(x, λ)] where x
is a finite-dimensional random variable and λ is a parameter. In the simplest
case in which λ is a scalar real variable in the range [0, 1], having estimated
the value of E[f(x, 0)] and E[f(x, 1)], one can use 1

2 (f(x, 0) + f(x, 1)) as a

control variate when estimating the value of E[f(x, 12 )]. Heinrich applied this
idea recursively on a geometric sequence of levels, leading to a complexity
analysis which is very similar to that which will be outlined later.

Although not so clearly related, there are also papers by Brandt et al

(Brandt, Galun and Ron 1994, Brandt and Ilyin 2003) which combine Monte
Carlo techniques with multigrid ideas in determining thermodynamic limits
in statistical physics applications.

In 2005, Kebaier (2005) developed a two-level approach for path simula-
tion which is very similar to the author’s approach (Giles 2008b, Giles 2008a)
which was inspired by the multigrid ideas of Brandt and others for the itera-
tive solution of PDE approximations. The differences are that Kebaier used
only two levels, and used a general multiplicative factor as in the standard
control variate approach. There was also similar independent work at the
same time by Li (2007) and Speight (2009).

1.5. Outline of article

Section 2 presents the main theoretical results which underpin MLMCmeth-
ods, and a number of different generalisations and extensions, many of which
have been developed very recently.

Section 3 presents in some detail a MATLAB implementation of MLMC.
This is used to generate the numerical results which are presented later, and
the full MATLAB code is available online (Giles 2014).

Sections 4-10 cover a wide range of applications, demonstrating the flex-
ibility and generality of the MLMC approach, documenting progress in the
numerical analysis of the methods, and illustrating techniques which can be
used to improve the variance of the MLMC estimators. Particular attention
is paid to the difficulties caused by discontinuities in output functionals,
and a variety of remedies which can be employed.

Finally, Section 11 concludes with some thoughts about directions for
future research.

Readers who are new to the subject may wish to start with Section 2.1
and then proceed to the application sections most relevant to their interests.
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2. MLMC theory and extensions

2.1. Geometric MLMC

In the Introduction, we considered the case of a general multilevel method
in which the output PL on the finest level corresponds to the quantity of
interest. However, in many infinite-dimensional applications, such as those
which involve the simulation of SDEs and SPDEs, the output Pℓ on level
ℓ is an approximation to a random variable P which cannot be simulated
exactly. If Y is an approximation to E[P ], then a standard piece of theory
gives the mean square error (MSE) as

MSE ≡ E[ (Y −E[P ])2] = V[Y ] + (E[Y ]−E[P ] )2. (2.1)

If Y is now the multilevel estimator

Y =

L∑

ℓ=0

Yℓ, Yℓ = N−1
ℓ

Nℓ∑

n=1

(P
(ℓ,n)
ℓ −P

(ℓ,n)
ℓ−1 ), (2.2)

with P−1≡0, then

E[Y ] = E[PL], V[Y ] =
L∑

ℓ=0

N−1
ℓ Vℓ, Vℓ ≡ V[Pℓ−Pℓ−1]. (2.3)

To ensure that the MSE is less than ε2, it is sufficient to ensure that V[Y ] and
(E[PL−P ])2 are both less than 1

2ε
2. Combining this idea with a geometric

sequence of levels in which the cost increases exponentially with level, while
both the weak error E[PL−P ] and the multilevel correction variance Vℓ

decrease exponentially, leads to the following theorem:

Theorem 1. Let P denote a random variable, and let Pℓ denote the cor-
responding level ℓ numerical approximation.

If there exist independent estimators Yℓ based on Nℓ Monte Carlo sam-
ples, each with expected cost Cℓ and variance Vℓ, and positive constants
α, β, γ, c1, c2, c3 such that α≥ 1

2 min(β, γ) and

i)
∣∣E[Pℓ−P ]

∣∣ ≤ c1 2
−α ℓ

ii) E[Yℓ] =

{
E[P0], ℓ = 0

E[Pℓ−Pℓ−1], ℓ > 0

iii) Vℓ ≤ c2 2
−β ℓ

iv) Cℓ ≤ c3 2
γ ℓ,

then there exists a positive constant c4 such that for any ε<e−1 there are
values L and Nℓ for which the multilevel estimator

Y =

L∑

ℓ=0

Yℓ,
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has a mean-square-error with bound

MSE ≡ E

[
(Y − E[P ])2

]
< ε2

with a computational complexity C with bound

E[C] ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, β < γ.

The statement of the theorem is a slight generalisation of the original the-
orem in (Giles 2008b). It corresponds to the theorem and proof in (Cliffe,
Giles, Scheichl and Teckentrup 2011), except for the minor change to ex-
pected costs to allow for applications in which the simulation cost of in-
dividual samples is itself random. Note that if condition iii) is tightened
slightly to be a bound on E[(Pℓ−Pℓ−1)

2], which is usually the quantity
which is bounded in numerical analysis, then it would follow immediately
that α ≥ 1

2β.

The essence of the proof is very straightforward. If we have Vℓ=O(2−βℓ)
and Cℓ = O(2γℓ), then the analysis in Section 1.3 shows that the optimal
number of samples Nℓ on level ℓ is proportional to 2−(β+γ)ℓ/2, and therefore
the cost on level ℓ is proportional to 2(γ−β)ℓ/2. The result then follows from
the requirement that L is chosen so that (E[Y ]−E[P ] )2 < 1

2ε
2, and the

constant of proportionality for Nℓ is chosen so that V[Y ] < 1
2ε

2. The proof
also has to handle the fact that Nℓ must be an integer, so the optimal value
is rounded up to the nearest integer.

The result of the theorem merits some discussion. In the case β > γ, the
dominant computational cost is on the coarsest levels where Cℓ = O(1) and
O(ε−2) samples are required to achieve the desired accuracy. This is the
standard result for a Monte Carlo approach using i.i.d. samples; to do better
would require an alternative approach such as the use of Latin hypercube
sampling or quasi-Monte Carlo methods.

In the case β < γ, the dominant computational cost is on the finest levels.
Because of condition i), we have 2−αL = O(ε), and hence CL = O(ε−γ/α).
If β = 2α, which is usually the best that can be achieved since typically
V[Pℓ−Pℓ−1] is similar in magnitude to E[(Pℓ−Pℓ−1)

2] which is greater than
(E[Pℓ−Pℓ−1])

2, then the total cost is O(CL), corresponding to O(1) samples
on the finest level which is the best that can be achieved.

The dividing case β = γ is the one for which both the computational ef-
fort, and the contributions to the overall variance, are spread approximately
evenly across all of the levels; the (log ε)2 term corresponds to the L2 factor
in the corresponding discussion at the end of Section 1.3.
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One comment on the Theorem is that it assumes lots of properties, and
then from these determines relatively easily some conclusions for the effi-
ciency of the MLMC approach. In real applications, the tough challenge
is in proving that the assumptions are valid, and in particular determining
the values of the parameters α, β, γ. Furthermore, the Theorem assumes
knowledge of the constants c1, c2, c3. In practice, c1 and c2 are almost never
known, and instead have to be estimated based on empirical estimates of
the weak error and the multilevel correction variance.

Collier, Haji-Ali, Nobile, von Schwerin and Tempone (2014) have devel-
oped a modified version of the Theorem. Instead of bounding the Mean
Square Error, they prefer to use the Central Limit Theorem to construct
a confidence interval which bounds E[P ] with a user-prescribed confidence.
This exploits the fact that the multilevel correction Yℓ on each level is asymp-
totically Normally-distributed, and therefore so is Y .

Haji-Ali, Nobile, von Schwerin and Tempone (2014b) address two other
important points. The first is whether a geometric sequence of levels is the
best choice. Their analysis proves that under certain conditions there is
negligible benefit in using a non-geometric sequence, but later in Section
2.6 we will discuss other applications in which a non-geometric sequence
is appropriate. The second point is that the equal split between the error
due to E[Pℓ−Pℓ−1] and the error due to the variance V[Y ] is definitely not
optimal. When β>γ, the dominant computational effort is on the coarsest
levels; therefore L can be increased significantly with negligible cost, and
so it makes sense to allocate most of the error to the variance term which
means that fewer samples will be required. This can give up to a factor
2× improvement in computational cost compared to the equal split used in
(Giles 2008b, Giles 2008a).

Equation (2.2) gives the natural choice for the multilevel correction es-
timator Yℓ. However, the multilevel theorem allows for the use of other
estimators, provided they satisfy the restriction of condition ii) which en-
sures that E[Y ] = E[PL]. Several examples of this will be given later in this
article. Some use slightly different numerical approximations for the coarse
and fine paths in SDE simulations, resulting in the estimator

Yℓ = N−1
ℓ

Nℓ∑

n=1

(
P f
ℓ (ω

(n))−P c
ℓ−1(ω

(n))
)
.

Provided we maintain the identity

E[P f
ℓ ] = E[P c

ℓ ] (2.4)

so that the expectation on level ℓ is the same for the two approximations,
then condition ii) is satisfied and no additional bias (other than the bias due
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to the approximation on the finest level) is introduced into the multilevel
estimator.

Some others define an antithetic ω
(n)
a with the same distribution as ω(n),

and then use the multilevel estimator

Yℓ = N−1
ℓ

Nℓ∑

n=1

1
2

(
Pℓ(ω

(n))+Pℓ(ω
(n)
a )
)
− Pℓ−1(ω

(n)).

Since E[Pℓ(ω
(n)
a )] = E[Pℓ(ω

(n))], then again condition ii) is satisfied.
In each case, the objective in constructing a more complex estimator is to

achieve a greatly reduced variance V[Yℓ] so that fewer samples are required.

2.2. Randomised MLMC for unbiased estimation

A very interesting extension has been introduced in (Rhee and Glynn 2012,
Rhee and Glynn 2013). Rather than choosing the finest level of simulation
L, based on the desired accuracy, and then using the optimal number of
samples on each level based on an estimate of the variance, their “single
term” estimator instead uses N samples in total, and for each sample they
perform a simulation on level ℓ with probability pℓ.

The estimator is

Y =
1

N

N∑

n=1

1

pℓ(n)

(P
(n)

ℓ(n)−P
(n)

ℓ(n)−1
)

with the level ℓ(n) for each sample being selected randomly with the relevant
probability. Alternatively, their estimator can be expressed as

Y =

∞∑

ℓ=0

(
1

pℓN

Nℓ∑

n=1

(P
(n)
ℓ −P

(n)
ℓ−1)

)
.

where Nℓ, the number of samples from level ℓ, is a random variable with

∞∑

ℓ=0

Nℓ = N, E[Nℓ] = pℓN.

and both outer summations can be trivially truncated at the (random)
level L beyond which Nℓ = 0. Note that in this form it is very similar in
appearance to the standard MLMC estimator which is

Y =

L∑

ℓ=0

(
1

Nℓ

Nℓ∑

n=1

(P
(n)
ℓ −P

(n)
ℓ−1)

)
.
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The beauty of their estimator is that it is naturally unbiased, since

E[Y ] = E

[
1

pℓ′
(Pℓ′−Pℓ′−1)

]

=

∞∑

ℓ=0

pℓ E

[
1

pℓ′
(Pℓ′−Pℓ′−1) | ℓ′ = ℓ

]

=

∞∑

ℓ=0

E [Pℓ−Pℓ−1]

= E[P ].

If we define Eℓ = E[Pℓ−Pℓ−1] then the variance of the estimator is

V[Y ] =
∞∑

ℓ=0

1

pℓ
(Vℓ + E2

ℓ )−
(

∞∑

ℓ=0

Eℓ

)2

≥
∞∑

ℓ=0

1

pℓ
Vℓ,

due to Jensen’s inequality.
The choice of probabilities pℓ is crucial. For both the variance and the

expected cost to be finite, it is necessary that

∞∑

ℓ=0

1

pℓ
Vℓ < ∞,

∞∑

ℓ=0

pℓCℓ < ∞.

Under the conditions of the MLMC Theorem, this is possible when β > γ
by choosing pℓ ∝ 2−(γ+β)ℓ/2, so that

1

pℓ
Vℓ ∝ 2−(β−γ)ℓ/2, pℓCℓ ∝ 2−(β−γ)ℓ/2.

It is not possible when β≤γ, and for these cases the estimators constructed
by Rhee and Glynn (2013) have infinite expected cost.

Provided β>γ, the optimal choice for pℓ is

pℓ =
√

Vℓ/Cℓ

(
∞∑

ℓ′=0

√
Vℓ′/Cℓ′

)−1

.

If E2
ℓ ≪ Vℓ, then the condition that the variance of the estimator is approx-

imately equal to ε2 gives

N ≈ ε−2
∞∑

ℓ=0

Vℓ/pℓ ≈ ε−2

(
∞∑

ℓ=0

√
VℓCℓ

)(
∞∑

ℓ′=0

√
Vℓ′/Cℓ′

)

and therefore the total cost is

C = N

∞∑

ℓ=0

pℓCℓ ≈ ε−2

(
∞∑

ℓ=0

√
VℓCℓ

)2

,
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which is the same as the total cost in Eq. (1.1), and half the cost of the
standard MLMC algorithm in which only half of the MSE “budget” of ε2

is allocated to the variance.
Although it is very elegant to have an unbiased estimator when β>γ, the

practical benefits may be limited. In this situation, the dominant cost of
the standard MLMC algorithm is on the coarsest levels of simulation, and
therefore one can increase the value of L substantially at negligible cost,
and at the same time allocate almost all of the Mean Square Error budget
of ε2 to the variance term in (2.1), leading to approximately the same total
cost.

2.3. Multilevel Richardson-Romberg extrapolation

Richardson extrapolation is a very old technique in numerical analysis.
Given a numerical approximation Ph based on a discretisation parameter h
which leads to an error

Ph − P = ahα +O(h2α),

it follows that

P2h − P = a (2h)α +O(h2α),

and hence the extrapolated value

P̃ =
2α

2α−1
Ph −

1

2α−1
P2h

satisfies

P̃ − P = O(h2α).

At the suggestion of a reviewer, the author’s original MLMC paper (Giles
2008b) included results using one level of Richardson extrapolation, both
for the multilevel results as well as the standard Monte Carlo method. Mul-
tilevel on its own was significantly better than Richardson extrapolation,
but the two together were even better.

Lemaire and Pagès have taken this approach much further, and have
also performed a comprehensive error analysis (Lemaire and Pagès 2013).
Assuming that the weak error has a regular expansion

E[Pℓ]− E[P ] =

L∑

n=1

an2
−nαℓ +O(2−αℓL),

they first determine the unique set of weights wℓ, ℓ = 0, 1, . . . , L such that

L∑

ℓ=0

wℓ = 1,

L∑

ℓ=0

wℓ 2
−nαℓ = 1, n = 1, . . . , L,
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so that
(

L∑

ℓ=0

wℓ E[Pℓ]

)
− E[P ] =

L∑

ℓ=0

wℓ (E[Pℓ]− E[P ]) = O(2−αL2
).

