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The linear flow analysis of turbomachinery aeroelasticity views the un-
steady flow as the sum of a background nonlinear flow field and a linear
harmonic perturbation. The background state is usually determined by
solving the nonlinear steady flow equations. The flow solution representing
the amplitude and phase of the unsteady perturbation is given by the solu-
tion of a large complex linear system which results from the linearization of
the time-dependent nonlinear equations about the background state. The
solution procedure of the linear harmonic Euler/Navier-Stokes solver of
the HYDRA suite of parallel FORTRAN codes consists of a preconditioned
multigrid iteration which in some circumstances becomes numerically un-
stable. The results of previous investigations have already pointed at the
physical origin of these numerical instabilities and have also demonstrated
the code stabilization achieved by using the real GMRES and RPM al-
gorithms to stabilize the existing preconditioned multigrid iteration. This
approach considered an equivalent augmented real form of the original com-

plex system of equations. This paper summarizes the implementation of
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the complex GMRES and RPM algorithms which are applied directly to
the solution of the complex harmonic equations. Results show that the
complex solvers not only stabilize the code, but also lead to a substantial
enhancement of the computational performance with respect to their real
counterparts. The paper also reports the results of a nonlinear unsteady
calculation which further emphasizes the physical origin of the numerical

instabilities.

Nomenclature

coefficient matrix of complex system
right-hand-side of complex linear system
right-hand-side of Picard iteration

Jacobian of F

projection of F onto P

projection of F onto Q

Hessenberg matrix of size ((m + 1) x m)
complex preconditioner

subspace associated with dominant modes
projection of x onto P

orthogonal complement of P

projection of x onto Q

matrix of m Krylov vectors

m'™ Krylov vector

eigenvector of M~'A

vector unknown of complex linear equations
orthonormal basis of P

vector of current coordinate variables of p in Z

Symbols

A

P
o
¢

eigenvalue of M~'A
spectral radius
asymptotic convergence rate

vector of updated coordinate variables of p in Z
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I. Introduction

LADE flutter and forced response of turbomachinery blade-rows' are aeroelastic phenom-

ena which may both lead to dramatic mechanical failures if not properly accounted for in
the design of an aero-engine. Flutter occurs if the working fluid feeds energy into the vibrat-
ing blades, while forced response vibrations are due to an external source of excitation such
as the wakes shed by an upstream blade-row. The estimate of both the mean energy flux
between fluid and structure in the flutter case and the unsteady forces acting on the blades
in the forced response problem requires knowledge of the unsteady flow field. The methods
for the analysis of turbomachinery aeroelasticity vary from uncoupled linearized potential
flow solvers? in which the structure and the aerodynamics are decoupled and a relatively
simple flow model is used, to fully-coupled nonlinear three-dimensional unsteady viscous
methods® in which the structural and aerodynamic time-dependent equations are solved si-
multaneously and the aerodynamics is modeled using the Reynolds-averaged Navier-Stokes
equations. Within this range the uncoupled linear harmonic Euler and Navier-Stokes (NS)
methods* have proved to be a successful compromise between accuracy and cost. This ap-
proach relies on the fact that the level of unsteadiness in turbomachinery flows is usually
small and hence views it as a small perturbation of a space-periodic base or background
flow. This latter is typically determined by solving the nonlinear steady flow equations, and
for this reason it is often referred to as steady flow. For reasons thoroughly discussed in
reference’ and briefly sketched below, however, there are circumstances in which the use
of the adjective ’steady’ is inappropriate and hence we will refer to the state used for the
linearization as 'base’ or 'background’ flow in the rest of this paper. Due to the cyclic pe-
riodicity of the steady flow, the nonlinear equations are solved on a computational domain
consisting of a single blade passage. The unsteady flow field can then be linearized about
the background state and due to linearity can be decomposed into a sum of harmonic terms,
each of which can be computed independently. Assuming that all blades of the blade-row
have identical structural and geometric properties, the harmonic flow analysis can also focus
on a single blade passage rather than the whole blade-row, leading to a great reduction of
computational costs. This is achieved by introducing a complex periodic boundary condition,
that is a phase-shift between the two periodic boundaries known as the Inter-Blade Phase
Angle (IBPA). The small amplitude of the unsteady aerodynamic forces with respect to the

mechanical forces also allows one to neglect the aerodynamic coupling of structural modes
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and the investigation can be carried out considering one mode at a time. In the flutter
case the main source of unsteadiness is the blade vibration associated with the structural
mode under investigation, and this latter is determined in a pre-processing phase by means
of a finite-element structural program. In the forced response problem the flow unsteadiness
originates instead from a known incoming gust, such as the wakes shed by an upstream
blade-row. The interested reader is referred to reference® for the Lagrangian formulation
of turbomachinery aeroelasticity and detailed algebraic models of the linear harmonic Euler
and NS equations in the context of blade flutter and forced response.

