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hael B. GilesOxford University Computing LaboratoryABSTRACT This paper 
onsiders the iterative solution of the adjointequations whi
h arise in the 
ontext of design optimisation. It is shownthat naive adjoining of the iterative solution of the original linearised equa-tions results in an adjoint 
ode whi
h 
annot be interpreted as an iterativesolution of the adjoint equations. However, this 
an be a
hieved throughappropriate algebrai
 manipulations. This is important in design optimisa-tion be
ause one 
an redu
e the 
omputational 
ost by starting the adjointiteration from the adjoint solution obtained in the previous design step.1 Introdu
tionIn 
omputational 
uid dynami
s (CFD), one is interested in solving a setof nonlinear dis
rete 
ow equations of the formN(U;X) = 0: (1.1)Here X is a ve
tor representing the 
oordinates of a set of 
omputationalgrid points, U is the ve
tor of 
ow variables at those grid points andN(U;X) is a di�erentiable ve
tor fun
tion of the same dimension as U .To solve these equations, many CFD algorithms use iterative methodswhi
h 
an be written asUn+1 = Un �R(Un; X)N(Un; X); (1.2)where R is a non-singular square matrix whi
h is a di�erentiable fun
tionof its arguments. If R were de�ned to be L�1 where L = �N=�U is thenon-singular Ja
obian matrix, this would be the Newton-Raphson methodwhi
h 
onverges quadrati
ally in the �nal stage of 
onvergen
e. However,in the iterative methods used in CFD, R is a poor approximation to L�1and therefore they exhibit linear 
onvergen
e asymptoti
ally, with the �nalrate of 
onvergen
e being given by the magnitude of the largest eigenvalueof the matrix I �R(U;X)L(U;X), where I is the identity matrix.



2 Mi
hael B. Giles, Oxford University Computing LaboratoryIn design optimisation [1, 5, 9℄, the grid 
oordinates X depend on aset of design parameters �, and one wishes to minimise a s
alar obje
tivefun
tion J(U;X) by varying �. To a
hieve this using gradient-based opti-misation methods [10℄, at ea
h step in the optimisation pro
ess one needsto determine the linear sensitivity of the obje
tive fun
tion to 
hanges in�.For a single design parameter, linearising the obje
tive fun
tion givesdJd� = �J�U u+ �J��: (1.3)Here u � dU=d� is the linear sensitivity of the 
ow variables to 
hanges inthe design parameter, whi
h is obtained by linearising the 
ow equationsto give Lu = f; (1.4)where f = ��N�X dXd� ; (1.5)and L and f are both fun
tions of the nonlinear solution (U;X) for the
urrent value of the design parameter �.Using forward mode automati
 di�erentiation tools su
h as ADIFOR orOdyss�ee (treating R(U;X) as a 
onstant for maximum eÆ
ien
y sin
e itslinearisation is unne
essary be
ause it is multiplied by N(U;X) whi
h iszero [13℄) one 
an automati
ally generate a 
ode for the iterative solutionof these linear 
ow equations. This will use the same iterative pro
edureas the nonlinear equations and will 
orrespond to the iterationun+1 = un �R (Lun�f); (1.6)starting from zero initial 
onditions. R is again a fun
tion of the nonlinearsolution (U;X), and the linear 
onvergen
e rate for this will be exa
tly thesame as the asymptoti
 
onvergen
e rate of the nonlinear iteration as it is
ontrolled by the same iteration matrix I�RL. However, if there are manydesign parameters, ea
h one gives rise to a di�erent ve
tor f and linear
ow perturbation u. Thus, the 
omputational 
ost in
reases linearly withthe number of design variables.To avoid this in
reasing 
ost, one 
an use adjoint methods. The evalua-tion of the se
ond term on the r.h.s. of Equation (1.3),�J�� = �J�X dXd� ;is straightforward and inexpensive, so we fo
us attention on the �rst term,whi
h we 
hoose to write as an inner produ
t (u; u) � uTu, by de�ningu � � �J�U�T :



