This is page 1
Printer: Opaque this

On the iterative solution of
adjoint equations

Michael B. Giles
Oxford University Computing Laboratory

ABSTRACT This paper considers the iterative solution of the adjoint
equations which arise in the context of design optimisation. It is shown
that naive adjoining of the iterative solution of the original linearised equa-
tions results in an adjoint code which cannot be interpreted as an iterative
solution of the adjoint equations. However, this can be achieved through
appropriate algebraic manipulations. This is important in design optimisa-
tion because one can reduce the computational cost by starting the adjoint
iteration from the adjoint solution obtained in the previous design step.

1 Introduction

In computational fluid dynamics (CFD), one is interested in solving a set
of nonlinear discrete flow equations of the form

N(U,X) =0. (1.1)

Here X is a vector representing the coordinates of a set of computational
grid points, U is the vector of flow variables at those grid points and
N(U, X) is a differentiable vector function of the same dimension as U.

To solve these equations, many CFD algorithms use iterative methods
which can be written as

Untt =" — R(U™ X) N(U™ X), (1.2)

where R is a non-singular square matrix which is a differentiable function
of its arguments. If R were defined to be L~! where L = ON /U is the
non-singular Jacobian matrix, this would be the Newton-Raphson method
which converges quadratically in the final stage of convergence. However,
in the iterative methods used in CFD, R is a poor approximation to L~!
and therefore they exhibit linear convergence asymptotically, with the final
rate of convergence being given by the magnitude of the largest eigenvalue
of the matrix I — R(U, X) L(U, X), where I is the identity matrix.

2 Michael B. Giles, Oxford University Computing Laboratory

In design optimisation [1, 5, 9], the grid coordinates X depend on a
set of design parameters a, and one wishes to minimise a scalar objective
function J(U, X) by varying a. To achieve this using gradient-based opti-
misation methods [10], at each step in the optimisation process one needs
to determine the linear sensitivity of the objective function to changes in
a.

For a single design parameter, linearising the objective function gives

dJ oJ oJ

— = —u+ —. 1.3

da 0OU Oa (13)
Here u = dU /da is the linear sensitivity of the flow variables to changes in
the design parameter, which is obtained by linearising the flow equations
to give

Lu=f, (1.4)
where AN dX
I'="3% d’ (15)

and L and f are both functions of the nonlinear solution (U, X) for the
current value of the design parameter a.

Using forward mode automatic differentiation tools such as ADIFOR or
Odyssée (treating R(U, X) as a constant for maximum efficiency since its
linearisation is unnecessary because it is multiplied by N (U, X) which is
zero [13]) one can automatically generate a code for the iterative solution
of these linear flow equations. This will use the same iterative procedure
as the nonlinear equations and will correspond to the iteration

u"t =u™ — R(Lu™—f), (1.6)

starting from zero initial conditions. R is again a function of the nonlinear
solution (U, X), and the linear convergence rate for this will be exactly the
same as the asymptotic convergence rate of the nonlinear iteration as it is
controlled by the same iteration matrix I — RL. However, if there are many
design parameters, each one gives rise to a different vector f and linear
flow perturbation u. Thus, the computational cost increases linearly with
the number of design variables.

To avoid this increasing cost, one can use adjoint methods. The evalua-
tion of the second term on the r.h.s. of Equation (1.3),

aJ 9JdX

da 0X da’
is straightforward and inexpensive, so we focus attention on the first term,
which we choose to write as an inner product (7,u) = @' u, by defining

u = Q !

1. On the iterative solution of adjoint equations 3

Since Lu — f = 0, simple algebraic manipulation yields
@u) = (@u) = (f, Lu=f) = (f,.f) = (LT f-u,u) = (f,)
when f satisfies the adjoint equation
LTf=u. (1.7)

The advantage of the adjoint approach is that the calculation of F' and the
evaluation of the inner product (f, f) for each design variable is negligible
compared to the cost of determining the single adjoint solution f, and so the
total cost is approximately independent of the number of design variables.

The issue to be addressed in this paper is how to obtain the adjoint solu-
tion f as the limit of a fixed point iteration which is the natural counterpart
to that used for the nonlinear and linear equations, and which therefore has
exactly the same rate of iterative convergence. It will be shown that the
naive application of adjoint methodology to the iterative solution of the lin-
ear equations results in an algorithm in which the working variables do not
correspond to the adjoint variables f. However, with a slight reformulation
it can be cast into the desired form.

The benefit of the adjoint calculation being formulated as a fixed point
iteration is that one can obtain very significant computational savings if one
can provide a good initialisation for the adjoint variables. This is possible in
nonlinear design optimisation, since the adjoint variables computed for one
step in the design optimisation can be used to initialise the computation of
the adjoint variables for the next step. Indeed, it is usually found that the
computational cost of the entire optimisation process is minimised by not
fully converging the nonlinear and adjoint flow calculations at each design
step, and instead letting the nonlinear and adjoint flow variables as well as
the design parameters all evolve towards the optimum solution [11].