The HYDRA suite of parallel FORTRAN codes includes a nonlinear® and a linear har-
monic’ Euler/NS solver, both using the one-equation Spalart-Allmaras turbulence model®
for closure in the case of turbulent flows (the validation of these codes is documented in ref-

erences® "% 10:9)

. The solution procedure of both solvers is iterative and is based on Runge-
Kutta time-marching accelerated by a Jacobi preconditioner and a multigrid algorithm. This
preconditioned multigrid iteration can be viewed as a Picard or Fixed-Point Iteration (FPI).
Usually the linear code converges without difficulty, but problems are encountered in situa-
tions in which the base flow calculation itself fails to converge to a steady state but instead
finishes in a low-level limit cycle, often related to some physical phenomenon such as vortex
shedding at a blunt trailing edge,'"'” tip leakage flows,'® unsteady shock/boundary layer or
shock/wake interaction. In these circumstances the linear FPI on which the harmonic code is
based becomes unstable, leading to an exponential growth of the residuals. The relationship
between these numerical instabilities and the physical features of the underlying base flow is

"5 which also document the successful implementation of a restarted GMRES

discussed in,
algorithm'* aimed at retrieving the numerical stability of the linear code. For large three-
dimensional problems, however, the restarted GMRES solver may become computationally
too expensive because the overall memory required by the GMRES code for an acceptable
convergence rate can be twice as much that used by the standard FPI-based code. In order
to overcome this problem, an alternative algorithm had been implemented in the linear code
(HYDLIN), namely the Recursive Projection Method> (RPM). The use of RPM led to both
the code stabilization and a reduction of the memory usage with respect to the GMRES
code.'®® As explained in the following section, we initially considered an augmented real
form of the (complex) harmonic equations, and thus we implemented the real GMRES and
RPM algorithms in the linear flow solver. However it was later thought that the use of

the complex counterparts of these two algorithms for the solution of the original complex
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system could result in a significant enhancement of the computational performance. The
two complex solvers have been implemented and this has turned out to be true.

The main objectives of this paper are a) summarize the implementation of the com-
plex GMRES and RPM solvers in HYDLIN and b) demonstrate the significant improvement
of the computational performance achieved by their use. Section II presents the real and
complex FPI’s in the framework of the linear computational fluid dynamics (CFD) solver
HYDLIN, and addresses the mathematical and numerical implications of the real and com-
plex viewpoints. In section III we explain why we expect the complex GMRES algorithm
to have a better performance than its real counterpart and document the implementation of
the complex solver. The complex RPM algorithm is reported in section [V. The enhanced
computational performance of the complex solvers is then demonstrated in sections V and VI
which consider respectively the flutter analysis of a two-dimensional turbine section for a
transonic flow regime and that of a civil engine fan rotor for a near-stall operating condition.
Section V also presents the results of a nonlinear time-accurate simulation providing further
evidence of the relationship between the physical unsteadiness of the background flow and
the numerical instabilities of the FPI-based linear solver. The conclusions of this work are

finally summarized in section VII.

II. Linear equations and fixed-point iteration

The discrete linear harmonic equations can be viewed as the complex non-hermitian
linear system:

Ax=Db. (1)

The operator A depends on the Jacobian of the nonlinear flow equations, the constant
vector b depends on the source of unsteadiness (blade motion in flutter applications and
incoming gust in forced response problems) and the complex unknown x yields the amplitude
and phase of the sought unsteady flow. The dimension k of system (1) is given by the product
of the number of grid nodes and flow variables. For typical three-dimensional single-blade
viscous aeroelastic analyses, the former parameter varies between 10° and 107 whereas the
latter one is equal to 6 if a one-equation turbulence model is adopted. The construction of the
linearized Euler and NS equations represented by equation (1) is thoroughly documented in

reference.” This linear system could be conveniently solved by means of the complex Picard
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1teration:
Xp1= ([ — M A)x, + M, (2)

in which M~! is a preconditioning operator. The linear CFD code HYDLIN, however, has
been written using real arithmetic, that is considering real vectors of size 2k with the factor 2
accounting for real and imaginary part, rather than complex vectors of size k. This choice has
been made for reasons of computational efficiency and because of errors sometimes introduced
by highly optimizing FORTRAN compilers when dealing with complex arithmetic. In other

words, the code solves the augmented real system:
AX' =1, (3)
with

(R
3(4) R(4) 3(x) 3(b)

The systems (1) and (3) have the same solution, because if x* satisfies equation (1), then
x" = (R(x*) S(x*))7 is the solution of system (3). Therefore the real Picard iteration on
which the linear code is based, is:

X1 = (I — M A%, + M, (4)

in which M"~" is a (2 x 2) block matrix with the same block structure as A’.

The iteration (4) is mathematically equivalent to the iteration (2), because it leads to the
same real update of the solution when the initial complex state x,, of dimension & is stored
in the real vector x’,, of dimension 2k. Furthermore the numerical execution of (4) requires
fewer floating point operations than that of (2) would do because almost all elements of A are
either purely real or purely imaginary. The matrices associated with the operators M'~! and
A’ are not built explicitly in HYDLIN, as the code determines the matrix-vector products
M'~1A'x' directly from the numerical fluxes. This matrix-free approach substantially reduces
the required memory allocation. Note also that the latter quantity would not change if the
complex FPI (2) were used, due to matrix-free architecture.

The pseudo-code of the preconditioned multigrid iteration looks like:
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X' = X'sart

x' = MG(A',x', b’ ny)

X' finish = X'
where MG is the core routine which performs n, multigrid cycles of the preconditioned
FPI (4), X' stqr¢ is the initial state and x'finsn is the solution after the n iterations.