1. On the iterative solution of adjoint equations 3Sin
e Lu� f = 0, simple algebrai
 manipulation yields(u; u) = (u; u)� (f; Lu�f) = (f; f)� (LT f�u; u) = (f; f)when f satis�es the adjoint equationLT f = u: (1.7)The advantage of the adjoint approa
h is that the 
al
ulation of F and theevaluation of the inner produ
t (f; f) for ea
h design variable is negligible
ompared to the 
ost of determining the single adjoint solution f , and so thetotal 
ost is approximately independent of the number of design variables.The issue to be addressed in this paper is how to obtain the adjoint solu-tion f as the limit of a �xed point iteration whi
h is the natural 
ounterpartto that used for the nonlinear and linear equations, and whi
h therefore hasexa
tly the same rate of iterative 
onvergen
e. It will be shown that thenaive appli
ation of adjoint methodology to the iterative solution of the lin-ear equations results in an algorithm in whi
h the working variables do not
orrespond to the adjoint variables f . However, with a slight reformulationit 
an be 
ast into the desired form.The bene�t of the adjoint 
al
ulation being formulated as a �xed pointiteration is that one 
an obtain very signi�
ant 
omputational savings if one
an provide a good initialisation for the adjoint variables. This is possible innonlinear design optimisation, sin
e the adjoint variables 
omputed for onestep in the design optimisation 
an be used to initialise the 
omputation ofthe adjoint variables for the next step. Indeed, it is usually found that the
omputational 
ost of the entire optimisation pro
ess is minimised by notfully 
onverging the nonlinear and adjoint 
ow 
al
ulations at ea
h designstep, and instead letting the nonlinear and adjoint 
ow variables as well asthe design parameters all evolve towards the optimum solution [11℄.This issue of the iterative solution of adjoint equations has been inves-tigated previously by Christianson [3, 4℄, but the 
ontext for his work ismore abstra
t; the referen
es should be 
onsulted for further information.2 Continuous equationsThe iterative solution methods used in CFD are often based on an unsteadyevolution towards the solution of a steady system of equations. Therefore,we begin by 
onsidering the unsteady solution u(t) of the 
oupled systemof di�erential equations dudt = �P (Lu� f); (1.8)for some 
onstant pre
onditioning matrix P , subje
t to the initial 
ondi-tions u(0) = 0. The fun
tional of interest is the inner produ
t (u; u(T )),



4 Mi
hael B. Giles, Oxford University Computing Laboratorywith the �nal time T 
hosen to be suÆ
iently large that du=dt is verysmall and therefore u(T ) is very 
lose to being the solution of the steadyequations.Introdu
ing the unsteady adjoint variable uu(t), and using integrationby parts, the unsteady adjoint formulation is given by(u; u(T )) = (u; u(T ))� Z T0 �uu; dudt + P (Lu�f)�dt= (u�uu(T ); u(T ))� Z T0 ��duudt + LTP Tuu; u�� (P Tuu; f) dt= Z T0 (P Tuu; f) dt; (1.9)where uu(t) satis�es the di�erential equationduudt = LTP Tuu; (1.10)whi
h is solved ba
kwards in time subje
t to the �nal 
ondition uu(T ) = u.With the equations in this form, one would obtain the 
orre
t valuefor the fun
tional, exa
tly the same value as one would obtain from theunsteady linear equations over the same time interval, but it is not im-mediately 
lear how the working variables uu(t) are related to the steadyadjoint solution f .To obtain the link with the steady adjoint equation, we de�nef(t) = Z Tt P Tuu dt; (1.11)so that the fun
tional is (f(0); f) and f(t) satis�es the di�erential equation�dfdt = P Tuu= P T  u� Z Tt duudt dt!= P T  u� Z Tt LTP Tuu dt!= �P T �LT f � u� ; (1.12)subje
t to the �nal 
ondition f(T ) = 0.In this form, the 
onne
tion with the iterative solution of the steady ad-joint equations be
omes apparent. f(t) evolves towards the steady adjointsolution, and if T is very large then f(0) will be almost equal to the steadyadjoint solution.



1. On the iterative solution of adjoint equations 53 Dis
rete equationsHaving 
onsidered the 
ontinuous equations to gain insight into the issue,we now 
onsider the dis
rete equations and their iterative solution. As de-s
ribed in the Introdu
tion, many standard iterative algorithms for solvingthe linearised equations 
an be expressed asun+1 = un �R (Lun�f): (1.13)After performing N iterations starting from the initial 
ondition u0 = 0,the fun
tional (u; uN ) is evaluated using the �nal value uN .Pro
eeding as before to �nd the dis
rete adjoint algorithm yields(u; uN) = (u; uN)� N�1Xn=0 �un+1u ; un+1�un +R (Lun�f)�= (u�uNu ; uN)�N�1Xn=0 ��(un+1u �unu; un) + (LTRTun+1u ; un)� (RTun+1u ; f)	= (u�uNu ; uN)+N�1Xn=0 �(un+1u �unu � LTRTun+1u ; un) + (RTun+1u ; f)	 ;in whi
h we have used the following identity whi
h is the dis
rete equivalentof integration by parts,N�1Xn=0 an+1 (bn+1�bn) = aNbN � a0b0 � N�1Xn=0(an+1�an) bn:Consequently, if uu satis�es the di�eren
e equationunu = un+1u � LTRTun+1u ; (1.14)subje
t to the �nal 
ondition uNu = u, then the fun
tional is equal to (f 0; f)where f 0 is de�ned to be the a

umulated sumf 0 = N�1Xm=0RTum+1u : (1.15)The above des
ription of the dis
rete adjoint algorithm 
orresponds towhat would be generated by reverse mode automati
 di�erentiation toolssu
h as Odyss�ee [6℄, ADJIFOR [2℄ or TAMC [7℄. As it stands, it is not 
learwhat the 
onne
tion is between the adjoint solution f and either the sumf 0 or the working variable unu.