Next, they re-arrange terms to give

L∑

ℓ=0

wℓ E[Pℓ] =

L∑

ℓ=0

vℓ E[Pℓ−Pℓ−1]

where as usual P−1≡0, and the coefficients vℓ are defined by wℓ = vℓ−vℓ+1,
with vL+1≡0, and hence

vℓ =

L∑

ℓ′=ℓ

wℓ′ .

This leads to their Multilevel Richardson-Romberg extrapolation estimator,

Y =

L∑

ℓ=0

Yℓ, Yℓ = N−1
ℓ vℓ

∑

n

(P
(ℓ,n)
ℓ −P

(ℓ,n)
ℓ−1 ).

Because the remaining error is O(2−αL2
), rather than the usual O(2−αL),

it is possible to obtain the usual O(ε) weak error with a value of L which
is the square root of the usual value. Hence, in the case β = γ they prove
that the overall cost is reduced to O(ε−2| log ε|), while for β<γ the cost is

reduced much more to O(ε−22(γ−β)
√

| log2 ε|/α). This analysis is supported
by numerical results which demonstrate considerable savings (Lemaire and
Pagès 2013), and therefore this appears to be a very useful extension to the
standard MLMC approach when β≤γ.

2.4. Multi-Index Monte Carlo

Multi-Index Monte Carlo (MIMC) is probably the most significant exten-
sion of the MLMC methodology (Haji-Ali, Nobile and Tempone 2014a). In
standard MLMC, there is a one-dimensional set of levels, with a scalar level
index ℓ, although in some applications changing ℓ can change more than one
aspect of the computation (such as both timestep and spatial discretisation
in a parabolic SPDE application, or timestep and number of sub-samples
in a nested simulation). MIMC generalises this to “levels” being defined in
multiple directions, so that the level “index” ℓ is now a vector of integer
indices. This is illustrated in Figure 2.1 for a 2D MIMC application.

In MLMC, if we define the backward difference

∆Pℓ ≡ Pℓ − Pℓ−1

with P−1≡0, as usual, then the telescoping sum which lies at the heart of
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✲

✻

ℓ1

ℓ2

❞ ❞

❞ ❞

four evaluations for
cross-difference ∆P(5,4)

Figure 2.1. “Levels” in 2D multi-index Monte Carlo application

MLMC is

E[P ] =
∑

ℓ≥0

E[∆Pℓ].

Generalising this to D dimensions, Haji-Ali et al. (2014a) first define a
backward difference operator in one particular dimension,

∆dPℓ ≡ Pℓ − Pℓ−ed

where ed is the unit vector in direction d. They then define the cross-
difference

∆Pℓ ≡
(

D∏

d=1

∆d

)
Pℓ

and the telescoping sum becomes

E[P ] =
∑

ℓ≥0

E[∆Pℓ].

As an example, Figure 2.1 marks the four locations at which Pℓ must be
computed to determine the value of ∆P(5,4) in the 2D application.

The MIMC Theorem formulated by Haji-Ali et al. (2014a) can be ex-
pressed in the following form to match, as closely as possible, the formula-
tion of the MLMC Theorem.

Theorem 2. If there exist independent estimators Yℓ based on Nℓ Monte
Carlo samples, each with expected cost Cℓ and variance Vℓ, and positive
D-dimensional vectors α,β,γ, with αd ≥ 1

2βd, and also positive constants
c1, c2, c3 such that

i)
∣∣E[Pℓ − P ]

∣∣ −→ 0 as min
d

ℓd −→ ∞
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iii) E[Yℓ] = E[∆Pℓ]

ii)
∣∣E[Yℓ]

∣∣ ≤ c1 2
−α·ℓ

iv) Vℓ ≤ c2 2
−β·ℓ

v) Cℓ ≤ c3 2
γ·ℓ,

then there exists a positive constant c4 such that for any ε<e−1 there is a
set of levels L, and integers Nℓ for which the multilevel estimator

Y =
∑

ℓ∈L

Yℓ,

has a mean-square-error with bound

MSE ≡ E

[
(Y − E[P ])2

]
< ε2

with a computational complexity C with bound

E[C] ≤





c4 ε
−2 , η < 0,

c4 ε
−2 | log ε|e1 , η = 0,

c4 ε
−2−η | log ε|e2 , η > 0,

where

η = max
d

γd − βd
αd

.

When αd > 1
2βd for all d, the exponents for the logarithmic terms are

e1 = 2D2, e2 = (D2−1) (2+η),

where D2 is the number of dimensions d for which

γd − βd
αd

= η.

The form of the exponents is more complicated when αd =
1
2βd for some d

(Haji-Ali et al. 2014a).

Notes:

• Condition i) ensures weak convergence to the correct value.
• Condition ii) ensure each Yℓ has the correct expected value; this allows

for the possibility of using an estimator which is more complicated than
the natural choice Yℓ = ∆Pℓ, if it will lead to a reduced variance.

• Conditions iii) and iv) give the order of convergence of the weak error
and the multilevel correction variance, and condition v) gives the rate
at which the cost increases with level.

• The proof of the theorem is significantly harder than for the MLMC
theorem.
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❅
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Figure 2.2. Two choices of 2D MIMC summation region L.

• There is again the difficulty for each new application of determining
α,β,γ for conditions iii)-v). A relatively simple example will be given
later in Section 9.

It might seem natural that the summation region L should be rectangular,
as illustrated on the left in Figure 2.2, so that

∑

ℓ∈L

Yℓ = PL

where L is the outermost point on the rectangle. However, Haji-Ali et al.
(2014a) prove that this gives the optimal order of complexity only when
η<0, and under the additional condition that

∑

d

γd
αd

≤ 2.

The optimal choice for L, which yields the complexity bounds given in the
theorem, is of the form ℓ ·n ≤ L for a particular choice of direction vector n
with strictly positive components. In 2D, this corresponds to a triangular
region, as illustrated on the right in Figure 2.2. This is very similar to the use
of sparse grid methods in high-dimensional PDE approximations (Bungartz
and Griebel 2004), and indeed MIMC can be viewed as a combination of
sparse grid methods and Monte Carlo sampling.

The benefits of MIMC over the standard MLMC can be very substantial.
They are perhaps best illustrated by an elliptic PDE or SPDE example,
in which D corresponds to the number of spatial dimensions. Using the
standard MLMC approach, β, the rate of convergence of the multilevel
variance, will usually be independent of D, but γ, the rate of increase in
the computational cost, will increase at least linearly with D. Therefore,
in a high enough dimension we will have β ≤ γ and therefore the overall
computational complexity will be less (often much less) than the optimal
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O(ε−2). However, using MIMC we can have βd>γd in each direction, and
therefore obtain the optimal complexity.

Hence, in the same way that sparse grids offer the possibility of dimension-
independent complexity for deterministic PDE applications, MIMC offers
the possibility of dimension-independent complexity for SPDEs and other
high-dimensional stochastic applications.

2.5. Multi-dimensional output functionals

In Monte Carlo simulation, we start with a sample ω from the random input
space, often compute an intermediate solution U from an approximation to
an SDE or SPDE, and then determine the final output quantity P .

ω −→ U −→ P

So far, the discussion in this article has focussed on the idea of P being a
scalar output, but this is not necessarily always the case. In some applica-
tions there may be more than one scalar output of interest, and in other
applications P may be infinite-dimensional.

Some of the possibilities are listed in Table 2.1. In Heinrich’s original
multilevel research on parametric integration (Heinrich 1998, Heinrich and
Sindambiwe 1999, Heinrich 2000, Heinrich 2001), the sample ω was from a
finite-dimensional unit hypercube, there was no intermediate solution, and
the output was an infinite-dimensional function of a parameter λ. In the
author’s initial research (Giles 2008b, Giles 2008a) ω represented an infinite-
dimensional input Brownian path, U was the solution of an SDE, and P was
a scalar functional of that solution U . In the simplest PDE applications,
one might have a finite set of parameters which specify uncertain initial or
boundary data, and a single scalar output, so only the intermediate PDE
solution is infinite-dimensional. Finally, new research (Giles, Nagapetyan
and Ritter 2014) addresses the problem of approximating the cumulative
distribution function (CDF) of exit times associated with the solution of an
SDE; in this case, all three spaces are infinite-dimensional.

The extension of the MLMC theory to a finite set of outputs is very
natural. The standard MLMC theorem will apply to each one of the outputs.
If there is a desired accuracy εm for the mth output, then a simple approach
proposed by Tigran Nagapetyan1 is to define

Vℓ ≡ max
m

Vℓ,m

ε2m
,

where Vℓ,m is the variance of the multilevel estimator on level ℓ for the mth

1 Personal communication
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Table 2.1. Dimensionality of Ω, the input space, U , the intermediate solution
space, and P , the output space, for some different MLMC applications

Application dim(Ω) dim(U) dim(P)

parametric integration finite — ∞
SDE with scalar output ∞ ∞ 1
PDE with scalar output finite/∞ ∞ 1
SDE with CDF output ∞ ∞ ∞

output. Enforcing the constraint

L∑

ℓ=0

N−1
ℓ Vℓ ≤ 1

2

is then sufficient to ensure that all of the individual variance constraints are
satisfied, and the standard Lagrange multiplier approach outlined in Section
1.3 can be used to determine the optimal number of samples to use on each
level.

The extension of the theory to infinite-dimensional outputs requires the
definition of an appropriate norm ‖·‖, and then to a large extent the theory
carries over by making the substitutions:

∣∣E[Pℓ]− E[P ]
∣∣ −→

∥∥E[Pℓ]− E[P ]
∥∥

V[Pℓ−Pℓ−1] −→ E

[∥∥Pℓ−Pℓ−1 − E[Pℓ−Pℓ−1]
∥∥2
]

One slight complication is that if a and b are two independent scalar
random variables with zero mean then

E[ (a+b)2] = E[a2] + E[b2].

When using the 2-norm, this extends to independent random vectors a and
b, each with zero mean, since

E[ ‖a+b‖2] = E[ ‖a‖2] + E[ ‖b‖2],
and similarly to random functions with a 2-norm based on an inner product.
However this does not necessarily apply for other norms, and so the variance
for the combined multilevel estimator can not necessarily be expressed in
the usual form as

∑

ℓ

N−1
ℓ Vℓ, Vℓ ≡ E

[∥∥Pℓ−Pℓ−1 − E[Pℓ−Pℓ−1]
∥∥2
]
.

Nevertheless, the theory can be extended to the use of other norms by using
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results from Banach space theory for the sums of independent random vari-
ables (Ledoux and Talagrand 1991, Heinrich 1998), and in recent research
Daun and Heinrich have addressed the challenges of parametric integration
in infinite-dimensional Banach spaces (Daun and Heinrich 2013, Daun and
Heinrich 2014a, Daun and Heinrich 2014b).

2.6. Non-geometric MLMC

It is very important to repeat, and emphasise, the fact that MLMC does
not require the use of a geometric sequence of grids. In many applications,
and most of the existing literature, a geometric sequence will be the appro-
priate choice, but there are other applications for which it is not. The only
assumptions in the analysis of the two-level method in Section 1.2 and the
multi-level method in Section 1.3 are that the accuracy and cost increase
with level, and the variance of the correction term decreases with level.

When there is no underlying structure to suggest that a geometric se-
quence is appropriate, a question which arises is how to select the levels.
Suppose that one starts with a large collection of potential levels; how does
one decide which subset to use?

One approach developed by Vidal-Codina, Nguyen, Giles and Peraire
(2014) is to first use a number of trial samples to obtain an estimate of
Vℓ = V[Pℓ] and Vℓ1,ℓ2 ≡ V[Pℓ2−Pℓ1 ] for all pairs (ℓ1, ℓ2), with ℓ1 < ℓ2, with
associated costs Cℓ and Cℓ1,ℓ2 . For a particular ordered subset of levels,
{ℓ1, ℓ2, . . . , ℓM}, with fixed ℓM = L to achieve a user-specified accuracy,
following the analysis in Section 1.3 which led to (1.1), we obtain the cost

C(ℓ1, ℓ2, . . . , ℓM ) = ε−2

(
√

Vℓ0 Cℓ0 +
M∑

m=1

√
Vℓm,ℓm−1 Cℓm,ℓm−1

)2

.

If the maximum number of levels is not too large, it is possible to per-
form an exhaustive search to find the optimal subset {ℓ1, ℓ2, . . . , ℓM} which
minimises this cost.

Alternatively, suppose that we have a multilevel Monte Carlo implemen-
tation with a number of levels ℓ = 0, 1, . . . , L. Looking in particular at one
level ℓ, is it computationally more efficient to keep that level, or would it
be better to drop it and jump straight from level ℓ−1 to ℓ+1?

If we keep level ℓ then the contribution to the overall multilevel estimator
due to samples involving level ℓ is

1

Nℓ

Nℓ∑

n=1

(P
(n)
ℓ − P

(n)
ℓ−1) +

1

Nℓ+1

Nℓ+1∑

n=1

(P
(n)
ℓ+1 − P

(n)
ℓ )

The usual multilevel analysis shows that for optimality Nℓ ∝
√

Vℓ/Cℓ

where Vℓ ≡ V[Pℓ −Pℓ−1] and Cℓ is the cost of computing a single sample of
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Pℓ − Pℓ−1. Hence we have

Nℓ = Nℓ+1

√
Vℓ

Vℓ+1

Cℓ+1

Cℓ
.

The combined variance from the two terms is

1

Nℓ
Vℓ +

1

Nℓ+1
Vℓ+1 =

Vℓ+1

Nℓ+1

(
1 +

√
Vℓ Cℓ

Vℓ+1Cℓ+1

)
,

and the combined cost is

NℓCℓ +Nℓ+1Cℓ+1 = Nℓ+1Cℓ+1

(
1 +

√
Vℓ Cℓ

Vℓ+1Cℓ+1

)
,

and so the product of the combined variance and combined cost is

Vℓ+1Cℓ+1

(
1 +

√
Vℓ Cℓ

Vℓ+1Cℓ+1

)2

.

On the other hand, if we drop level ℓ and jump straight from level ℓ−1
to ℓ+1, then the replacement estimator is

1

Ñℓ+1

Ñℓ∑

n=1

(P
(n)
ℓ+1 − P

(n)
ℓ−1).

Its variance is Ṽℓ+1/Ñℓ+1, where Ṽℓ+1 ≡ V[Pℓ+1−Pℓ−1], and its cost is

Ñℓ+1C̃ℓ+1, where C̃ℓ+1 is the cost of a single sample of Pℓ+1−Pℓ−1. Hence,
the product of the variance and the cost is

Ṽℓ+1 C̃ℓ+1.