The preconditioner M'~! consists of a 5-stage Runge-Kutta algorithm, a Jacobi precon-
ditioner and a geometric multigrid scheme. Since the Jacobi preconditioner is based on the
solution of the nonlinear steady equations, M~! depends on the particular problem under
investigation and also on the choice of several numerical parameters, such as the number
of iterations on each grid level. More details on the preconditioned solution strategy of the

linearized flow equations can be found in references'’ and.”

IIT. GMRES stabilization

Linear stability analysis of the iteration (4) shows that a necessary condition for its
convergence is that all the eigenvalues of (I — M’'~'A’) lie within the unit circle centered at
the origin in the complex plane or equivalently that all the eigenvalues of M’'~'A’ lie in the
unit disc centered at (1,0). For most aeroelastic problems of practical interest, this condition
is fulfilled and the linear code converges without difficulty. In some cases, however, the FPI
fails to converge because of a few complex eigenvalues lying outside the unit disc and causing
the exponential growth of the residual. The physical origin of these outliers has already been
highlighted in,” by means of an Arnoldi-based eigenmode analysis of the operator M'™A'.
That paper also reports the successful application of a preconditioned restarted real GMRES
solver for the solution of system (3) in the presence of outliers. However, it was later supposed
that the use of the complex GMRES solver for the solution of system (1) could result in
a reduction of the computational work required for achieving a given level of convergence.
This was motivated by the fact that the eigenspace of the complex system is a subset of that
of its real augmented counterpart. More precisely, all the eigenvalues of M’ ~A" are complex
conjugate pairs, whereas only one eigenvalue of each pair is also an eigenvalue of M.
Hence the convergence rate of complex GMRES may be higher than that of real GMRES
for a given number of Krylov vectors because the former solver captures more distinct (that
is, not conjugate) eigenmodes performing the same computational work. The relationship

between the real and complex spectrum can be established as follows. Let (A, v) be an
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eigenpair of M~'A. Then

A suitable linear combination of the rows of (5) gives

RMA) —3(MtA) R(v) +iS(v) R
S(MTA) R(M'A) S(v) — iR(v) I(Av) — iR(A\v)

wrn( )= %)

Since M'™'A" is real, taking the complex conjugate of the equation above yields:

or

()| =5 °
i i

Thus we see that if (), v) is an eigenpair of M4, then (/\, [ .
—iv

]) is the correspond-

ing eigenpair of M'~A’. However, (\,®) is not necessarily an eigenpair of M4, though
A, 'u is an eigenpair of M'~A'.
0
The complex GMRES algorithm is based on the progressive reduced Arnoldi factorization
of Mg'A:
Ma%Vm = m—l—lﬂm ’ (6)

where m is the current iteration, H,, is a Hessenberg matrix of size ((m + 1) x m), V,, is a
matrix of size (k x m) whose m columns v; (j = 1,...,m) form an orthonormal basis for
the Krylov subspace K., V41 i1s V;,, augmented with a new Krylov vector v,,,; and Mg !
is a suitable preconditioner whose dependence on M ! is defined below. Denoting by h;,
(j = 1,...,m) the elements of the m*" column of H,,, the m' column of equation (6) can
be written as:

MGAV, = b Vi + .o+ Bt m Vit (7)
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which shows that v,,,; satisfies an (m + 1)—term recursive relation involving itself and the
previous m Krylov vectors. At the m'™ GMRES iteration the solution of (1) is approximated
by the linear combination of the m v;’s which minimizes the 2-norm of the residual r,,, =
Mg'(b — Ax,,) and is thus given by X,, = Xsart + Vintum, in which t,, is the column vector
containing the m coefficients of the linear combination.

The implementation of GMRES in HYDLIN has been carried out at the top routine
level and it has not required any change to the routine MG, which is used as a black-
box to determine the preconditioned Krylov vectors M %vj. The computationally cheap

minimization is also performed at the top routine level and the pseudo-code of the main
HYDLIN using GMRES is:

VIZMG(AaXstartab;ncl)_mstart; V1=V1/||V1||
form=1:ng,
Mg'Av,, = v, — MG(A, Vin, 0,n4)
Vi1 from equation (7); Vint1=Vi1/ || Vi1 ]
determine t,, which minimizes || r,,||

end

X finish = Xstart T VnKrtnKr

The first Krylov vector vy is the normalized residual of the preconditioned system after n,
multigrid cycles and ng, is the overall number of GMRES iterations. Since the iteration (2)

is applied n, times at each GMRES iteration, the relationship between M,' and M~ is
MgA=T— (I - M A)". (8)

The choice n, =1 results in equal preconditioning of the Picard and the GMRES iterations,
but previous work has shown that a suitable (case-dependent) choice of n, can reduce the
overall number of multigrid cycles needed to achieve a given level of convergence.””> Note
that the right-hand-side of (1) is set to zero before using MG to determine Mg'Av,,. The
value of ng, required for full convergence is much smaller than &, but nevertheless very
big with respect to the computing resources usually available. This problem is overcome
using the restart option, that is performing ng, iterations and re-starting GMRES from the
updated solution re-computing from there a new set of ng, Krylov vectors. This is achieved

by wrapping the inner loop described above with an outer one which restarts GMRES each
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time. Values of ng, between 10 and 30 make the computation affordable even for large
problems and a good convergence level is usually achieved within 20 restarted cycles using
Nel = 3.