6 Mi
hael B. Giles, Oxford University Computing LaboratoryAs with the 
ontinuous equations, it is preferable to 
ast the problemas a �xed point iteration towards the solution of the dis
rete adjoint equa-tions. To do this we de�ne fn for 0 � n < N to befn = N�1Xm=nRTum+1u ; (1.16)with fN = 0. The di�eren
e equation for fn isfn � fn+1 = RTun+1u= RT  u� N�1Xm=n+1(um+1u �umu )!= RT  u� N�1Xm=n+1LTRTum+1u != �RT �LT fn+1 � u� ; (1.17)showing that the new working variable fn evolves towards the solutionof the adjoint equations. The rate of 
onvergen
e is exa
tly the same asfor the linear iteration sin
e it is governed by the matrix I�RTLT whoseeigenvalues are the same as its transpose I�LR and hen
e also I�RL,sin
e if v is an eigenve
tor of the former then L�1v is an eigenve
tor of thelatter with the same eigenvalue.4 Appli
ationsIn applying the theory presented above to formulate adjoint algorithms,the key is to �rst express the nonlinear and linear iterative method in the
orre
t form to determine the matrix R, and thereby determine the matrixRT for the adjoint iterative s
heme. Note that not all algorithms 
an beexpressed in the above way with a 
onstant matrix R. In the 
onjugategradient algorithm, for example, the matrix R 
hanges from one iterationto the next.Referen
e [8℄ applies the theory to two kinds of iterative solver. The �rstis a quite general 
lass of Runge-Kutta methods whi
h is used extensivelyin CFD, and in
ludes both pre
onditioning and partial updates for vis
ousand smoothing 
uxes. Putting the linear iterative solver into the 
orre
tform requires a number of manipulations, and having then determined RTfurther manipulations are ne
essary to express the adjoint algorithm in a
onvenient form for programming implementation. The 
orre
tness of theanalysis has been tested with a simple MATLAB program whi
h 
an solveeither a simple s
alar o.d.e. or an upwind approximation to the 
onve
tionequation with a harmoni
 sour
e term. In the latter 
ase, the theory pre-sented in this paper has been extended to in
lude problems with 
omplex
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ing all ve
tor and matrix transposes by their 
omplex
onjugates. In either 
ase, it is veri�ed that an identi
al number of itera-tions of either the linear problem or its adjoint yields identi
al values forthe fun
tional of interest.Referen
e [8℄ also brie
y 
onsiders the appli
ation of the theory to pre-
onditioned multigrid methods [12℄, in whi
h a sequen
e of 
oarser gridsis used to a

elerate the iterative 
onvergen
e on the �nest grid. Providedthe smoothing algorithm used on ea
h grid level within the multigrid solveris of the form given in Equation (1.6), it shown that all is well if the re-stri
tion operator for the adjoint solver is the transpose of the prolongationoperator for the linear solver, and vi
e versa. This feature has been testedin unpublished resear
h in developing a three-dimensional adjoint Navier-Stokes 
ode using unstru
tured grids. Again, identi
al values have beenobtained for the fun
tional of interest after equal number of multigrid 
y-
les with either the linear solver or its adjoint 
ounterpart.5 Con
lusionsIn this paper we have shown that the naive appli
ation of adjoint meth-ods to the iterative solution of a linear system of equations produ
es analgorithm whi
h does not 
orrespond to the iterative solution of the 
orre-sponding adjoint system of equations. However, with some algebrai
 ma-nipulations it 
an be transformed into an algorithm in whi
h the workingvariables do 
onverge to the solution of the adjoint equations.Mathemati
ally, the two approa
hes produ
e identi
al results if the se
-ond 
al
ulation starts from zero initial 
onditions. The advantage of these
ond formulation is that the 
omputational 
osts 
an be greatly redu
edif one has a good initial estimate for the solution. This happens in nonlin-ear design optimisation in whi
h the adjoint solution for one step in theoptimisation 
an be used as the initial 
onditions for the adjoint 
al
ulationin the following step.This has impli
ations for the use of automati
 di�erentiation software ingenerating adjoint programs. The AD tools 
an still be used to generatethe subroutines whi
h 
onstru
t the adjoint system of linear equations butto a
hieve the maximum 
omputational eÆ
ien
y it appears it is ne
essaryto manually program the higher-level �xed point iterative solver.A
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