The question now is whether

Ṽℓ+1 C̃ℓ+1 < Vℓ+1 Cℓ+1

(
1 +

√
Vℓ Cℓ

Vℓ+1 Cℓ+1

)2

. (2.5)

If this test is true, then it is best to drop level ℓ, because for a fixed com-
putational cost this will deliver the lower variance, or for a fixed variance it
can be achieved at a lower computational cost.

The main contribution to both Cℓ+1 and C̃ℓ+1 comes from the level ℓ+1
simulation which produces the output Pℓ+1, so we will assume from here on

that C̃ℓ+1 ≈ Cℓ+1. The cost ratio Cℓ/Cℓ+1 is usually known a priori, and
the variance ratio Vℓ/Vℓ+1 is often known asymptotically as ℓ → ∞, or can

be estimated empirically. The key question is how Ṽℓ+1 compares to Vℓ+1.
This could also be quantified empirically, by generating a few Monte Carlo
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samples for Pℓ+1−Pℓ−1. Alternatively, we can perform some analysis to gain
some insight into the question.

Using the standard result for the variance of a sum of two random vari-
ables, we have

Ṽℓ+1 = Vℓ+1 + 2ρ
√

Vℓ Vℓ+1 + Vℓ,

where ρ is the correlation between Pℓ+1−Pℓ and Pℓ−Pℓ−1. We can now
consider two extremes, ρ=1 and ρ=0.

If ρ = 1, and so we have perfect correlation between the increments at
different levels, then

Ṽℓ+1 = Vℓ+1

(
1 +

√
Vℓ

Vℓ+1

)2

.

Since Cℓ < Cℓ+1, it follows that the test (2.5) is never satisfied, and so it
is best to retain level ℓ. Near-perfect correlation is likely to arise in PDE
applications with finite dimensional uncertainty in the initial data, boundary
data, or PDE coefficients. In this case, the increments Pℓ−Pℓ−1 obtained
in going from one level to the next come from the progressive elimination
of truncation error due to the discretisation of the PDE.

On the other hand, if ρ=0, and so the increments at different levels are
independent, then Ṽℓ+1 = Vℓ+1 + Vℓ and so we drop level ℓ if

1 +
Vℓ

Vℓ+1
<

(
1 +

√
Vℓ Cℓ

Vℓ+1Cℓ+1

)2

.

2.7. MLQMC

Giles and Waterhouse (2009) developed a variant of MLMC which uses
quasi-Monte Carlo samples instead of independent Monte Carlo samples.
This was based on extensible rank-1 lattices developed at UNSW (Dick,
Pillichshammer and Waterhouse 2007). QMC is known to be most effective
for low-dimensional applications, and the numerical results were very en-
couraging for SDE applications in which the dominant computational cost
was on the coarsest levels of resolution. However, there was no supporting
theory for this research.

More recently, there has been considerable research on the theoretical
foundations for multilevel QMC (MLQMC) methods (Niu, Hickernell, Müller-
Gronbach and Ritter 2010, Kuo, Schwab and Sloan 2012, Dick et al. 2013,
Baldeaux and Gnewuch 2014, Dick and Gnewuch 2014a, Dick and Gnewuch
2014b). These theoretical developments are very encouraging, showing that
under certain conditions they lead to multilevel methods with a complexity
which is O(ε−p) with p<2.
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3. MLMC implementation

3.1. MLMC algorithm

Based on the theory in Section 2.1, the geometric MLMC algorithm used
for the numerical tests in this paper is:

Algorithm 1 MLMC algorithm

start with L=2, and initial target of N0 samples on levels ℓ = 0, 1, 2

while extra samples need to be evaluated do

evaluate extra samples on each level
compute/update estimates for Vℓ, ℓ = 0, . . . , L
define optimal Nℓ, ℓ = 0, . . . , L
test for weak convergence
if not converged, set L := L+1, and initialise target NL

end while

In the above algorithm, the equation for the optimal Nℓ is

Nℓ =

⌈
2 ε−2

√
Vℓ/Cℓ

(
L∑

ℓ=0

√
VℓCℓ

)⌉
, (3.1)

where Vℓ is the estimated variance, and Cℓ is the cost of an individual
sample on level ℓ. This ensures that the estimated variance of the combined
multilevel estimator is less than 1

2 ε
2.

The test for weak convergence tries to ensure that |E[P−PL] |< ε/
√
2,

to achieve an MSE which is less than ε2, with ε being a user-specified
r.m.s. accuracy. If E[Pℓ−Pℓ−1] ∝ 2−αℓ then the remaining error is

E[P−PL] =

∞∑

ℓ=L+1

E[Pℓ − Pℓ−1] = E[PL−PL−1] / (2α − 1)

This leads to the convergence test |E[PL−PL−1] | /(2α − 1) < ε/
√
2, but for

robustness, we extend this check to extrapolate from the previous two data
points E[PL−1−PL−2], E[PL−2−PL−3], and take the maximum over all three
as the estimated remaining error.

It is important to note that this algorithm is heuristic; it is not guaranteed
to achieve a MSE error which is less than ε2. The main MLMC theorem
in Section 2.1 does provide a guarantee, but the conditions of the theorem
assume a priori knowledge of the constants c1 and c2 governing the weak
convergence and the variance convergence as ℓ→∞. These two constants
are in effect being estimated in the numerical algorithm described above.

In addition, the accuracy of the variance estimate at each level depends
on the size of the sample set. If it is small, then this variance estimate may
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be poor; we will see later that the implementation sets a minimum estimate
by extrapolation from coarser levels with more samples.

3.2. Overview of MATLAB implementation

The results to be presented later all use the same two routines written in
MATLAB:

• mlmc.m: driver code which performs the MLMC calculation using an

application-specific routine to compute
∑

n(P
(n)
ℓ −P

(n)
ℓ−1)

p for p = 1, 2
and a specified number of independent samples;

• mlmc test.m: a program which perform various tests and then calls
mlmc.m to perform a number of MLMC calculations.

These two routines, and all of the application-specific routines, can be
downloaded from (Giles 2014).

3.3. MLMC test routine

mlmc test.m first performs a set of calculations using a fixed number of
samples on each level of resolution, and produces four plots:

• log2(Vℓ) versus level ℓ
• log2(|E[Pℓ−Pℓ−1]|) versus level ℓ
• consistency check versus level
• kurtosis versus level

This last two of these need some explanation. If a, b, c are estimates for

E[P f
ℓ−1], E[P

f
ℓ ], E[Yℓ], respectively, then it should be true that a−b+ c ≈

0. The consistency check verifies that this is true, to within the accuracy
one would expect due to Monte Carlo sampling error. This is particularly

important when P f
ℓ 6= P c

ℓ because one is using different approximations on
the coarse and fine levels.

Since √
V[a−b+c] ≤

√
V[a] +

√
V[b] +

√
V[c]

it computes and plots the ratio

| a− b+ c |
3(
√
Va +

√
Vb +

√
Vc)

where Va, Vb, Vc are empirical estimates for the variances of a, b, c. The
probability of this ratio being greater than unity is less than 0.3%. Hence,
if it is, it indicates a likely programming error, or a mathematical error in
the formulation which violates the crucial identity (2.4).

The MLMC approach needs a good estimate for Vℓ = V[Yℓ], but how
many samples are needed for this? As few as 10 may be sufficient in many
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cases for a rough estimate, but many more are needed when there are rare
outliers. When the number of samples N is large, the standard devia-
tion of the sample variance for a random variable X with zero mean is
approximately

√
(κ−1)/N E[X2] where the kurtosis κ is defined as κ =

E[X4]/E[X2])2. Hence O(κ) samples are required to obtain a reasonable
estimate for the variance. As well as plotting the kurtosis κℓ, mlmc test.m

will give a warning if κℓ is very large, as this is an indication that the
empirical variance estimate may be poor.

An extreme, but important, example is when P always takes the value 0
or 1. In this case we have

X ≡ Pℓ − Pℓ−1 =





1, probability p
−1, probability q
0, probability 1−p−q

If p, q ≪ 1, then E[X] ≈ 0, and κ ≈ (p+q)−1 ≫ 1. Therefore, many samples
are required for a good estimate of Vℓ; otherwise, we may get all X(n) = 0,
which will give an estimated variance of zero. What is more, the kurtosis
will become worse as ℓ→∞ since p, q→0 due to weak convergence.

After performing these initial tests, mlmc test.m then uses the driver
routine mlmc.m to perform the MLMC computation for a number of values
of ε, and plots the results. These plots will be explained later when the first
results are presented.

3.4. MLMC driver routine

The first part of the documentation section at the top of mlmc.m is fairly
self-explanatory:

% function [P, Nl] = mlmc(N0,eps,mlmc_l, alpha,beta,gamma)

%

% P = value

% Nl = number of samples at each level

% N0 = initial number of samples on levels 0,1,2

% eps = desired accuracy (rms error)

% alpha -> weak error is O(2^{-alpha*l})

% beta -> variance is O(2^{-beta*l})

% gamma -> sample cost is O(2^{gamma*l})

%

% if alpha, beta are not positive then they will be estimated

The user must supply an application-specific function to perform the cal-
culations to compute Yℓ on level ℓ. This function has to conform to the
following template:
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% mlmc_l = application-specific function for level l estimator

% which must conform to the following template:

%

% function sums = mlmc_l(l,N)

% inputs: l = level

% N = number of paths

% output: sums(1) = sum(Y)

% sums(2) = sum(Y.^2)

% where Y are iid samples with expected value:

% E[P_0] on level 0

% E[P_l - P_{l-1}] on level l>0

The first part of the code initialises various parameters, and then uses
the application-specific routine mlmc l to generate the initial N0 samples on
each of the first three levels.

function [P, Nl] = mlmc(N0,eps,mlmc_l, alpha_0,beta_0,gamma)

alpha = max(0, alpha_0);

beta = max(0, beta_0);

L = 2;

Nl(1:3) = 0;

suml(1:2,1:3) = 0;

dNl(1:3) = N0;

% keep looping while additional samples need to be computed

while sum(dNl) > 0

% update sample sums on each level

for l=0:L

if dNl(l+1) > 0

sums = feval(mlmc_l,l,dNl(l+1));

Nl(l+1) = Nl(l+1) + dNl(l+1);

suml(1,l+1) = suml(1,l+1) + sums(1);

suml(2,l+1) = suml(2,l+1) + sums(2);

end

end

The next part computes (or in later passes updates) the estimates for
mℓ ≡ |E[Yℓ]|, and Vℓ ≡ V[Yℓ]. If the mean and variance are decaying
as expected, one would expect mℓ = 2−α mℓ−1, Vℓ = 2−β Vℓ−1. To avoid
possible problems from high kurtosis generating poor empirical estimates,
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the estimates for mℓ and Vℓ are not allowed to decrease by more than factor
1
2 relative to this anticipated value. 2

% compute absolute average and variance

ml = abs( suml(1,:)./Nl);

Vl = max(0, suml(2,:)./Nl - ml.^2);

for l = 3:L+1

ml(l) = max(ml(l), 0.5*ml(l-1)/2^alpha);

Vl(l) = max(Vl(l), 0.5*Vl(l-1)/2^beta);

end

If the user has not supplied the values for α and/or β, they are now
estimated by linear regression.

% use linear regression to estimate alpha, beta if not given

if alpha_0 <= 0

x = [(1:L)’ ones(L,1)] \ log2(ml(2:end))’;

alpha = max(0.5,-x(1));

end

if beta_0 <= 0

x = [(1:L)’ ones(L,1)] \ log2(Vl(2:end))’;

beta = max(0.5,-x(1));

end

Next, the optimal number of samples on each level is computed, which in
turn gives the number of additional samples which will need to be generated
in the next pass.

% set optimal number of additional samples

Cl = 2.^(gamma*(0:L));

Ns = ceil(2 * sqrt(Vl./Cl) * sum(sqrt(Vl.*Cl)) / eps^2);

dNl = max(0, Ns-Nl);

In the final part of the loop, we test for weak convergence, using the
algorithm described in Section 3.1. If a new level is added, its variance is
estimated by extrapolation, and the optimal number of samples is updated.

% if (almost) converged, estimate remaining error and decide

2 Haji-Ali et al. (2014a) use an alternative Bayesian approach to address this same prob-
lem of estimating the variance.
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% whether a new level is required

if sum( dNl > 0.01*Nl ) == 0

range = -2:0;

rem = max(ml(L+1+range).*2.^(alpha*range)) / (2^alpha - 1);

if rem > eps/sqrt(2)

L = L+1;

Vl(L+1) = Vl(L) / 2^beta;

Nl(L+1) = 0;

suml(1:4,L+1) = 0;

Cl = 2.^(gamma*(0:L));

Ns = ceil(2 * sqrt(Vl./Cl) * sum(sqrt(Vl.*Cl)) / eps^2);

dNl = max(0, Ns-Nl);

end

end

end

The final step after the completion of the main loop is to compute the
combined multilevel estimator:

% finally, evaluate multilevel estimator

P = sum(suml(1,:)./Nl);

3.5. MLQMC algorithm

We conclude this chapter with the description of a MLQMC algorithm which
is based on that developed by Giles and Waterhouse (2009), but updated
to bring it more in line with the MLMC algorithm in Section 3.1.

The key change in MLQMC is that Nℓ is now the size of a set of QMC
points used on level ℓ. This set of points are not constructed randomly
and independently, but are instead constructed very carefully, using well-
established QMC techniques such as rank-1 lattices (Dick et al. 2007) or
Sobol sequences (Joe and Kuo 2008) to provide a relatively uniform coverage
of a unit hypercube integration region. In the best cases, this results in
the approximate numerical integration error being O(N−1

ℓ ) rather than the

usual O(N
−1/2
ℓ ) error which comes from Monte Carlo sampling.

Using just one set of Nℓ points gives good accuracy, but no confidence
interval. To regain a confidence interval one uses randomised QMC in which
the set of points is gives a random shift (for rank-1 lattice rules) or a digital
scrambling (for Sobol sequences). Using 32 sets of points, each collectively
randomised, yields 32 set averages for the quantity of interest, Yℓ, and from
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these 32 random independent values the variance of their average, Vℓ, can
be estimated in the usual way.