This issue of the iterative solution of adjoint equations has been inves-
tigated previously by Christianson [3, 4], but the context for his work is
more abstract; the references should be consulted for further information.

2 Continuous equations

The iterative solution methods used in CFD are often based on an unsteady
evolution towards the solution of a steady system of equations. Therefore,
we begin by considering the unsteady solution u(t) of the coupled system
of differential equations

du

— =—P(Lu-—f), 1.8

== —P(Lu-) (18)
for some constant preconditioning matrix P, subject to the initial condi-
tions u(0) = 0. The functional of interest is the inner product (@, u(T)),

4 Michael B. Giles, Oxford University Computing Laboratory

with the final time T chosen to be sufficiently large that du/dt is very
small and therefore u(T") is very close to being the solution of the steady
equations.

Introducing the unsteady adjoint variable @, (t), and using integration
by parts, the unsteady adjoint formulation is given by

T
(@, u(T)) (ﬂ,u(T))—/o (uu, %+P(Lu—f)> dt
= (u—u,(T),u(T))

T _
du,,
—/ <—i +LTPTq,, u> — (P, f) dt
0

dt
T
= [(1.9)
0
where @, (t) satisfies the differential equation
du —
dt“ =L"P"q,, (1.10)

which is solved backwards in time subject to the final condition @, (T") = w.
With the equations in this form, one would obtain the correct value
for the functional, exactly the same value as one would obtain from the
unsteady linear equations over the same time interval, but it is not im-
mediately clear how the working variables u,(t) are related to the steady
adjoint solution f.
To obtain the link with the steady adjoint equation, we define

T
f(t) = / PTg, dt, (1.11)
t
so that the functional is (f(0), f) and f(t) satisfies the differential equation
7
—d—]: = prTaq,

= -P"(L"f-q), (1.12)

subject to the final condition f(T) = 0.

In this form, the connection with the iterative solution of the steady ad-
joint equations becomes apparent. f(t) evolves towards the steady adjoint
solution, and if T is very large then f(0) will be almost equal to the steady
adjoint solution.

1. On the iterative solution of adjoint equations 5
3 Discrete equations

Having considered the continuous equations to gain insight into the issue,
we now consider the discrete equations and their iterative solution. As de-
scribed in the Introduction, many standard iterative algorithms for solving
the linearised equations can be expressed as

u"t = u" — R(Lu™—f). (1.13)

After performing N iterations starting from the initial condition u® = 0,
the functional (m,u”) is evaluated using the final value u”.

Proceeding as before to find the discrete adjoint algorithm yields

N-1
(ﬂv uN) = (ﬂv uN) - Z (ﬂz+1’un+1_un +R (L un_f))
n=0
= (ﬂ_ﬂuNauN)
N-1
= {-@" -alu") + (LRt u) — (RTart,)}
n=0
= (ﬂ—ﬂg,uN)
N-1
+ 3 (@ - LRI) + (BT)
n=0

in which we have used the following identity which is the discrete equivalent
of integration by parts,

N—-1 N—-1
Z o™t (bn—',-l_bn) = aVpN — 00 — Z(an+1_an) b7
n=0 n=0

Consequently, if @, satisfies the difference equation

ot =ut — LTRTan (1.14)

u

. L. _ _ . . —0
subject to the final condition @Y = %, then the functional is equal to (f , f)

where ?0 is defined to be the accumulated sum
o N
F=> RMupt. (1.15)
m=0

The above description of the discrete adjoint algorithm corresponds to
what would be generated by reverse mode automatic differentiation tools
such as Odyssée [6], ADJIFOR [2] or TAMC [7]. As it stands, it is not clear
what the connection is between the adjoint solution f and either the sum

-0
f or the working variable .

6 Michael B. Giles, Oxford University Computing Laboratory
As with the continuous equations, it is preferable to cast the problem

as a fixed point iteration towards the solution of the discrete adjoint equa-
. . —=n
tions. To do this we define f for 0 <n < N to be

N—1
F'=> RrRMart, (1.16)
m=n

with fN = 0. The difference equation for f is

-7 = Rt

N—-1

= RT (H— > (ﬂZ’“—ﬂZ’))
m=n-+1
N-—1

— RT (H— Z LTRTﬂuerl)
m=n-+1

- _RT (LT?”“—E), (1.17)

showing that the new working variable ?n evolves towards the solution
of the adjoint equations. The rate of convergence is exactly the same as
for the linear iteration since it is governed by the matrix I —RT LT whose
eigenvalues are the same as its transpose I — LR and hence also I — RL,
since if v is an eigenvector of the former then L~!v is an eigenvector of the
latter with the same eigenvalue.

4 Applications

In applying the theory presented above to formulate adjoint algorithms,
the key is to first express the nonlinear and linear iterative method in the
correct form to determine the matrix R, and thereby determine the matrix
RT for the adjoint iterative scheme. Note that not all algorithms can be
expressed in the above way with a constant matrix R. In the conjugate
gradient algorithm, for example, the matrix R changes from one iteration
to the next.