In section II, it has been observed that the real FPI (4) and the complex FPI (2) are
mathematically equivalent, and the former one has been implemented in HYDLIN because
it is computationally more efficient due to the particular structure of the matrices in the
problem at hand. For the same reasons, the complex GMRES solver calculates the pre-
conditioned complex Krylov vector Mg'Av,, using the existing real routine MG, as the real
GMRES solver does. As far as the use of this routine is concerned, the difference between the
real and the complex case is only 'theoretical’: in the former case the subvector of length &
associated with the first k elements of M 'A'v',, and that containing the remaining k ele-
ments shall be seen as a subdivision of a real vector of length 2k, whereas such subvectors
truly are the real and complex parts of a k-dimensional complex vector in the latter one. The
only practical differences between the real and complex GMRES solvers are the orthogonal-
ization (7) and the solution of the least-square problem, which are real or complex in either
case. The complex orthogonalization and minimization require twice as many operations
as their real counterparts, but their cost is still very small with respect to the calculation
of M;Av,,. Including the extra CPU-time required for the Arnoldi orthogonalizations and
the solution of the optimization problem in the cost of one multigrid cycle, the CPU-time
for executing a given number of multigrid cycles using complex GMRES with n, =3 and
10 < ng,r < 30 is only from 1 to 2 % higher than using the FPI (4). For a given ng, the
extra memory allocation of the complex and real solvers are the same. However, all the test
cases analyzed so far have highlighted that the complex solver has a substantially better
numerical performance than its real counterpart, as it requires significantly fewer multigrid

iterations to achieve a given convergence level.

IV. RPM stabilization

The price to be paid for the GMRES stabilization is the burden associated with the extra
memory allocation for the Krylov vectors. In order to stabilize the linear code reducing the
additional memory requirement, the complex RPM solver has also been implemented in
HYDLIN. Its real counterpart had already been implemented and it had led to the code

stabilization with the desired memory reduction.'” The benefit of using the complex version
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is a further reduction of the required memory, as shown below.

The complex RPM solver is based on the projection of the Picard iteration (2) onto two
orthogonal subspaces P and Q of C¥. The former is the maximal invariant subspace associ-
ated with the subset of [ outliers and the latter is the orthogonal complement of the former
subspace. At each RPM iteration, only the projection of equation (2) onto the subspace Q
is solved with the Picard iteration; the projection onto the typically low-dimensional sub-
space P is instead solved with Newton’s method. Denoting by Z an orthonormal basis of
P, the orthogonal projectors P and @) of the subspaces P and Q are defined respectively as
P=77" and Q=1 — P. Each time the calculation is diverging, the basis Z is augmented
with the current dominant eigenmode and the projectors P and () are updated accordingly.
Denoting by F the right-hand-side of the Picard iteration (2), the projections f and g of this

equation onto P and Q are defined respectively as:
f=PF=P[(I-M 4)x+M b, g=QF =Q[(I - M A)x+ M b],

and the stabilized iteration can be written as:

Pv+1 = Pv + (I - fp)il(f(puv QV) - pu) (9)
qQu+1 = g(pua qll) (10)
where
p = Px, q=Qx, fp = PFP, Fo=1I-M4.

Note that equation (9) requires the inversion of (I — f,) : P — P, which is the restriction
of (I — FY) to the subspace P, and is therefore equivalent to (I — f,)P. It is easily verified
that

(I— fo)™'P = Z[I — ZH(I — M=) Z]"* 2" = Z[I — H|"' 7" (11)

where (I — H) is a small matrix of size [, whose inversion requires minimum computational
effort. The stability analysis of this algorithm shows that its spectral radius is smaller than
1, that is the stabilized RPM iteration is stable.

The basis Z is updated directly from the iterates q, of the modified iteration (10), without
computing Jacobians. This is done by monitoring the rate of convergence of the iterates q,.
If the residual starts growing, it is argued that some of the eigenvalues of g4 = QFxQ lie

outside the unit circle. When the real Picard iteration (4) is considered, the instability is

11 of 38




usually caused by a complex conjugate eigenpair and two real vectors of dimension 2k have
to be appended to Z. When the complex system is considered, however, the instability is
caused by a complex eigenvalue and consequently only one complex vector of dimension &
has to be included in Z, thus halving the memory allocation. This procedure can be used to
append to Z not only the unstable eigenmodes, but also the stable ones whose eigenvalues
are very close to the unit circle, allowing one to speed up the convergence rate even in the
absence of outliers. The interested reader is referred to references'® ' for the description of
the procedure to augment Z. In the current implementation, we work recursively, adding
one eigenmode at a time to Z until a satisfactory convergence rate is obtained. However one
could also look for more than one dominant mode at a time and include in Z all the modes
needed for stabilizing the initial FPI. The experience gained so far makes us believe that this
approach would require fewer iterations to achieve the desired level of convergence. Looking
for one dominant mode at a time, in fact, may result in a longer numerical transient, as
the RPM iteration continues to diverge until all outliers have been included in P. On the
other hand, the single-mode search is likely to yield a reduced memory usage, as the memory
for storing a new vector of Z can be allocated dynamically only when the convergence rate
needs to be improved. Looking for all unstable modes at a time, conversely, would require
assuming the number of unstable modes and allocating all the corresponding memory as
soon as the first instability is detected. Hence computer memory is wasted each time the
actual number of unstable modes of the problem at hand is less than the assumed value.