Since Vℓ is now defined to be the variance of the average, for a given
number of levels L, the aim is to choose the Nℓ in a way which ensures that

L∑

ℓ=0

Vℓ ≤ 1
2ε

2. (3.2)

How can this be achieved most efficiently? Many QMC methods work nat-
urally with Nℓ as a power of 2. Doubling Nℓ will usually eliminate a large
fraction of the variance, so the greatest reduction in total variance relative
to the additional computational effort is achieved by doubling Nℓ on the
level ℓ∗ given by

ℓ∗ = argmax
ℓ

Vℓ

NℓCℓ
. (3.3)

Based on this, and using the same test for weak convergence as in the MLMC
algorithm, the MLQMC algorithm is:

Algorithm 2 MLQMC algorithm.

start with L=2, and an initial set size Nℓ=1 on levels ℓ = 0, 1, 2

while not converged do

evaluate 32 set averages on any level with new/changed values of Nℓ

compute corresponding new/changed estimates for Vℓ

test whether total variance condition (3.2) is satisfied
if total variance still too big then

determine ℓ∗ defined by (3.3) and double Nℓ∗

else

test for weak convergence
if not converged then

set L := L+1, and initialise NL=1
end if

end if

end while
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4. Introduction to applications

The remainder of the article presents and discusses a large number of dif-
ferent applications using MLMC methods. In part, the large number is
to illustrate the flexibility and generality of the approach, and stimulate
ideas on how it could be used for other applications which the reader may
be interested in, but the variety of applications is also chosen to illustrate
different responses to the following questions:

1 How are the levels defined?

This is often quite simple, but in some cases, for example when using
adaptive time-stepping, it is not so obvious.

2 How are the coarse and fine samples coupled when computing the dif-
ference Pℓ(ω)−Pℓ−1(ω)?

What does it even mean for Pℓ(ω) and Pℓ−1(ω) to correspond to the
same sample ω? In some cases, it is very simple, but in other cases,
such as for the continuous-time Markov chains, it requires a key insight
to construct a suitable coupling.

3 Are there problems with discontinuous outputs?

When the output function is a discontinuous function of the intermedi-
ate solution U , there is the possibility that a small difference between
the intermediate solutions for the coarse and fine samples leads to an
O(1) value for Pℓ−Pℓ−1. This usually leads to a larger variance, and
hence a lower value for β. Addressing this problem is a critical issue,
and we will consider a variety of different techniques. Many of these
exploit the flexibility of slightly different approximations for the coarse
and fine samples, provided always that the identity (2.4) is respected,
so that the telescoping sum is still valid.

4 Is there scope for constructing even more efficient multilevel estima-
tors?

As with the techniques for handling discontinuous output functions,
there can be ways of exploiting the flexibility of different coarse and
fine approximations to achieve a higher rate of variance convergence
than one would otherwise expect due to the rate of strong convergence
of the intermediate solution.

5 What is the current status on supporting numerical analysis to explain
the observed behaviour of numerical algorithms?

For many applications this is the greatest challenge, but great progress
has been made in the past 5 years.
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5. SDEs

5.1. Euler-Maruyama discretisation

The original multilevel path simulation paper (Giles 2008b) treated stochas-
tic differential equations

dSt = a(St, t) dt+ b(St, t) dW,

using the simple Euler-Maruyama discretisation with a uniform timestep h
and Brownian increments ∆Wn,

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn.

The multilevel Monte Carlo implementation is very simple. On level ℓ,
the uniform timestep is taken to be hℓ = h0 M

ℓ, for some integer M . The
timestep h0 on the coarsest level is often taken to be the interval length
T , so that there is just one timestep for the entire interval, but this is not
required, and in some applications using such a large timestep may lead to
numerical results which are so inaccurate that they are not helpful, i.e. they
are such a poor control variate for the finer approximations that they do
not lead to a reduction in the variance. In such cases, it would be better to
start with a smaller value for h0.

The multilevel coupling is achieved by using the same underlying driv-
ing Brownian path for the coarse and fine paths; this is accomplished by
summing the Brownian increments for the fine path timesteps to obtain the
Brownian increments for the coarse timesteps. The multilevel estimator is
then the natural one defined in (2.2), with the specific payoff approximation
Pℓ depending on the particular application.

Provided the SDE satisfies the usual conditions (see Theorem 10.2.2 in
(Kloeden and Platen 1992)), the strong error for the Euler discretisation
with timestep h is O(h1/2), so that

E

[
‖S − Ŝ‖2

]
= O(h).

For Lipschitz payoff functions P (such as European, Asian and lookback
options in finance) for which

∣∣∣P (S1)− P (S2)
∣∣∣ ≤ K‖S1−S2‖,

we have

V[P−Pℓ] ≤ E[(P−Pℓ)
2] ≤ K2

E

[
‖S − Ŝℓ‖2

]
,

and

Vℓ ≡ V[Pℓ−Pℓ−1] ≤ 2
(
V[P−Pℓ] + V[P−Pℓ−1]

)
,

and hence Vℓ = O(hℓ).
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If hℓ = 4−ℓh0, as in the numerical examples in (Giles 2008b), then this
gives α=2, β=2 and γ=2. Alternatively, if hℓ = 2−ℓh0 with twice as many
timesteps on each successive level, as used in the numerical examples in this
article, then α = 1, β = 1 and γ = 1. In either case, Theorem 1 gives the
complexity to achieve a root-mean-square error of ε to be O(ε−2(log ε)2),
which is near-optimal as Creutzig, Dereich, Müller-Gronbach and Ritter
(2009) prove an O(ε−2) lower bound for the complexity. The same pa-
per also proves that MLMC achieves an O(ε−2(log ε)2) worst case optimal
complexity for a class of Lipschitz path-dependent functions.

Figure 5.3 shows results for a financial call option with a single underlying
asset satisfying Geometric Brownian Motion SDE,

dSt = r St dt+ σ St dW,

and payoff P (S) ≡ exp(−rT ) max(ST −K, 0) with r = 0.05, σ = 0.2, T =
1, S0=100,K=100. The full code is provided in (Giles 2014).

The top two plots show the variance and absolute mean value for both Pℓ

and Pℓ − Pℓ−1. These are based on an initial sample of 105 paths. The line
for log2 V[Pℓ−Pℓ−1] in the top left plot has a slope of approximately −1,
corresponding to a variance proportional to hℓ, as expected. The line for
log2 |E[Pℓ−Pℓ−1]| also has a slope of approximately −1, implying an O(hℓ)
weak convergence.

The middle two plots show the consistency check and kurtosis, as dis-
cussed in Section 3.3. These indicate there is no problem with the consis-
tency, and the kurtosis is actually improving slightly with level.

The bottom two plots have the results from 5 separate MLMC calcula-
tions, each with a different specified accuracy ε to be achieved. The bottom
left plot shows the number of samples which is used for each level of the
MLMC computation. The number of levels increases as ε decreases, as de-
scribed in Section 3.1 to achieve the required weak error. The number of
samples also varies with level, with many more on the coarsest level with just
one timestep. On the finer levels, the optimal allocation of computational
effort leads to Nℓ ∝

√
Vℓ/Cℓ ≈ 2−ℓ.

The bottom right plot displays the total computational cost C, multiplied
by ε2. If C were approximately proportional to ε−2 then ε2 C would be
approximately constant. Indeed this is what is seen, with the slight increase
as ε decreases being due to the | log ε|2 term in Theorem 1. For comparison,
the bottom right plot also displays the cost using the standard Monte Carlo
algorithm on the finest level used by the MLMC algorithm. The cost ratio
5− 12, illustrating the benefits provided by the MLMC algorithm.

Figure 5.4 illustrates the problem with discontinuous payoff functions.
The underlying SDE is exactly the same, but the payoff is a digital option
with payoff P (S) ≡ 10 exp(−rT )H(ST −K), where H(x) is the Heaviside
step function. On the finer levels, most samples have fine and coarse paths
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Figure 5.3. Numerical results for a European call option using the
Euler-Maruyama discretisation of the GBM SDE.
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Figure 5.4. Numerical results for a digital call option using the Euler-Maruyama
discretisation of the GBM SDE.
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Euler-Maruyama Milstein
option numerics analysis numerics analysis

Lipschitz O(h) O(h) O(h2) O(h2)
Asian O(h) O(h) O(h2) O(h2)
lookback O(h) O(h) O(h2) o(h2−δ)

barrier O(h1/2) o(h1/2−δ) O(h3/2) o(h3/2−δ)
digital O(h1/2) O(h1/2 log h) O(h3/2) o(h3/2−δ)

Table 5.2. Observed and theoretical convergence rates for the multilevel
correction variance for scalar SDEs, using the Euler-Maruyama and Milstein
discretisations. δ is any strictly positive constant.

which end on the same side of the strike K, and hence give Pℓ−Pℓ−1 = 0.

However, noting that the strong error is O(h
1/2
ℓ ), and there is a bounded

density of paths terminating in the neighbourhood of K, there is therefore

an O(h
1/2
ℓ ) fraction of the samples with the coarse and fine paths on either

side of the strike, with Pℓ−Pℓ−1 = ±1. This gives Vℓ = O(h1/2), and this
lower rate of convergence is clearly visible in the top left plot. Furthermore,

E[(Pℓ−Pℓ−1)
4] = O(h

1/2
ℓ ) and so the kurtosis is O(h

−1/2
ℓ ); this increase in

kurtosis is obvious in the middle-right plot, which illustrates why this is a
helpful quantity to plot. Consequently, this application has α= 1, β = 1

2 ,
γ=1, leading to the MLMC complexity being O(ε−2.5). This slightly worse
complexity is visible in the bottom-right plot, and the computational savings
compared to the standard Monte Carlo method are lower.

Table 5.2 summarises the observed variance convergence rate in numerical
experiments for a number of different financial options; the Asian option is
based on the average value of the underlying asset, the lookback is based on
its maximum or minimum value, and the barrier is a discontinuous function
of the maximum or minimum. The table also display the theoretical results
which have been obtained; the digital option analysis is due to Avikainen
(Avikainen 2009) while the others are due to Giles, Higham & Mao (Giles,
Higham and Mao 2009).

5.2. Milstein discretisation

For Lipschitz payoffs, the variance Vℓ for the natural multilevel estimator
converges at twice the order of the strong convergence of the numerical ap-
proximation of the SDE. This immediately suggests that it would be better
to replace the Euler-Maruyama discretisation by the Milstein discretisation,
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Figure 5.5. Numerical results for a European call option using the Milstein
discretisation of the GBM SDE.
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(Giles 2008a) since it gives first order strong convergence under certain con-
ditions (see Theorem 10.3.5 in (Kloeden and Platen 1992)).

For a scalar SDE the Milstein discretisation is

Ŝn+1 = Ŝn+ a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn+
1
2b(Ŝn, tn)

∂b

∂S
(Ŝn, tn)

(
∆W 2

n − h
)

and Figure 5.5 demonstrates the improved results obtained for the call op-
tion based on a single underlying GBM asset. Vℓ is now O(h2ℓ ), leading to
α=1, β=2, γ=1, and there is a significant reduction in the total computa-
tional cost compared to MLMC using the Euler-Maruyama discretisation.

Because β > γ, the dominant computational cost is on the coarsest lev-
els. Since these are low-dimensional, they are well suited to the use of
quasi-Monte Carlo methods which are particularly effective in lower di-
mensions. This has been investigated by Giles & Waterhouse (Giles and
Waterhouse 2009) using a rank-1 lattice rule to generate the quasi-random
numbers, randomisation with 32 independent offsets to obtain confidence
intervals, and a standard Brownian Bridge construction of the increments
of the driving Brownian process. The numerical results showed that MLMC
on its own was better than QMC on its own, but the combination of the
two was even better. The QMC treatment greatly reduced the variance per
sample for the coarsest levels, resulting in significantly reduced costs over-
all. In the simplest case of a Lipschitz European payoff, the computational
complexity was reduced from O(ε−2) to approximately O(ε−1.5).

Digital options

As with the Euler-Maruyama discretisation, discontinuous payoffs pose a
challenge to the multilevel Monte Carlo approach because small differences
in the coarse and fine path simulations can lead to an O(1) difference in
the payoff function. In the case of a digital option, if we use the natural
multilevel estimator then Pℓ−Pℓ−1 = O(1) for an O(hℓ) fraction of the paths,
giving Vℓ = O(hℓ), and a kurtosis which is O(h−1

ℓ ). To obtain a multilevel
estimator with an improved variance convergence, we exploit the ideas of
Section 2.1 and develop different estimators P c and P f for the coarse and
fine paths, based on one of the following ideas:

• conditional expectation
• splitting
• change of measure

The conditional expectation approach builds on a well-established tech-
nique for payoff smoothing which is used for pathwise sensitivity analysis
(see, for example, pp. 399-400 in (Glasserman 2004)). We start by con-
sidering the fine path simulation, and make a slight change by using the
Euler-Maruyama discretisation for the final timestep, instead of the Mil-
stein discretisation. Conditional on the value ŜN−1 which is the numerical
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approximation of ST−h one timestep before the maturity T , the numerical

approximation for the final value ŜN has a Gaussian distribution, and for
a simple digital option the conditional expectation is known analytically.
Thus the fine path payoff can be taken to be

P f
ℓ = 25 exp(−rT )Φ

(
Ŝf
N−1+ a(Ŝf

N−1)hℓ − K

b(Ŝf
N−1)

√
hℓ

)
,

where Φ is the Normal cumulative distribution function.
A similar treatment is used for the coarse path, except that in the final

timestep, we re-use the known value of the Brownian increment for the
second last fine timestep, which corresponds to the first half of the final
coarse timestep. This results in the conditional distribution for the coarse
path underlying at maturity matching that of the fine path to within O(h),
for both the mean and the standard deviation (Giles, Debrabant and Rößler
2013), and the corresponding coarse path payoff function is

P c
ℓ−1 = 25 exp(−rT )Φ

(
Ŝc
N−2+ a(Ŝc

N−2)hℓ−1 + b(Ŝc
N−2)

√
hℓ − K

b(Ŝc
N−2)

√
hℓ

)
.

Consequently, the difference in payoff between the coarse and fine paths
near the payoff discontinuity is O(h1/2), giving a variance which is approxi-
mately O(h3/2), and a kurtosis which is approximately O(h−1/2). This leads
to α=1, β=3/2 and γ=1. Since β > γ, the MLMC complexity is O(ε−2).

This is all illustrated by the numerical results in Figure 5.6. One particu-
larly interesting feature of these results is that there is zero variance on the
coarsest level. This is because there is only one timestep on the coarsest
level, and therefore the conditional expectation is taken immediately and
every sample gives the same payoff.

It is very important in this conditional expectation formulation that

E[P c
ℓ−1] = E[P f

ℓ−1] so that the numerical payoff approximation on level ℓ−1
has the same expected value regardless of whether it is the coarser or finer of
the two levels. This ensures that the identity in Equation (2.4) is respected
so that the telescoping summation remains valid.