Reference [8] applies the theory to two kinds of iterative solver. The first
is a quite general class of Runge-Kutta methods which is used extensively
in CFD, and includes both preconditioning and partial updates for viscous
and smoothing fluxes. Putting the linear iterative solver into the correct
form requires a number of manipulations, and having then determined RT
further manipulations are necessary to express the adjoint algorithm in a
convenient form for programming implementation. The correctness of the
analysis has been tested with a simple MATLAB program which can solve
either a simple scalar o.d.e. or an upwind approximation to the convection
equation with a harmonic source term. In the latter case, the theory pre-
sented in this paper has been extended to include problems with complex

1. On the iterative solution of adjoint equations 7

variables, by replacing all vector and matrix transposes by their complex
conjugates. In either case, it is verified that an identical number of itera-
tions of either the linear problem or its adjoint yields identical values for
the functional of interest.

Reference [8] also briefly considers the application of the theory to pre-
conditioned multigrid methods [12], in which a sequence of coarser grids
is used to accelerate the iterative convergence on the finest grid. Provided
the smoothing algorithm used on each grid level within the multigrid solver
is of the form given in Equation (1.6), it shown that all is well if the re-
striction operator for the adjoint solver is the transpose of the prolongation
operator for the linear solver, and wvice versa. This feature has been tested
in unpublished research in developing a three-dimensional adjoint Navier-
Stokes code using unstructured grids. Again, identical values have been
obtained for the functional of interest after equal number of multigrid cy-
cles with either the linear solver or its adjoint counterpart.

5 Conclusions

In this paper we have shown that the naive application of adjoint meth-
ods to the iterative solution of a linear system of equations produces an
algorithm which does not correspond to the iterative solution of the corre-
sponding adjoint system of equations. However, with some algebraic ma-
nipulations it can be transformed into an algorithm in which the working
variables do converge to the solution of the adjoint equations.

Mathematically, the two approaches produce identical results if the sec-
ond calculation starts from zero initial conditions. The advantage of the
second formulation is that the computational costs can be greatly reduced
if one has a good initial estimate for the solution. This happens in nonlin-
ear design optimisation in which the adjoint solution for one step in the
optimisation can be used as the initial conditions for the adjoint calculation
in the following step.

This has implications for the use of automatic differentiation software in
generating adjoint programs. The AD tools can still be used to generate
the subroutines which construct the adjoint system of linear equations but
to achieve the maximum computational efficiency it appears it is necessary
to manually program the higher-level fixed point iterative solver.

Acknowledgments

The author is very grateful to Prof. Andreas Griewank for his considerable
help in the writing of this paper. This research was supported by EPSRC
under grant GR/L95700, and by Rolls-Royce plc and BAe Systems plc.

8

6
[1]

[2]

3]

[4]

[5]

[9]

[10]

[11]

Michael B. Giles, Oxford University Computing Laboratory

REFERENCES

W.K. Anderson and D.L. Bonhaus. Airfoil design on unstructured
grids for turbulent flows. AIAA J., 37(2):185-191, 1999.

A. Carle, M. Fagan, and L.L. Green. Preliminary results from the
application of automated code generation to CFL3D. ATAA Paper
98-4807, 1998.

B. Christianson. Reverse accumulation and attractive fixed points.
Opt. Meth. and Software, 3(4):311-326, 1994.

B. Christianson. Reverse accumulation and implicit functions. Opt.
Meth. and Software, 9(4):307-322, 1998.

J. Elliott and J. Peraire. Practical 3D aerodynamic design and opti-
mization using unstructured meshes. AIAA J., 35(9):1479-1485, 1997.

C. Faure. Splitting of algebraic expressions for automatic differenti-
ation. Proceedings of the second STAM Int. Workshop on Computa-
tional Differentiation, 1996.

R. Giering and T. Kaminski. Recipes for adjoint code construction.
ACM Trans. Math. Software, 24(4):437-474, 1998.

M.B. Giles. On the use of Runge-Kutta time-marching and multi-
grid for the solution of steady adjoint equations. Technical Report
NAO00/10, Oxford University Computing Laboratory, 2000.

M.B. Giles and N.A. Pierce. An introduction to the adjoint approach
to design. Furopean Journal of Flow, Turbulence and Control, to ap-
pear, 2000.

P. Gill, W. Murray, and M. Wright. Practical optimization. Academic
Press, 1981.

A. Jameson and J. Vassberg. Studies of alternate numerical optimiza-
tion methods applied to the brachistochrone problem. OptiCON 99
Conference, 1999.

N.A. Pierce and M.B. Giles. Preconditioned multigrid methods for

compressible flow calculations on stretched meshes. J. Comput. Phys.,
136:425-445, 1997.

L.L. Sherman, A.C. Taylor III, L.L.. Green, P.A. Newman, G.W. Hou,
and V.M. Korivi. First and second order aerodynamic sensitivity
derivatives via automautic differentiation with incremental iterative
methods. J. Comput. Phys., 129(2):307-331, 1996.