In the actual computation, one introduces a vector z of length [ whose elements are the

coordinate variables for the representation of p in the basis Z:
z=7"p=27"x
from which it follows that
pPp=Z%z and x=Z7Zz+q.

The iteration (9) in the subspace P can be written in these variables using equation (11)
and observing that Z#Z = I:

z,1=2,+ (- H) ' (Z"F(x,) — z,).
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The implementation of the complex RPM solver in HYDLIN has been carried out at the top
routine level. Similarly to the GMRES case, the implementation of RPM does not require
any change to the existing real routine MG which is used to determine the projection q of
the solution x onto Q (equation (10)). The two subvectors of length k£ associated with the
first k elements of M, ‘A’x’', and the remaining k elements shall be viewed as the real and
complex parts of a k-dimensional complex vector. The computationally cheap inversion of
the complex matrix (I — H) along with the other Hermitian vector products is carried out

at the top routine level and the pseudo-code of the main HYDLIN using complex RPM is:

Z=1[] 1=0; v=0; X =X
while || b — Ax, || > tolerance
x,4+1 = MG(A4, x,,b, ny)
% stabilized iteration
if 1>0
z, = Z"x,; (,=Z"x,1;
zp=2,+ I - H)7'({, —2z)
A1 = Xpt1 — 4G,
Xpt1 = LZyt1 + Aot
endif
v=v+1
% increase basis size
if not converging
Z=[zZd; l=1+1; v=0

forj=1:1
H(:,7) = ZEMG(A, Z(:,7),0,n4)
end
endif

end

X finish = Qu1 + L2y 41

The section of the pseudo-code labeled ’stabilized iteration’ corresponds to the implementa-
tion of equations (9) and (10). At each step of the stabilized iteration n. multigrid cycles
are performed, as set by the last argument of MG. In the section labeled ’increase basis

size’, the column vector d containing the eigenmode associated with the current outlier is

13 of 38




appended to Z. Thereafter the subroutine MG is used to determine the columns of F,Z by
setting b=0 and performing n. multigrid cycles on each column of Z. Then the matrix H
is updated according to equation (11).

Let us denote by ¢ the asymptotic convergence rate of the RPM iteration after all outliers
have been appended to P, This parameter is the slope of the curve 'residual versus number
of multigrid cycles’ and its mathematical definition is:

A (log(rms))
7= Nua ’
where rms is the root-mean-square of the nodal residuals of the linearized flow equations and
A denotes its variation over Nysq multigrid cycles. The paper by Shroff and Keller'® shows
that the spectral radius p of the RPM-stabilized iteration is that of the operator obtained
by projecting M~ onto the (final) stable subspace Q. Hence it follows that

orlogp. (12)

The theoretical analysis and the numerical results of reference’ show that o is independent
of n.,. However the overall number of multigrid cycles needed to achieve a given level of
convergence is constant only for n, < 10 and increases for n, > 10 due to the higher level of
the residual when the last outlier is appended to P and RPM starts converging. Indeed the
relationship (12) also holds for the standard FPI (2), namely when the invariant space P is
kept empty. In this circumstance o will clearly be positive if M ~4 has one or more outliers,
Note also that ¢ has the same value in both the real and complex implementation of RPM,
as the real operator M’ "4’ and the complex operator M have the same spectral radius.

The additional CPU-time used by the complex RPM solver with respect to the standard
FPI code is that required for the Hermitian vector products of the stabilized iteration, the
calls of MG to update H and the inversion of H. This computational cost grows with [.
The order of magnitude of this parameter based on the problems investigated so far varies
between 1 and 10 and the operations listed above are fairly inexpensive for values of [ in
this range. When this additional CPU-time is included in that required for performing a
multigrid cycle and MG is used with n, =1, the CPU-time for executing a given number
of multigrid cycles using complex RPM in a problem with [ < 5 is less than 1 % higher
than using the standard FPI. The additional memory required by the implementation of the
complex RPM algorithm in HYDLIN is that needed for the vectors of the basis Z and is

14 of 38




given by 2k x (I +1) X v,,, in which the factor 1 accounts for a new work array and v,, is the
memory required for storing a single scalar. By comparison, the extra memory allocation
required by GMRES is 2k x (ng, + 1) X v, and is independent of the number of outliers.
All codes of the HYDRA suite have been implemented using double-precision, and in this

circumstance v,, = 8 Bytes.

V. Two-dimensional turbine section

A. real and complex GMRES

The two-dimensional turbine section of the 11"

Standard Configuration is the mid-span
blade-to-blade section of an annular turbine cascade with 20 blades. The test rig and cascade
geometry are described in reference,'® which also provides experimental measurements and
various computed results of the steady and unsteady flow field due to blade-plunging with
prescribed IBPA. Two steady working conditions are considered: a subsonic one with exit
Mach number of 0.68 and a transonic one with exit Mach number of 0.96. The frequencies of
the imposed blade vibration at these two flow conditions are 209 hz and 212 hz respectively.
This test case had already been used to demonstrate the predictive capabilities of HYDLIN
and test the real GMRES solver,” and also to test the real RPM solver.'® In this paper, it
will be used to demonstrate the effectiveness of the complex GMRES and RPM algorithms.