The conditional expectation technique works well in 1D where there is
a known analytic value for the conditional expectation, but in multiple di-
mensions it may not be known. In this case, one can use the technique of
“splitting” (Asmussen and Glynn 2007). Here the conditional expectation is
replaced by a numerical estimate, averaging over a number of sub-samples.
i.e. for each set of Brownian increments up to one fine timestep before
the end, one uses a number of samples of the final Brownian increment to
produce an average payoff. If the number of sub-samples is chosen appro-
priately, the variance is the same, to leading order, without any increase
in the computational cost, again to leading order. Because of its simplicity
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Figure 5.6. Numerical results for a digital call option using the Milstein
discretisation of the GBM SDE, and a conditional expectation MLMC estimator.
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and generality, this is now the author’s preferred approach. Furthermore,
one can revert to using the Milstein approximation for the final timestep.

The change of measure approach is another approximation to the condi-
tional expectation. Using the Euler-Maruyama approximation for the final
timestep, the fine and coarse path conditional distributions at maturity are
two very similar Gaussian distributions. Instead of following the splitting
approach of taking corresponding samples from these two distributions, we
can take a sample from a third Gaussian distribution (with a mean and
variance perhaps equal to the average of the other two). This leads to the
introduction of a Radon-Nikodym derivative for each path, and the differ-
ence in the payoffs from the two paths is then due to the difference in their
Radon-Nikodym derivatives.

In the specific context of digital options, this is a more complicated
method to implement, and the resulting variance is no better. However,
in other contexts a similar approach can be very effective.

Lookback and barrier options

Lookback and barrier options are financial options which depend on the
minimum (or maximum) values of the underlying asset during the whole
simulation interval [0, T ]. A multilevel estimator based directly on the min-
imum (or maximum) of the values at the discrete timesteps will have a poor
variance. This is because there is an O(h1/2) variation in the asset value
within each timestep of size h, and therefore there is an O(hℓ) difference
on average between the minimum (or maximum) values for the coarse and
fine paths. This results in an O(hℓ) variance for lookback options which
are a Lipschitz function of the minimum (or maximum), and an even worse

O(h
1/2
ℓ ) variance for barrier options which are a discontinuous function of

the minimum (or maximum).
The key to achieving an improved variance is the definition of a Brownian

Bridge interpolant based on the approximation that the drift and volatil-
ity do not vary within the timestep (Giles 2008a). For the fine path, the
interpolant for timestep [tn, tn + h] is

Ŝf (t) = Ŝf
n + λ (Ŝf

n+1−Ŝf
n) + bfn (W (t)−Wn − λ (Wn+1−Wn))

where λ = (t−tn)/h and bfn ≡ b(Ŝf
n, tn). This interpolant corresponds to a

Brownian motion with constant drift and volatility, and for this there are
standard results for the distribution of the minimum or maximum within
each fine timestep (Glasserman 2004) which can be used to construct payoff
approximations.

A similar construction can be used for the coarse path, but its timestep
is twice as large, so the interpolant for the time interval [tn, tn + 2h] is

Ŝc(t) = Ŝc
n + λ (Ŝc

n+2−Ŝc
n) + bcn (W (t)−Wn − λ (Wn+2−Wn))
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where λ = (t− tn)/(2h) and bcn ≡ b(Ŝc
n, cn). We can now evaluate this

interpolant at time tn + h, obtaining

Ŝc(tn+1) =
1
2 (Ŝ

c
n+Ŝc

n+2) +
1
2b

c
n ((Wn+1−Wn)− (Wn+2−Wn+1))

using the Brownian increments Wn+1−Wn and Wn+2−Wn+1 already gen-
erated for the fine path. The standard Brownian path results can then be
used to obtain the coarse path payoff approximations.

The full details are given in (Giles 2008a); the outcome is that β=2 for
lookback options, and β=1.5 for barrier options. Hence, we remain in the
regime where β>γ and the overall complexity is O(ε−2).

Table 5.2 summarises the convergence behaviour observed numerically for
the different financial option types using the Milstein discretisation, and the
supporting numerical analysis by Giles et al. (2013).

5.3. Multi-dimensional SDEs

The discussion so far has been for scalar SDEs, but the computational
benefits of Monte Carlo methods arise in higher dimensions. For multi-
dimensional SDEs satisfying the usual commutativity condition (see, for
example, p.353 in (Glasserman 2004)) the Milstein discretisation requires
only Brownian increments for its implementation, and most of the analysis
above carries over very naturally.

The only difficulties are with lookback and barrier options where the
classical results for the distribution of the minimum or maximum of a one-
dimensional Brownian motion do not extend to the joint distribution of
the minima or maxima of two correlated Brownian motions. However, if
the financial option depends on the weighted average of a set of underlying
assets, then the Brownian interpolation for each individual asset leads nat-
urally to a Brownian interpolation for the average, and then the standard
one-dimensional results can be used as usual.

Figures 5.7 and 5.8 show results for lookback and barrier options based
on 5 underlying assets. Full details of the numerical construction are given
in (Giles 2009) and can also be viewed within the code (Giles 2014). The
MLMC variance isO(h2) for the lookback option, andO(h3/2) for the barrier
option.

With multi-dimensional SDEs which do not satisfy the commutativity
condition, the Milstein discretisation requires the simulation of Lévy ar-
eas, iterated Itô integrals which can only be relatively easily simulated
in 2D. This is an unavoidable problem; the classical result of Clark and
Cameron (1980) proves that O(h1/2) strong convergence is the best that
can be achieved in general using only Brownian increments.

Nevertheless, Giles and Szpruch (2014) have developed an antithetic treat-
ment which achieves a very low variance despite the O(h1/2) strong conver-
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Figure 5.7. Numerical results for a lookback option on a basket of 5 GBM assets.
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Figure 5.8. Numerical results for a barrier option on a basket of 5 GBM assets.
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gence. The estimator which is used is

Yℓ = N−1
ℓ

∑

i

1
2 (Pℓ(ωi)+Pℓ(ω

a
i ))− Pℓ−1(ωi).

Here ωi represents the driving Brownian path, and ωa
i is an antithetic coun-

terpart defined by a time-reversal of the Brownian path within each coarse
timestep. This results in the Brownian increments for the antithetic fine
path being swapped relative to the original path. Lengthy analysis proves
that the average of the fine and antithetic paths is within O(h) of the coarse
path, and hence the multilevel variance is O(h2) for smooth payoffs, and
O(h3/2) for the standard European call option.

This treatment has been extended to handle lookback and barrier op-
tions (Giles and Szpruch 2013). This combines sub-sampling of the Brown-
ian path to approximate the Lévy areas with sufficient accuracy to achieve
O(h3/4) strong convergence, with an antithetic treatment at the finest level
of resolution to ensure that the average of the fine paths is within O(h) of
the coarse path.

5.4. Computing sensitivities

In computational finance, it is important to be able to compute sensitivities
in addition to option prices. When the option payoff is continuous, the
standard Monte Carlo approach is pathwise sensitivity analysis (Broadie and
Glasserman 1996) (developed earlier as Infinitesimal Perturbation Analysis
(L’Ecuyer 1990)) which considers linearised perturbations to the underlying
path evolution, and the consequential perturbation to the payoff.

From a multilevel Monte Carlo point of view, the difficulty that this intro-
duces is that the derivative of a call option payoff function is discontinuous.
Hence, computing first order sensitivities for a call option has similar dif-
ficulties to computing the option price for a digital option. Sensitivities
for digital options can be obtained by first using the conditional expecta-
tion approach described previously, and then applying pathwise sensitivity
analysis to this.

Full details on how to formulate appropriate MLMC estimators are given
by Burgos and Giles (2012), and the numerical analysis of the resulting
variance is given by Burgos (2014).

5.5. Exit times and Feynman-Kac formula

The simplest 1D form of the Feynman-Kac formula states that if u(x, t) is
the solution of the parabolic PDE

∂u

∂t
+ a(x, t)

∂u

∂x
+ 1

2b
2(x, t)

∂2u

∂x2
= 0,
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for x ∈ V , subject to terminal condition u(x, T ) = f(x), and boundary
condition u(x, t) = g(x) for x∈ ∂V , then u(x, t) can also be written as the
conditional expectation

u(x, t) = E[f(ST )1τ≥T + g(Sτ )1τ<T | St = x]

where St satisfies the SDE

dSt = a(St, t) dt+ b(St, t) dWt

and τ is the exit time

τ = inf
t
{t : St /∈ V } .

Because of this formula and its multi-dimensional generalisation, and also
because of other applications which are concerned with the time at which
particles exit a particular domain, there is considerable interest in the esti-
mation of exit times.

Higham, Mao, Roj, Song and Yin (2013) consider the estimation of
E[τ ] using a multilevel approximation based on an Euler-Maruyama dis-
cretisation. They prove that this can be achieved for very general multi-
dimensional SDEs at a computational cost which is O(ε−3| log ε|1/2). This
is better than the O(ε−4) complexity of a standard Monte Carlo simulation
using the same numerical approximation of the exit time, but is not better
than the complexity achieved by Gobet and Menozzi (2010) using a Monte
Carlo simulation with a boundary correction which improves the weak order
of convergence to first order.

Earlier research by Primozic (2011) demonstrates an O(ε−2) complexity
for a one-dimensional problem. This builds on the Milstein approxima-
tion for barrier options developed by Giles (2008a), using the approximate
Brownian interpolation to determine the approximate probability that the
underlying path crosses the boundary within each timestep. This improves
both the weak convergence and the multilevel variance, giving α=1, β=3/2
and γ=1. This approach is capable of being extended to multi-dimensional
SDEs which satisfy the commutativity condition which allows the use of the
Milstein discretisation without requiring the simulation of Lévy areas.

5.6. Stiff and highly nonlinear SDEs

In the numerical examples presented above, it is possible to use only one
timestep on the coarsest level of approximation, and still obtain a sufficiently
accurate path simulation so that the resulting payoff approximation is a
useful control variate for the next level of approximation.

However, in other applications this may not be true. If the drift term
has a characteristic time-scale of τ , as in a mean-reverting drift (θ − St)/τ ,
then when using the explicit Euler-Maruyama discretisation the timestep
h0 on the coarsest level cannot be much larger than τ without encountering
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severe numerical stability problems. This is a natural restriction shared by
explicit discretisations of ordinary differential equations.

A related problem is addressed by Hutzenthaler, Jentzen and Kloeden
(2013), who are concerned with SDEs such as

dSt = −S3
t dt+ dWt,

which have a super-linear growth in the drift and/or the volatility. This
again leads to numerical instability if a uniform timestep is used. Their so-
lution is to introduce a slight modification to the Euler-Maruyama discreti-
sation which limits the size of the drift term on each level of approximation
when St is large, to avoid this instability.

Other approaches to these problems include the use of drift-implicit meth-
ods (Dereich, Neuenkirch and Szpruch 2012, Higham, Mao and Stuart 2002),
or a change or variables equivalent to the use of an integrating factor in
ODEs (see the Heston treatment in (Giles 2008a) which was suggested by
Mark Broadie).

Another important approach, when the difficulties are only for extreme
value of St, or for a short time interval, is to use adaptive time-stepping.
Hoel, von Schwerin, Szepessy and Tempone (2012) and Hoel, von Schwerin,
Szepessy and Tempone (2014) construct a multilevel adaptive timestepping
discretisation in which, for each stochastic instance ω, the timesteps used
on level ℓ are a subdivision of those used on level ℓ−1, which in turn are
a subdivision of those on level ℓ−2, and so on. By doing this, the payoff
Pℓ on level ℓ is the same regardless of whether one is computing Pℓ−Pℓ−1

or Pℓ+1−Pℓ, and therefore the MLMC telescoping summation is respected.
Another notable aspect of their work is the use of adjoint/dual sensitivities
to determine the optimal timestep size.

New unpublished work by Giles, Süli, Whittle and Ye implements adap-
tive time-stepping slightly differently. Instead of the timesteps on one level
being a subdivision of those on the level above, it uses a completely inde-
pendent adaptation on each level of refinement, with an adaptive timestep
of the form

hℓ = 2−ℓ H(Ŝn),

where H(S) is independent of level. This results in timesteps which are not
naturally nested. It may appear that this would cause difficulties in the
MLMC implementation, but Figure 5.9 tries to illustrate that it does not.
The underlying Brownian path needs to be sampled at a set of times which
are the union of the simulation times used by the coarse and fine path. The
independent Brownian increments can be simulated for each time interval,
and summed to give W (t) at the required times. An outline algorithm to
implement this is given in Algorithm 3.
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Figure 5.9. Generation of Brownian increments for a multilevel simulation with
adaptive timestepping

Algorithm 3 Outline of a multilevel algorithm with adaptive timestepping
for the time interval [0, T ]

t := 0
tc := 0
tf := 0
∆W c := 0
∆W f := 0

while (t < T ) do
told := t
t := min(tc, tf )
h := t− told
∆W :=

√
hZ

∆W c := ∆W c +∆W
∆W f := ∆W f +∆W

if t = tc then
update coarse path using ∆W c

compute adapted coarse path timestep hc

tc := min(tc+hc, T )
∆W c := 0

end if

if t = tf then

update fine path using ∆W f

compute adapted fine path timestep hf

tf := min(tf+hf , T )
∆W f := 0

end if

end while

compute Pℓ − Pℓ−1



46 M.B. Giles

5.7. CDF and density estimation

In some applications the objective is an estimation of the cumulative distri-
bution function (CDF) or density of an output quantity P , rather than its
expected value.

Kebaier and Kohatsu-Higa (2008) addressed the problem of constructing
pointwise estimates of the density of the SDE solution ST , using Malliavin
calculus and a two-level variance reduction based on Kebaier’s earlier work
(Kebaier 2005).

Motivated by an interesting engineering application (Iliev, Nagapetyan
and Ritter 2013), a multilevel approach to CDF and density estimation for
arbitrary output functions has been developed by Giles et al. (2014). The
CDF of a scalar output P is represented approximately by a polynomial
spline function. Pointwise values of the CDF which are used as knot values
in the spline construction correspond to expected values of an indicator
function,

C(x) ≡ E [1P<x] ≡ E [H(x−P )] ,

where H(x) is the Heaviside step function. To improve the multilevel vari-
ance, this is smoothed to give

Cδ(x) = E [(g((x−P )/δ)] ,

where g(x) is a continuous function with g(x)= 0 for x<−1, and g(x)= 1
for x > 1. The parameter δ controls the degree of smoothing. As δ → 0,
g(x/δ) → H(x), and the accuracy improves but the variance of the multi-
level estimator increases. Hence, this application has both spline approx-
imation and smoothing errors in addition to the usual discretisation and
sampling errors. Balancing these errors gives the best accuracy for a given
computational cost. The MLMC approach gives a substantial improvement
in the order of complexity, and numerical examples demonstrate the savings
which can be achieved.

The same paper also discusses the extension to density estimation. In
this case, the density ρ(x) of the scalar output P is given by

ρ(x) = lim
δ→0

E
[
δ−1g((x−P )/δ)

]
,

where g(x) is a continuous function with g(x)=0 for |x|>1, and
∫ 1

−1
g(x) dx = 1.

This has similarities with kernel density estimation (Silverman 1986), and
can also be generalised to multi-dimensional outputs.
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6. Jump diffusion and Lévy processes

6.1. Jump-diffusion processes

With finite activity jump-diffusion processes, such as in the Merton model
(Merton 1976), it is natural to simulate each individual jump using a jump-
adapted discretisation (Mikulevicius and Platen 1988, Platen and Bruti-
Liberati 2010) in which the Brownian diffusion between each jump is ap-
proximated using an Euler-Maruyama or Milstein approximation, and then
each jump is simulated exactly.

If the jump activity rate is constant, then for each stochastic sample ω
the jumps on the coarse and fine paths will occur at the same time, and
therefore the extension of the multilevel method is straightforward with the
coarse and fine paths using the same underlying Brownian paths, and the
same random variables to determine the jump times and strengths (Xia and
Giles 2012).

If the jump rate is path-dependent then the situation is trickier. If there
is a known upper bound to the jump rate, then one can use the “thinning”
approach of Glasserman and Merener (2004) in which a set of candidate
jump times is simulated based on the constant upper bound, and then a
subset of these are selected to be real jumps. The problem with the multi-
level extension of this is that some candidate jumps will be selected for the
coarse path but not for the fine path, or vice versa, leading to an O(1) dif-
ference in the paths and hence the payoffs. Xia and Giles (2012) avoid this
by using a change of measure to ensure that the jump times are the same
for both paths; this introduces a Radon-Nikodym into the payoff evaluation,
but significantly reduces the multilevel correction variance.

6.2. More general processes

With infinite activity Lévy processes it is impossible to simulate each jump.
One approach is to simulate the large jumps and either neglect the small
jumps or approximate their effect by adding a Brownian diffusion term
(Dereich 2011, Dereich and Heidenreich 2011, Marxen 2010). Following
this approach, the cutoff δℓ for the jumps which are simulated varies with
level, and δℓ → 0 as ℓ → ∞ to ensure that the bias converges to zero.
In the multilevel treatment, when simulating Pℓ − Pℓ−1 the jumps fall into
three categories. The ones which are larger than δℓ−1 get simulated in
both the fine and coarse paths. The ones which are smaller than δℓ are
either neglected for both paths, or approximated by the same Brownian
increment. The difficulty is in the intermediate range [δℓ, δℓ−1] in which the
jumps are simulated for the fine path, but neglected or approximated for
the coarse path. This is what leads to the difference in path simulations,
and contributes to a non-zero value for Pℓ − Pℓ−1.

Alternatively, for many SDEs driven by a Lévy process it is possible to
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VG NIG α-stable

Asian O(h2) O(h2) O(h2)

lookback O(h) O(h| log h|) O(h2/α−δ)

barrier o(h1−δ) o(h1/2−δ) o(h1/α−δ)

Table 6.3. Numerical analysis convergence rates for the multilevel variance
Vℓ ≡ V[Pℓ−Pℓ−1] for Variance-Gamma, NIG, and spectrally-negative α-stable
processes and different financial options. δ is any strictly positive constant.

directly simulate the increments of the Lévy process over a set of uniform
timesteps (Schoutens 2003), in exactly the same way as one simulates Brow-
nian increments. When estimating the price of European options which de-
pend only on the final value of the Lévy process, there is no need for MLMC
as one can directly simulate the final value. However, multilevel is still very
useful for path-dependent financial options such as Asian, lookback and bar-
rier options, and there has been good progress in the numerical analysis of
these applications (Xia 2014, Xia and Giles 2014). Table 6.3 gives the con-
vergence rates obtained from the numerical analysis; numerical experiments
support these results but suggest they may not be sharp in some cases.

For other Lévy processes, it may be possible in the future to simulate
the increments by constructing near-perfect (i.e. to within the limits of
finite precision computer arithmetic) approximations to the inverse of the
cumulative distribution function. Where this is possible, it may be the best
approach to achieve a perfect coupling between the coarse and fine path
simulations, since the increments of the driving Lévy process for the coarse
path can be obtained trivially by summing the increments for the fine path.

Finally, we mention the work of Ferreiro-Castilla, Kyprianou, Scheichl
and Suryanarayana (2014) who develop a multilevel approach for barrier
options using a Wiener-Hopf factorisation technique to sample exactly from
the joint distribution of the terminal value of a Lévy process at an expo-
nential random stopping time, and its maximum (or minimum) over the
intervening interval. The particularly novel aspect here is the random ter-
minal time; by using multiple shorter random periods it is possible, because
of the Central Limit Theorem, to get closer to a desired fixed terminal
time, but at an increased cost. In the multilevel coupling, the thinning ap-
proach of Glasserman and Merener (2004) is again used to link the coarse
and fine path simulations. Numerical analysis for lookback options gives a
complexity which is O(ε−3) for processes of bounded variation, and O(ε−4)
for processes of unbounded variation. Numerical experiments for barrier
options demonstrate a similar complexity.
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7. PDEs and SPDEs

After the initial work with MLMC for SDEs, it was immediately clear
that it was equally applicable to SPDEs, and indeed the computational
savings would be greater because the cost of a single sample increases
more rapidly with grid resolution for SPDEs with higher space-time di-
mension. The first published work was by Graubner (2008); on parabolic
SPDEs, and since then there has been a variety of papers on elliptic (Barth,
Schwab and Zollinger 2011, Charrier, Scheichl and Teckentrup 2013, Cliffe et
al. 2011, Teckentrup, Scheichl, Giles and Ullmann 2013), parabolic (Barth,
Lang and Schwab 2013, Giles and Reisinger 2012), hyperbolic (Mishra,
Schwab and Sukys 2012) SPDEs, as well as for mixed elliptic-hyperbolic sys-
tems (Efendiev, Iliev and Kronsbein 2013, Müller, Jenny and Meyer 2013).

In almost all of this work, the construction of the multilevel estimator is
quite natural, using a geometric sequence of grids and the usual estimators
for Pℓ−Pℓ−1. It is the numerical analysis of the variance of the multilevel
estimator which is often very challenging.

7.1. Two simple examples

The MATLAB codes accompanying this article include two simple PDE
examples.

The first is really a boundary-value ODE application, but it can be viewed
as a 1D elliptic PDE, with random coefficients and random forcing. The
equation is

d

dx

(
c(x)

du

dx

)
= −50Z2,

on 0<x< 1, with boundary data u(0) = u(1) = 0. Z is a Normal random
variable with zero mean and unit variance, and

c(x) = 1 + a x

with a being a uniform random variable on the unit interval (0, 1). The
output quantity of interest is chosen to be

P =

∫ 1

0
u(x) dx.

The multilevel implementation is very easy. Level ℓ uses a uniform grid
with spacing hℓ = 2−(ℓ+1), so there is just one interior grid point on the
coarsest level. A simple second order central difference approximation is
used (equivalent to a finite element approximation with a 1-point quadra-
ture).

The uniform second order accuracy means that there is a constant K
such that |P − Pℓ| < K h2ℓ and therefore we have α= 2, β = 4 and γ = 1,
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Figure 7.10. Numerical results for a 1D elliptic PDE with random coefficients and
random forcing.
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resulting in an O(ε−2) complexity. All of these features can be verified in
the numerical results in Figure 7.10.

The second example is a 1D parabolic SPDE, in which u(x, t) satisfies the
SPDE

du =
∂2u

∂x2
dt+ 10 dW,

on the domain 0<x<1 with boundary data u(0, t)=u(1, t)=0 and initial
data u(x, 0)=0. The output functional is chosen to be

P =

∫ 1

0
u2(x, 0.25).

The multilevel implementation is again very easy. An Euler-Maruyama
time discretisation with timestep k, combined with a second order space
discretisation with uniform grid spacing h, gives the discrete approximation

un+1
j = unj +

k

h2
(
unj+1 − 2unj + unj−1

)
+ 10∆W n.

The level ℓ approximation uses

hℓ = 2−(ℓ+1), kℓ =
1
4 h

2
ℓ .

Keeping kℓ/h
2
ℓ =

1
4 ensures the explicit numerical discretisation is stable on

all levels. Since the number of grid points doubles on each level, and the
number of timesteps increases by factor 4, the cost per sample increases by
factor 8, giving γ=3.

Because the stochastic forcing is additive, i.e. the volatility does not de-
pend on u(x, t), the Euler-Maruyama discretisation is actually equivalent to
a Milstein discretisation and hence the time discretisation errors are O(k).
This is of the same order as the spatial discretisation errors which are O(h2),
and therefore the solution error is O(2−2ℓ) and hence α=2 and β=4. This
leads to the optimal complexity of O(ε−2).

These features are again confirmed in the numerical results shown in
Figure 7.11.

7.2. Elliptic SPDE

The largest amount of research on multilevel for SPDEs has been for elliptic
PDEs with random coefficients. The PDE typically has the form

−∇ · (κ(x, ω)∇p(x, ω)) = 0, x ∈ D.

with Dirichlet or Neumann boundary conditions on the boundary ∂D. For
sub-surface flow problems, such as the modelling of groundwater flow in nu-
clear waste repositories, the diffusivity (or permeability) κ is often modelled
as a lognormal random field, i.e. log κ is a Gaussian field with a uniform
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Figure 7.11. Numerical results for a 1D parabolic SPDE with Brownian forcing.



Multilevel Monte Carlo methods 53

mean (which we will take to be zero for simplicity) and a covariance function
of the general form R(x,y) = r(x−y). Samples of log k are provided by a
Karhunen-Loève expansion:

log κ(x, ω) =
∞∑

n=0

√
θn ξn(ω) fn(x),

where θn are the eigenvalues of R(x,y) in decreasing order, fn are the
corresponding eigenfunctions, and ξn are independent unit Normal random
variables. However, it is more efficient to generate them using a circulant
embedding technique which enables the use of FFTs (Dietrich and Newsam
1997).

The multilevel treatment is straightforward. The spatial grid resolution is
doubled on each level. Using the Karhunen-Loève generation, the expansion
is truncated after Kℓ terms, with Kℓ increasing with level (Teckentrup et al.
2013); a similar approach has also been used with the circulant embedding
generation.

In both cases, log κ is generated using a row-vector of independent unit
Normal random variables ξ. The variables for the fine level can be parti-
tioned into those for the coarse level ξℓ−1, plus some additional variables zℓ,
giving ξℓ = (ξℓ−1, zℓ).

The numerical analysis of the multilevel approach for these elliptic SPDE
applications is challenging because the diffusivity is unbounded, but Char-
rier, Scheichl & Teckentrup (Charrier et al. 2013) have successfully analysed
it for certain output functionals, and Teckentrup et al have further devel-
oped the analysis for other output functionals and more general log-normal
diffusivity fields (Teckentrup et al. 2013, Teckentrup 2013).

7.3. Parabolic SPDE

Giles & Reisinger (Giles and Reisinger 2012) consider an unusual SPDE
from credit default modelling,

dp = −µ
∂p

∂x
dt+

1

2

∂2p

∂x2
dt−√

ρ
∂p

∂x
dMt, x > 0

subject to boundary condition p(0, t)=0. Here p(x, t) represents the prob-
ability density function for firms being a distance x from default at time t.
The diffusive term is due to idiosyncratic factors affecting individual firms,
while the stochastic term due to the scalar Brownian motion Mt corresponds
to the systemic movement due to random market effects affecting all firms.
The payoff corresponds to different tranches of a credit derivative which
depends on the integral

∫∞
0 p(x, t) dx at a set of discrete times.

A Milstein time discretisation with timestep k, and a central space dis-
cretisation of the spatial derivatives with uniform spacing h gives the nu-
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merical approximation

pn+1
j = pnj − µk +

√
ρ k Zn

2h

(
pnj+1 − pnj−1

)

+
(1−ρ) k + ρ k Z2

n

2h2
(
pnj+1 − 2pnj + pnj−1

)

where pnj ≈ p(j h, n k), and the Zn are standard Normal random variables

so that
√
h Zn corresponds to an increment of the driving scalar Brownian

motion.
The multilevel implementation is very straightforward. As with the model

parabolic example discussed previously, kℓ = kℓ−1/4 and hℓ = hℓ−1/2 due
to numerical stability considerations which are analysed in the paper. The
coupling between the coarse and fine samples comes from summing the fine
path Brownian increments to give the increments for the coarse path, exactly
the same as for SDEs The computational cost increases by factor 8 on each
level, and numerical experiments indicate that the variance decreases by
factor 8, so the overall computational complexity to achieve an O(ε) RMS
error is again O(ε−2(log ε)2).

This work has been extended by Bujok and Reisinger (2012) to include a
systemic jump-diffusion term. They also switch from continuous monitoring
of default, which gives the boundary condition p(0, t)=0 for all t, to discrete
monitoring which introduces the boundary condition p(x, t)=0 for x≤0 for
each discrete default date t.

7.4. Reduced basis approximation

New research by Vidal-Codina et al. (2014) uses a very different approach
to SPDE approximation. They start with a high accuracy finite element
approximation

A(ω)u(ω) = f(ω)

where ω represents the dependency on the stochastic input parameters.
They then use a reduced basis approximation with a fixed set of basis func-
tions uk

u(ω) ≈
K∑

k=1

uk(ω)uk

which leads to a much smaller system of equations

AK(ω)




u1
u2
...
uK


 = fK(ω).
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The output of interest is a function of the solution, so that they are inter-
ested in estimating E[f(u)]. There is an accuracy-cost tradeoff here; larger
values forK lead to greater accuracy, but at a much larger cost. The MLMC
treatment makes K a function of the level ℓ, so that most simulations are
performed with a small value for K, and relatively few with a large value.

In this application, geometric MLMC is not appropriate and so they face
the question of how to choose the levels. As discussed already in Section 2.6,
they start with a set of candidate levels and use a number of trial samples
to obtain an estimate of the variances Vℓ1,ℓ2 ≡ V[Pℓ1−Pℓ2 ] for all pairs of
levels. They then use this to determine the optimal subset of levels for the
main computation.

8. Continuous-time Markov chains

Anderson and Higham (2012) developed a very interesting application of
MLMC to continuous-time Markov Chain simulation. Although they present
their work in the context of stochastic chemical reactions, when species con-
centrations are extremely low and so stochastic effects become significant,
they point out that the method has wide applicability in other areas.