The computational grid used for the investigation is a quasi-orthogonal H-type mesh
with medium refinement: it has 273 nodes in the streamwise and 65 nodes in the pitchwise
direction, for a total of 17745 grid nodes. A preliminary mesh-refinement analysis carried
out using a coarser 7869-node (183 x 43) and finer 39673-node (409 x 97) mesh has shown
no difference of practical interest between the results obtained with the medium and finer
grids. The coarse mesh is shown in figure 1-a, whereas figure 1-b depicts the Mach contours
associated with the transonic flow regime. They reveal the existence of a separation bubble
on the suction side close to the leading edge and a shock, impinging on the suction side close
to the trailing edge and crossing the wake shed by the upper blade. Note also that both the
wake and the boundary layer on the suction side thicken remarkably after passing through
the shock.

The calculation of this transonic nonlinear base flow has been carried out using the
nonlinear flow solver HYD, whose iterative solution strategy is based on a preconditioned

multigrid iteration® similar to that used by HYDLIN. The nonlinear code has been used with
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three grid levels for the multigrid solver, and its residuals have converged to within machine
accuracy. On the other hand, the linear calculations based on the transonic base flow and
using the standard FPI (4) with the same numerical control parameters of the nonlinear cal-
culation diverge for all IBP A’s. This is emphasized by the convergence history labeled 'FPT’
in figure 2, which refers to the calculation of the harmonic flow field with IBPA=180°. The
variable on the x-axis is the number of multigrid cycles and that on the y-axis is the log-
arithm in base 10 of rms, the root-mean-square of the nodal residuals of the continuity,
momentum, energy and turbulence equations evaluated at the end of each multigrid cycle
(in practice, this variable is the root-mean-square of the unpreconditioned residuals). The
exponential growth of the residuals could be removed neither by lowering the CFL number
nor by changing the grid topology and refinement. Other attempts to suppress the numer-
ical instabilities included: «a) varying the multigrid control parameters and b) performing
single-grid calculations. In none of these cases could a converged solution be determined.

Conversely the use of GMRES allows one to retrieve the convergence of the linear code.
Figure 2 also presents the logarithm of rms using both the complex and the real implementa-
tion with various values of ng, and ny=3. This plot shows that for a given ng, the number
of multigrid cycles required to obtain a converged solution is always significantly smaller
when using the complex solver. An equivalent interpretation of the results of this figure is
that a given asymptotic convergence rate o can be achieved with fewer Krylov vectors when
the complex rather than the real solver is used. More precisely, the ratio between the number
of Krylov vectors needed to obtain the same ¢ using the real and the complex solvers tends
to 2 as nk, increases. This behavior can be explained by the fact that the eigenspace of the
complex system is a subset of that associated with its real augmented counterpart. The lat-
ter one results by 'doubling’ the former through the complex conjugation. For a given ng,,
the complex solver looks for more ’distinct’ dominant eigenmodes converging faster to the
solution, whereas the real solver has to spend half of its resources identifying the fictitious
conjugate modes.

The number of Krylov vectors per restarted GMRES cycle (ng,) and the number of pre-
conditioned multigrid cycles per GMRES iteration (n.) significantly affect the convergence
rate o of the linear calculations. The latter dependence is analyzed in reference,” whereas the
GMRES convergence histories of figure 2 show that ¢ increases monotonically with ng, for
both the real and the complex algorithm. The price to be paid for this convergence speed-up

is the additional memory needed for the Krylov vectors. The memory and CPU-time require-
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ments of the FPI and complex GMRES codes are compared in table 1. The second column
reports the memory used by the linear code in Mbytes. The first entry of the column is the
memory used by the FPI-based code, whereas the following 5 elements provide the memory
allocated by the GMRES code for the values of ng, in the first column. The third column
reports the additional memory of the GMRES code with respect to that used by the Picard
iteration as a percentage increment of this latter value. Note that the use of GMRES with 40
Krylov vectors already requires more than twice as much memory as the standard FPI. The
averaged cost of a multigrid cycle performed by the GMRES code is also higher than that
of the standard FPI due to the Arnoldi factorization and the solution of the optimization
problem performed at each GMRES step. This extra cost, however, is very small. The fourth
column of table 1 provides the CPU-time required for the execution of one multigrid cycle
using either solver. The first entry refers to the FPI whereas the remaining five elements refer
to the GMRES code run with the value of ng, given in the first column. These five numbers
have been obtained by dividing the overall CPU-time taken to run the GMRES solver by
the overall number of multigrid cycles executed by HYDLIN. It should be noted that this
is an ’averaged cost’ of the multigrid cycle because the amount of operations of the Arnoldi
factorization is not constant at each GMRES step but it rather increases with the current
number of Krylov vectors involved in the orthogonalization. These results demonstrate that
the additional CPU-time of the GMRES solver is very small and this conclusion is further
emphasized in the fifth column of table 1, which presents this additional cost as a percentage
increment with respect to the reference CPU-time of one multigrid cycle of the FPI code
(using 40 Krylov vectors, for instance, the additional CPU-time is only 1.6% higher). For
this reason, the variable on the x-axis of the convergence plot in figure 2 can also be viewed
as a scaled CPU-time. All the data of table 1 have been obtained benchmarking HYDLIN
on a Sun Blade 1000 workstation. These calculations have also been carried out using the
parallel code on 8 processors of the OCCF computer cluster consisting of 24 four-processor
Sun Ultra-80 nodes, with a Sun Blade-1000 front-end. Using this set-up, the execution of
1000 multigrid cycles with ng,=20 is about 38 minutes.

B. spectral analysis

In order to investigate the origin of the numerical instability of the FPI, the first 150 dominant
eigenmodes of M4 have been determined using the Arnoldi-based procedure described in

references’ and,” and this required performing 150 GMRES iterations (nx, = 150) with ng=
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ngr mem. ex. mem. CPUt. ex. CPUt.
(Mb) (%) (s) (%)

- 55 - 23.01 -

10 71 34 23.22 0.91

20 87 64 23.25 1.04

40 119 124 23.37 1.56

80 184 247 23.63 2.69

160 314 492 24.09 4.69

Table 1. Flutter analysis of the 2D turbine: memory and CPU time required by the complex
GMRES solver for various ng, and n,=3.

1. This choice of n. allows one to determine the eigenmodes of M~ since it leads to the
equality M;A=M~'A, which follows from equation (8). The first 150 dominant eigenvalues
are plotted in the complex plane of figure 3-a and the first four dominant eigenvalues are
labeled from 1 to 4 in order of decreasing distance from the center of the unit disc in the three
enlarged views of figure 3-b. Note that the first two eigenvalues are complex outliers and
they are responsible for the instability of the standard FPI (4). In fact, inserting the data
relative to the slope opa of the ascending branch OA of the FPI residual curve (figure 2)
and the spectral radius of (I — M~'4) (radius of the outlier 1) into equation (12) yields
47.31e—3 =~ 47.53e—3, which demonstrates the correctness of the mathematical analysis.
The static pressure contours of the eigenvectors associated with the eigenvalues 1 and 3
are reported in figures 4-a and 4-b respectively. More precisely, these two figures depict the
contours of the amplitude of the static pressure nondimensionalized by the peak pressure
amplitude. The maximum pressure amplitude of the eigenvector corresponding to the out-
lier 1 occurs at the edge of the separation bubble on the suction surface and it has non-zero
amplitudes only in a tiny neighborhood about it (figure 4-a). This points to the fact that the
origin of the numerical instability is the limit cycle associated with the unsteady character of
this flow separation. The eigenmode associated with the outlier 2 looks exactly like that just
described and therefore is not reported here. Figure 4-b shows that the pressure amplitude
of the eigenvector associated with the eigenvalue 3 is slightly less localized than the former
two. In fact, one can now observe patches of non-zero amplitudes in both the separation and
the shock regions, but also at the stagnation point on the pressure side close to the leading

edge, where the gas stream experiences a strong acceleration. This mode does not lead to
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any numerical instability because the eigenvalue 3 lies in the unit disc. In the absence of
outliers, however, it would be responsible for a very low convergence rate of the standard
FPI because of the proximity of its eigenvalue to the unit circle.

This modal analysis has been carried out for all other /BP A’s and it has been found that
the first few dominant eigenmodes do not vary with the IBPA despite the fact that M 4
depends on it.”® This observation is in line with the fact that the standard FPI is unstable
for all IBPA’s. The independence of the unstable modes on the ITBPA is presumably due

to their high spatial localization.

C. real and complex RPM

The convergence histories of the real and complex RPM solvers performing one multigrid
cycle per stabilized iteration (ng=1) are provided in figures 5-a and 5-b respectively. The
residual curves of the FPI-based code and the GMRES solver using ng, =20 and nyg =3
are also reported for completeness. The discontinuities of the RPM convergence curves at
the iterations labeled 1 and 2 in both figures occur when the first two dominant modes (i.e.
the two outliers with the same labels in figure 3-b) are included in the unstable eigenspace
P. The slope of the branches 3F; is determined by the spectral radius of the projection
of M~ onto the stable space Q, which at this stage is the distance of the eigenvalue 3 from
the center of the unit disc in figure 3-a. Note that this value is the same for both the real
and complex operators and the only difference between the two cases is that the complex
conjugate of the eigenvalue 3 is also an eigenvalue of the real operator. This explains why
the slope of the branch 3FEj is the same in the real and complex convergence plots. The
same observations apply to the branches 3¢ F;: the convergence speed-up occurring at the
iteration labeled 3 takes place when the dominant eigenvalue 3 is also appended to P. The
branches 3¢ F; are steeper than the branches 3E, because the spectral radius of the stabilized
iteration is now determined by the eigenvalue 4 which is closer than the eigenvalue 3 to the
center of the unit disc. Inserting in equation (12) the computed data relative to the slope of
the branch 3pF; and the radius of the eigenvalue 4 yields —20.31e—3 ~ —21.04e—3, which
proves once again the correctness of the mathematical analysis and code implementation.
The overall number of iterations needed to achieve a given convergence level using either
real or complex RPM is comparable and it differs only because of the 'numerical transient’
during which all outliers are appended to P. The substantial difference between the real and

complex solvers is that the additional memory required by the complex solver is half that of
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the real one. This is due to the fact that the real system has twice as many unstable modes
as its complex counterpart, as explained in section ['V. This memory saving can be crucially
important for large three-dimensional problems when the computing resources are limited.
In this test case, however, the difference between the memory of 62 Mbytes of the complex
solver and that of 66 Mbytes of the real solver is quite small because the unstable space P
contains only 3 dominant modes. On the other hand, figure 5-b shows that the complex
RPM solver allows one to achieve a convergence rate similar to that of complex GMRES 20
with a substantially lower memory allocation, as the memory used by HYDLIN in the latter
case is 87 Mbytes. The cost of a multigrid cycle in the framework of the complex RPM code
is about 0.3 % higher than in the FPI-based code.