When there is just one chemical reaction, the “tau-leaping” method (which
is essentially the Euler-Maruyama method, approximating the reaction rate
as being constant throughout the timestep) gives the discrete equation

xn+1 = xn + P (hλ(xn)),

where h is the timestep, λ(xn) is the reaction rate (or propensity function),
and P (t) represents a unit-rate Poisson random variable over time interval
[0, t]. If this equation defines the fine path in the multilevel simulation, then
the coarse path, with double the timestep, is given by

xc
n+2 = xc

n + P (2hλ(xc
n))

for even timesteps n.
The question then is how to couple the coarse and fine path simulations.

The key observation in (Anderson and Higham 2012), based on earlier work
in a different context by Kurtz (1982), is that for any t1, t2 > 0, the sum of
two independent Poisson variates P (t1), P (t2) is equivalent in distribution
to P (t1+t2). Based on this, the first step is to express the coarse path Poisson
variate as the sum of two Poisson variates, P (hλ(xc

n)) corresponding to the
first and second fine path timesteps. For the first of the two fine timesteps,
the coarse and fine path Poisson variates are coupled by defining two Poisson
variates based on the minimum of the two reactions rates, and the absolute
difference,

P1 = P
(
hmin(λ(xn), λ(x

c
n))
)
, P2 = P

(
h |λ(xn)− λ(xc

n)|
)
,
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and then using P1 as the Poisson variate for the path with the smaller
rate, and P1 + P2 for the path with the larger rate. This elegant approach
naturally gives a small difference in the Poisson variates when the difference
in rates is small, and leads to a very effective multilevel algorithm with a
correction variance which is O(h), leading to an O(ε−2(log ε)2) complexity.

In their paper, Anderson and Higham (2012) treat more general sys-
tems with multiple reactions. They also include an additional coupling at
the finest level to the exact Stochastic Simulation Algorithm developed by
(Gillespie 1976) which updates the reaction rates after every single reac-
tion. Hence, their overall multilevel estimator is unbiased, unlike the esti-
mators discussed earlier for SDEs, and the complexity is reduced to O(ε−2)
because the number of levels remains fixed as ε → 0. They give a com-
plete numerical analysis of the variance of their multilevel algorithm; this
has been further sharpened in more recent work (Anderson, Higham and
Sun 2014). Because stochastic chemical simulations typically involve 1000’s
of reactions, the multilevel method is particularly effective in this context,
providing computational savings in excess of a factor of 100 (Anderson and
Higham 2012).

They also give an interesting numerical example in which an approximate
model with fewer reactions/reactants is used as a control variate for the full
system. This kind of multilevel modelling is another possibility which could
be considered in a wide variety of circumstances.

Moraes, Tempone and Vilanova (2014b) have extended these ideas by
adaptively switching between tau-leaping which is suitable when reaction
rates are high, and exact simulation which is more appropriate when re-
action rates are low relative to the timestep. They also develop a more
accurate estimator for the multilevel variance, which otherwise suffers due
to high kurtosis on the finest grid levels, and a method for controlling the
probability that the tau-leaping leads to x becoming negative.

In a second paper, Moraes, Tempone and Vilanova (2014a) generalise the
adaptive switching between tau-leaping and exact simulation to treat each
reaction separately. This is very beneficial when different reactions have
very different propensities. They also introduce a novel control variate for
the coarsest simulation level which significantly reduces the total simulation
cost. Numerical examples demonstrating impressive cost savings of up to
1000× relative to standard methods.

The non-nested adaptive timestepping approach described in Section 5.6
for SDEs is equally applicable in this setting. As described in (Giles, Lester
and Whittle 2015, Lester, Yates, Giles and Baker 2015), the construction is
exactly the same as illustrated in Figure 5.9, but with Poisson variates for
each time interval instead of Brownian increments. This adaptive timestep-
ping can be very helpful in cases in which propensities vary greatly in time.
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9. Nested simulation

9.1. MLMC treatment

In nested simulations we are interested in estimating quantities of the form

EZ

[
f
(
EW [g(Z,W )]

) ]

where Z is an outer random variable, and EW [g(Z,W )] is a conditional
expectation with respect to an independent inner random variable W .

For example, in some financial applications Z which represents different
risk scenarios, EW [g(Z,W )] represents exposure, conditional on the scenario
Z, and f might correspond to the loss in excess of the capital reserves, so

that EZ

[
f
(
EW [g(Z,W )]

) ]
is the expected shortfall.

This can be simulated using nested Monte Carlo simulation with N outer
samples Z(n), M inner samples W (m,n) and a standard Monte Carlo esti-
mator:

Y = N−1
N∑

n=1

f

(
M−1

M∑

m=1

g(Z(n),W (m,n))

)

Note that to improve the accuracy of the estimate we need to increase both
M and N , and this will significantly increase the cost.

An MLMC implementation is straightforward; on level ℓ we can use Mℓ=
2ℓ inner samples. To construct a low variance estimate for E[Pℓ−Pℓ−1] where

E[Pℓ] ≡ EZ

[
f

(
M−1

ℓ

∑

m

g(Z,W (m))

)]
,

we use an antithetic approach and split the Mℓ samples of W for the “fine”
value into two subsets of size Mℓ−1 for the “coarse” value:

Yℓ = N−1
ℓ

Nℓ∑

n=1

{
f

(
M−1

ℓ

Mℓ∑

m=1

g(Z(n),W (m,n))

)

− 1
2f


M−1

ℓ−1

Mℓ−1∑

m=1

g(Z(n),W (m,n))




−1
2f


M−1

ℓ−1

Mℓ∑

m=Mℓ−1+1

g(Z(n),W (m,n))







Note that this has the correct expectation, i.e. E[Yℓ] = E[Pℓ−Pℓ−1].
If we define
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M−1
ℓ−1

Mℓ−1∑

m=1

g(Z(n),W (m,n)) = E[g(Z(n),W )] + ∆g
(n)
1 ,

M−1
ℓ−1

Mℓ∑

m=Mℓ−1+1

g(Z(n),W (m,n)) = E[g(Z(n),W )] + ∆g
(n)
2 ,

then if f is twice differentiable a Taylor series expansion gives

Yℓ ≈ − 1

4Nℓ

Nℓ∑

n=1

f ′′
(
E[g(Z(n),W )]

)(
∆g

(n)
1 −∆g

(n)
2

)2

By the Central Limit Theorem, ∆g
(n)
1 ,∆g

(n)
2 = O(M

−1/2
ℓ ) and therefore

f ′′
(
E[g(Z(n),W )]

)(
∆g

(n)
1 −∆g

(n)
2

)2
= O(M−1

ℓ ).

It follows that E[Yℓ]=O(M−1
ℓ ) and Vℓ=O(M−2

ℓ ). For the MLMC theorem,
this corresponds to α=1, β=2, γ=1, so the complexity is O(ε−2).

This antithetic approach to nested simulation has been developed inde-
pendently by several authors (Haji-Ali 2012, Chen and Liu 2012, Bujok,
Hambly and Reisinger 2013).

Haji-Ali (2012) used it in a mean field model for the motion of crowds,
in which each person is modelled as a independent agent subject to random
forcing and an additional force due to the collective influence of the crowd.
This same approach is also relevant to mean field problems which arise in
plasma physics (Rosin et al. 2014).

Bujok et al. (2013) used multilevel nested simulation for a financial credit
derivative application. In their case, the function f was piecewise linear,
not twice differentiable, and so the rate of variance convergence was slightly
lower, with β = 1.5. However, this is still sufficiently large to achieve an
overall complexity which is O(ε−2).

The pricing of American options is one of the big challenges for Monte
Carlo methods in computational finance, and Belomestny, Schoenmakers
and Dickmann (2013) have developed a multilevel Monte Carlo for this pur-
pose, based on Anderson & Broadie’s dual simulation method (Andersen
and Broadie 2004) in which a key component at each timestep in the simu-
lation is to estimate a conditional expectation using a number of sub-paths.
In their multilevel treatment, Belomestny & Schoenmakers use the same uni-
form timestep on all levels of the simulation, so the quantity which changes
between different levels of simulation is the number of sub-samples used to
estimate the conditional expectation. Hence, their work is another example
of nested simulation.
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9.2. MIMC treatment

The analysis in the previous section assumes that we can compute g(Z,W )
with O(1) cost, but suppose now that W represents a complete Brownian
path, and so g(Z,W ) can not be evaluated exactly; it can only be approxi-
mated by using some finite number of timesteps. We could continue to use
MLMC, and on level ℓ we could use 2ℓ timesteps. When using the Milstein
discretisation (giving first order weak and strong convergence) this would
still give α=1, β=2. However, we would now have γ=2, because the work
on successive levels would go up by factor 4×, because of using twice as
many timesteps as well as twice as many inner samples. This then leads to
an overall MLMC complexity which is O(ε−2(log ε)−2).

Instead we can use MIMC, to get back to an optimal complexity of O(ε−2).
We now have a pair of level indices (l1, l2), with the number of inner samples
equal to 2ℓ1 and the number of timesteps proportional to 2ℓ2 . If we use
the natural extension of the MLMC estimator to the corresponding MIMC
estimator, which means (for l1 > 0, l2 > 0) using

Yℓ = N−1
ℓ

Nℓ∑

n=1



 f


2−ℓ1

2ℓ1∑

1

gl2(Z
(n),W (m,n))




− 1
2f


2−ℓ1+1

2ℓ1−1∑

1

gl2(Z
(n),W (m,n))




−1
2f


2−ℓ1+1

2ℓ1∑

2ℓ1−1+1

gl2(Z
(n),W (m,n))




− f


2−ℓ1

2ℓ1∑

1

gl2−1(Z
(n),W (m,n))




+ 1
2f


2−ℓ1+1

2ℓ1−1∑

1

gl2−1(Z
(n),W (m,n))




+1
2f


2−ℓ1+1

2ℓ1∑

2ℓ1−1+1

gl2−1(Z
(n),W (m,n))







The subscript on the g terms denotes the level of timestep approximation.

Carrying out the same analysis as before, performing the Taylor series
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expansion around E[g(Z(n),W )], we obtain

Yℓ ≈ − 1

4Nℓ

Nℓ∑

n=1

f ′′
(
E[g(Z(n),W )]

){ (
∆g

(n)
1,ℓ2

−∆g
(n)
2,ℓ2

)2

−
(
∆g

(n)
1,ℓ2−1−∆g

(n)
2,ℓ2−1

)2 }

The difference of squares can be re-arranged as
(
∆g

(n)
1,ℓ2

−∆g
(n)
2,ℓ2

)2
−
(
∆g

(n)
1,ℓ2−1−∆g

(n)
2,ℓ2−1

)2

=
(
(∆g

(n)
1,ℓ2

+∆g
(n)
1,ℓ2−1)− (∆g

(n)
2,ℓ2

+∆g
(n)
2,ℓ2−1)

)
×

(
(∆g

(n)
1,ℓ2

−∆g
(n)
1,ℓ2−1)− (∆g

(n)
2,ℓ2

−∆g
(n)
2,ℓ2−1)

)

Due to the Central Limit Theorem, we have

∆g
(n)
1,ℓ2

+∆g
(n)
1,ℓ2−1 = O(2−ℓ1/2)

∆g
(n)
2,ℓ2

+∆g
(n)
2,ℓ2−1 = O(2−ℓ1/2)

and assuming first order strong convergence we also have

∆g
(n)
1,ℓ2

−∆g
(n)
1,ℓ2−1 = O(2−ℓ1/2−ℓ2)

∆g
(n)
2,ℓ2

−∆g
(n)
2,ℓ2−1 = O(2−ℓ1/2−ℓ2)

Combining these results we obtain
(
∆g

(n)
1,ℓ2

−∆g
(n)
2,ℓ2

)2
−
(
∆g

(n)
1,ℓ2−1−∆g

(n)
2,ℓ2−1

)2
= O(2−ℓ1−ℓ2)

and therefore E[Yℓ] = O(2−ℓ1−ℓ2) and Vℓ = O(2−2ℓ1−2ℓ2) with a cost per
sample which is O(2ℓ1+ℓ2). In Theorem 2 this corresponds to α1 = α2 =
1, β1=β2=2, and γ1=γ2=1, so the overall complexity is O(ε−2).

Following the analysis in (Bujok et al. 2013), if the function f is continu-
ous and piecewise differentiable, rather than being twice differentiable, then
in the MLMC treatment we would get β =1.5, and hence an overall com-
plexity which is O(ε−2.5). On the other hand, with MIMC we would have
β1=β2=1.5 and so the complexity would remain O(ε−2). This illustrates
the benefit of the MIMC approach compared to standard MLMC.

10. Other applications

10.1. Markov chains and limiting distributions

In new research, Glynn and Rhee (2014) consider the application of their
randomised version of MLMC to Markov chains, and in particular have
addressed the problem of estimating quantities which are expectations with
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level ℓ−1

level ℓ

n−Nℓ −Nℓ−1 0
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✲

Figure 10.12. Level ℓ and ℓ−1 paths for contracting Markov chains

respect to a limiting distribution. In their application, the Markov chain
{Xn} in a metric space with metric d is defined by

X0 = x, Xn+1 = φn(Xn), n ≥ 0

where {φn} is a sequence of iid random functions. Furthermore, it is as-
sumed that the φ’s are contracting on average in the sense that

sup
x 6=y

E

[(
d(φn(x), φn(y))

d(x, y)

)2γ
]
< 1

for some γ ∈ (0, 1). Under these conditions, it is known that the distribu-
tion of Xn converges weakly to that of a limit random variable X∞, and
their objective is to estimate expectations of the form E[f(X∞)], where f
is Hölder continuous with exponent γ, so that |f(y)− f(x)| ≤ d(x, y)γ .

An example they offer of a chain satisfying the required conditions is

X0 = 0, Xn+1 =
1
2Xn + ξn, n ≥ 0

where P(ξn=0) = P(ξn=1) = 1
2 . The invariant distribution in this case is

the uniform distribution on [0, 2].
In the standard MC approach, one would approximate E[f(X∞)] by es-

timating E[f(XN )] for some large value of N , but this would be a biased
estimate. Glynn and Rhee (2014) circumvent this problem by making N
increase with level, starting a level ℓ simulation at n = −Nℓ and terminat-
ing it at n = 0, as illustrated in Figure 10.12. The fact that the different
levels terminate at the same time is crucial to the multilevel coupling, the
level ℓ and ℓ − 1 simulations share the same random φn for n ≥ −Nℓ−1.
Because of the contraction property, the effect of the initial evolution of the
level ℓ path for n < −Nℓ−1 decays exponentially. This gives a coupling with
a multilevel correction variance which decays as ℓ increases. Because the
decay is exponential in Nℓ−Nℓ−1, it is appropriate to choose Nℓ to increase
linearly with level.

A very similar approach can also be used for contracting SDEs which
converge to a limiting distribution. For these, the level ℓ path will perform
a simulation for the time interval [−Tℓ, 0], using timestep hℓ. The coarse and
fine paths will share the same driving Brownian path for the overlapping
time interval [−Tℓ−1, 0], and the contraction property will ensure that the
multilevel variance decays with level.
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10.2. Variable precision arithmetic

In the latest CPUs from Intel and AMD, each core has a vector unit which
can perform 8 single precision or 4 double precision operations with one
instruction. Hence, single precision computations can be twice as fast as
double precision on CPUs, and the difference can be even greater on GPUs.

As a very simple example of a two-level MLMC application, Giles (2013)
suggested using single precision arithmetic for samples on level 0, and double
precision arithmetic on level 1. Estimating V0 and V1 as defined in Section
1.2 will automatically lead to the optimal allocation of computational effort
between the two levels.

This approach has been generalised in new research (Brugger, de Schryver,
Wehn, Omland, Hefter, Ritter, Kostiuk and Korn 2014). which exploits
FPGAs (field-programmable gate arrays) which can perform computations
with a user-specified number of bits to represent floating-point or fixed-point
numbers. Thus, it is possible to implement a multilevel treatment in which
the number of bits used increases with level.

The primary challenge is to ensure that the telescoping sum is correctly
respected. In their current work, Brugger et al. (2014) use full precision in
the generation of the random numbers for the Brownian increments, and
then perform the rest of the path calculations with the appropriate number
of bits, before doing the final summations in full accuracy. This ensures that
the Brownian increments computed for the coarser path ℓ−1 by summing
the increments of the finer path ℓ, are consistent with the increments which
would be generated on level ℓ−1 when it is the finer of the two levels.

This would not be the case if the increments on level ℓ were generated
with Bℓ bits of accuracy, then summed to give increments for level ℓ−1,
regardless of whether the truncation to the lower accuracy Bℓ−1 took place
before or after the summation. One possible way of correctly generating and
using reduced accuracy Brownian increments would be to use a Brownian
Bridge construction. Random numbers can be generated in steps by

In → Un → Zn

where In is a random integer on a range [0, Imax], Un = (In + 1
2)/Imax is a

random, approximately uniformly-distributed variable on the interval (0, 1),
and Zn = Φ−1(Un) is the corresponding N(0, 1) random variable. When
using a Brownian Bridge construction, as long as the In are generated in
exactly the same way for each level, the other two steps can be performed
with the level of accuracy appropriate to the level of the path, i.e. with
higher precision on level ℓ than on level ℓ−1. The Brownian path being
generated for level ℓ is then exactly the same, regardless of whether it is the
finer or coarser of the two levels being simulated for a particular multilevel
correction. Hence, the telescoping sum will be respected.
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11. Conclusions

In the last few years there has been considerable progress in the theo-
retical development, application and analysis of multilevel Monte Carlo
methods. On the theoretical side, the key extensions are to unbiased ran-
domised estimators for applications with a rapid rate of variance conver-
gence; Richardson-Romberg extrapolation for improved computational effi-
ciency when the rate of variance convergence is low and the weak error has
a regular expansion; and multi-index Monte Carlo (MIMC), generalising
multilevel to multiple “directions” in which approximations can be refined.
On the practical side, the range of applications is growing steadily, now in-
cluding SDEs, Lévy processes, SPDEs, continuous-time Markov processes,
nested simulation, and variable precision arithmetic. Finally, on the numer-
ical analysis side, there has been excellent progress on the variance analysis
for the full range of applications, as well as for multilevel QMC algorithms.

This review has attempted to emphasise the conceptual simplicity of the
multilevel approach; in essence it is simply a recursive control variate strat-
egy, using cheap inaccurate approximations to some random output quantity
as a control variate for more accurate but more costly approximations.

In practice, the challenge is to develop a tight coupling between succes-
sive approximation levels, to minimise the variance of the difference in the
output obtained from each level. One particular difficulty which can arise in
some applications is when the output quantity is a discontinuous function of
the intermediate solution, as in the case of a digital option associated with
a Brownian diffusion SDE. Three treatments were described to effectively
smooth the output to improve the variance in such cases: a analytic condi-
tional expectation, a “splitting” approximation, and a change of measure.
Similar treatments have been found to be helpful in other contexts.

It was also shown that techniques such as antithetic variates can be used
to improve the variance of the multilevel estimator without improving the
strong convergence properties of the numerical discretisation.

Looking to the future, there are many directions for further research.
Some areas to perhaps highlight are:

• Development and application of algorithms for MLQMC

There has been excellent recent work on the theoretical analysis of
MLQMC, but this has not yet been matched by the development and
application of improved algorithms.

• New applications using MIMC

MIMC, the multi-index Monte Carlo method, is probably the most
exciting new theoretical development in this area, and it offers con-
siderable scope for improved computational efficiency in a range of
applications.
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• More work on sensitivity analysis

There has been very little research so far on MLMC for sensitivity
analysis, but in some application areas such as mathematical finance
this is very important.

• Work on combinations with other variance reduction techniques, such
as Latin Hypercube or importance sampling

It is often helpful to combine different variance reduction approaches
to obtain greater overall savings, and it seems likely that MLMC can
be helpfully combined with other techniques.

• Nested simulation / mean field games

This looks like a very promising new application area for both MLMC
and MIMC. Such simulations can be very expensive using traditional
Monte Carlo methods, so MLMC/MIMC may give very substantial
computational savings.

The MATLAB codes which produced all of the results in this article are
available from (Giles 2014), along with a number of additional MLMC appli-
cation codes demonstrating adaptive timestepping for SDEs and continuous-
time Markov processes, the use of antithetics for multi-dimensional SDEs,
and additional SPDE examples.

For further information on multilevel Monte Carlo methods, readers can
refer to http://people.maths.ox.ac.uk/gilesm/mlmc community.html

which lists the research groups working in the area, and their main publi-
cations.
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M. Giles, K. Debrabant and A. Rößler (2013), ‘Numerical analysis of multi-
level Monte Carlo path simulation using the Milstein discretisation’, ArXiv
preprint: 1302.4676.

M. Giles, D. Higham and X. Mao (2009), ‘Analysing multilevel Monte Carlo for op-
tions with non-globally Lipschitz payoff’, Finance and Stochastics 13(3), 403–
413.

M. Giles, C. Lester and J. Whittle (2015), Simple adaptive timestepping for mul-
tilevel Monte Carlo, in Monte Carlo and Quasi-Monte Carlo Methods 2014,
Springer, p. submitted.

M. Giles, T. Nagapetyan and K. Ritter (2014), ‘Multilevel Monte Carlo approxi-
mation of distribution functions and densities’, DFG-SPP 1324 Preprint 157.

D. Gillespie (1976), ‘A general method for numerically simulating the stochas-
tic time evolution of coupled chemical reactions’, Journal of Computational

Physics 22(4), 403–434.
P. Glasserman (2004), Monte Carlo Methods in Financial Engineering, Springer,

New York.
P. Glasserman and N. Merener (2004), ‘Convergence of a discretization scheme

for jump-diffusion processes with state-dependent intensities’, Proc. Royal

Soc. London A 460, 111–127.



68 M.B. Giles

P. Glynn and C.-H. Rhee (2014), ‘Exact estimation for Markov chain equilibrium
expectations’, Journal of Applied Probability.

E. Gobet and S. Menozzi (2010), ‘Stopped diffusion processes: overshoots and
boundary correction’, Stochastic Processes and their Applications 120, 130–
162.

S. Graubner (2008), Multi-level Monte Carlo Methoden für stochastische partielle
Differentialgleichungen, Diplomarbeit, TU Darmstadt.

M. Gunzburger, C. Webster and G. Zhang (2014), ‘Stochastic finite element meth-
ods for partial differential equations with random input data’, Acta Numerica

23, 521–650.
A.-L. Haji-Ali (2012), Pedestrian flow in the mean-field limit, MSc thesis, KAUST.

A.-L. Haji-Ali, F. Nobile and R. Tempone (2014a), ‘Multi Index Monte Carlo:
when sparsity meets sampling’, ArXiv preprint: 1405.3757.

A.-L. Haji-Ali, F. Nobile, E. von Schwerin and R. Tempone (2014b), ‘Optimiza-
tion of mesh hierarchies in multilevel Monte Carlo samplers’, ArXiv preprint:

1403.2480.
S. Heinrich (1998), ‘Monte Carlo complexity of global solution of integral equa-

tions’, Journal of Complexity 14(2), 151–175.
S. Heinrich (2000), The multilevel method of dependent tests, in Advances in

Stochastic Simulation Methods (N. Balakrishnan, V. Melas and S. Ermakov,
eds), Springer, pp. 47–61.

S. Heinrich (2001), Multilevel Monte Carlo methods, in Multigrid Methods, Vol.
2179 of Lecture Notes in Computer Science, Springer, pp. 58–67.

S. Heinrich (2006), ‘Monte Carlo approximation of weakly singular integral opera-
tors’, Journal of Complexity 22(2), 192–219.

S. Heinrich and E. Sindambiwe (1999), ‘Monte Carlo complexity of parametric
integration’, Journal of Complexity 15(3), 317–341.

D. Higham, X. Mao and A. Stuart (2002), ‘Strong convergence of euler-type meth-
ods for nonlinear stochastic differential equations’, SIAM Journal on Numer-

ical Analysis 40(3), 1041–1063.
D. Higham, X. Mao, M. Roj, Q. Song and G. Yin (2013), ‘Mean exit times and the

multi-level Monte Carlo method’, SIAM Journal on Uncertainty Quantifica-

tion 1(1), 2–18.
H. Hoel, E. von Schwerin, A. Szepessy and R. Tempone (2012), Adaptive multilevel

Monte Carlo simulation, in Numerical Analysis of Multiscale Computations

(B. Engquist, O. Runborg and Y.-H. Tsai, eds), number 82 in ‘Lecture Notes
in Computational Science and Engineering’, Springer, pp. 217–234.

H. Hoel, E. von Schwerin, A. Szepessy and R. Tempone (2014), ‘Implementation
and analysis of an adaptive multilevel Monte Carlo algorithm’, Monte Carlo

Methods and Applications 20(1), 1–41.
M. Hutzenthaler, A. Jentzen and P. Kloeden (2013), ‘Divergence of the multilevel

Monte Carlo method’, Annals of Applied Probability 23(5), 1913–1966.
O. Iliev, T. Nagapetyan and K. Ritter (2013), Monte Carlo simulation of asym-

metric flow field flow fractionation, in Monte Carlo Methods and Applications:

Proceedings of the 8th IMACS Seminar on Monte Carlo Methods, de Gruyter,
pp. 115–123.



Multilevel Monte Carlo methods 69

S. Joe and F. Kuo (2008), ‘Constructing Sobol sequences with better two-
dimensional projections’, SIAM Journal on Scientific Computing 30(5), 2635–
2654.

A. Kebaier (2005), ‘Statistical Romberg extrapolation: a new variance reduction
method and applications to options pricing’, Annals of Applied Probability

14(4), 2681–2705.
A. Kebaier and A. Kohatsu-Higa (2008), ‘An optimal control variance reduction

method for density estimation’, Stochastic Processes and their Applications

118(2), 2143–2180.
P. Kloeden and E. Platen (1992), Numerical Solution of Stochastic Differential

Equations, Springer, Berlin.
F. Kuo, C. Schwab and I. Sloan (2012), ‘Multi-level quasi-Monte Carlo finite ele-

ment methods for a class of elliptic partial differential equations with random
coefficients’, ArXiv preprint: 1208.6349.

T. Kurtz (1982), Representation and approximation of counting processes, in Ad-

vances in filtering and optimal stochastic control, Vol. 42, Springer, pp. 177–
191.

P. L’Ecuyer (1990), ‘A unified view of the IPA, SF and LR gradient estimation
techniques’, Management Science 36(11), 1364–1383.

M. Ledoux and M. Talagrand (1991), Probability in Banach spaces: isoperimetry

and processes, Springer.
V. Lemaire and G. Pagès (2013), ‘Multilevel Richardson-Romberg extrapolation’,

ArXiv preprint: 1401.1177.
C. Lester, C. Yates, M. Giles and R. Baker (2015), ‘An adapted multi-level simula-

tion algorithm for stochastic biological systems’, Journal of Chemical Physics.
Q. Li (2007), Numerical Approximation for SDE, PhD thesis, University of Edin-

burgh.
H. Marxen (2010), ‘The multilevel Monte Carlo method used on a Lévy driven
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Itô processes with jump component’, Mathematische Nachrichten 138(1), 93–
104.

S. Mishra, C. Schwab and J. Sukys (2012), ‘Multi-level Monte Carlo finite vol-
ume methods for nonlinear systems of conservation laws in multi-dimensions’,
Journal of Computational Physics 231(8), 3365–3388.

A. Moraes, R. Tempone and P. Vilanova (2014a), ‘A multilevel adaptive reaction-
splitting simulation method for stochastic reaction networks’, ArXiv preprint

1406.1989.
A. Moraes, R. Tempone and P. Vilanova (2014b), ‘Multilevel hybrid Chernoff tau-

leap’, ArXiv preprint 1403.2943.
F. Müller, P. Jenny and D. Meyer (2013), ‘Multilevel Monte Carlo for two phase

flow and Buckley-Leverett transport in random heterogeneous porous media’,
Journal of Computational Physics 250, 685–702.

B. Niu, F. Hickernell, T. Müller-Gronbach and K. Ritter (2010), ‘Deterministic



70 M.B. Giles

multi-level algorithms for infinite-dimensional integration on R
N ’, Journal of

Complexity 27(3-4), 331–351.
E. Platen and N. Bruti-Liberati (2010), Numerical Solution of Stochastic Differen-

tial Equations With Jumps in Finance, Springer.
T. Primozic (2011), Estimating expected first passage times using multilevel Monte

Carlo algorithm, MSc thesis, University of Oxford.
M. Putko, A. Taylor, P. Newman and L. Green (2002), ‘Approach for input uncer-

tainty propagation and robust design in CFD using sensitivity derivatives’,
Journal of Fluids Engineering 124(1), 60–69.

C.-H. Rhee and P. Glynn (2012), A new approach to unbiased estimation for SDEs,
in Proceedings of the 2012 Winter Simulation Conference, IEEE.

C.-H. Rhee and P. Glynn (2013), ‘Unbiased estimation with square root conver-
gence for SDE models’, Submitted for publication.

M. Rosin, L. Ricketson, A. Dimits, R. Caflisch and B. Cohen (2014), ‘Multilevel
Monte Carlo simulation of Coulomb collisions’, Journal of Computational

Physics 247, 140–157.
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