The first three dominant eigenvalues of M~ have also been determined by examining
the eigenmodes of the matrix H (this technique is documented in references'® and®). These
estimates are reported with an empty circle in figure 3-b. The RPM eigenvalues are in very
good agreement with those obtained with Arnoldi’s method. The RPM estimates of the first
three dominant eigenvectors of M 4 have also been found to be in excellent agreement with

those provided in figure 4.

D. nonlinear unsteady analysis

So far the hypothesis that the numerical instability of the harmonic solver is due to the limit
cycle associated with the unstable separation bubble is only based on the inspection of the
dominant eigenvectors of M~'A. It has been proposed, however, that a more rigorous inves-
tigation of the relationship between the numerical instabilities and the small unsteadiness
of the background flow should be based on the spectral analysis of the operator A, which
does not include any preconditioning and thus corresponds exactly to the linearization of
the nonlinear unsteady flow equations. Eventual unstable eigenmodes determined in this
way would exactly correspond to physical instabilities of the nonlinear flow field. Since these
numerical instabilities appear to be independent of the IBPA, one could still use a single
blade-passage for the modal analysis and the complex periodic boundary condition would
thus reduce to the real one used for the nonlinear equations. The Arnoldi-based eigenmode
analysis would be performed turning off all preconditioners, but unfortunately this would
lead to an extremely poor convergence rate. Furthermore the memory requirement would
also become very high because of the large number of Krylov vectors one would have to use

in order to achieve a good level of convergence. As explained in° , in fact, this condition is
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required for an accurate estimate of the dominant eigenmodes.

An alternative and conceptually simpler approach is to investigate the purely aerody-
namic unsteadiness by solving directly the nonlinear time-dependent flow equations with
motionless grid. This is the strategy we have adopted for the investigation, and despite the
fact that the numerical instabilities are independent of the IBPA of the blade vibration, two
blade-passages rather than a single one have been used for calculating the nonlinear time-
dependent flow field. This choice has been made to overcome possible mismatches between
the linear and nonlinear codes arising from the lack of non-reflecting boundary conditions'’
in the latter one. This issue is carefully examined in the thesis of Campobasso® making use
of the dispersive relation of the Euler equations. This reference also summarizes the imple-
mentation of the dual time-stepping algorithm?® used by the nonlinear flow solver HYD for
the integration of the time-dependent flow equations.

Figure 6-a depicts the computational domain for the calculation of the nonlinear time-
accurate flow field associated with the transonic flow regime along with the positions of 16
points at which the unsteady flow field is sampled. Note that the first 8 points all belong to
the first passage. The positions labeled 1 and 8 are close to the inflow and outflow boundaries
respectively, where the flow field is expected to be fairly stable. On the other hand, the points
labeled from 2 to 7 have been positioned in the regions where some unsteady flow phenomena
could occur. As it could be found by superimposing this map on the Mach contour plot of
figure 1-b, points 2 and 3 are at the front edge of the separation bubble and point 4 is at
the rear edge, point 5 is on the shock, point 6 is at the intersection between the shock and
the suction side boundary layer and point 7 is behind the trailing edge. The other 8 points
labeled from 9 to 16 belong to the second passage and their positions have been obtained by
adding a blade pitch to the circumferential coordinate of the first 8 points.

The flow field determined by solving the nonlinear steady equations has been used as
starting solution of the time-accurate simulation with motionless grid. The unsteady equa-
tions have been solved on an overall time-interval of 2.0e—2 seconds using 1024 intervals for
the time-integration. This integration time is that taken by 8 cycles of the sought unsteady
phenomena assuming a frequency of 400 hz, which is nearly twice the vibration frequency
of 212 hz. This choice of the parameters for the unsteady calculation would give 128 intervals
per period at the assumed frequency. Figure 6-b shows the time-dependent variation of the
static pressure with respect to its mean value at the 8 probe-locations in the first passage

over the interval of integration. The only significant fluctuations occur at the front edge
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of the separation bubble (points 2 and 3) and some smaller instabilities are also visible at
the rear edge (point 4). The maximum amplitude of these oscillations is of the order of
1 Pascal and thus substantially smaller than the mean pressure field that is of the order
of 1.0e5 Pascal. The static pressure histories at the 8 probe-points in the second passage
(not reported here for brevity) highlight the same pattern of unsteadiness observed in the
first passage. Note also that the time step used for this calculation is not small enough to
deliver a fully time-resolved solution, and this is a symptom of the fact that the frequency of
the aerodynamic unsteadiness is higher than the assumed frequency of 400 hz and, therefore,
even higher than the mechanical frequency of vibration.

These results confirm the physical origin of the numerical instabilities of the FPI-based
linear code. Furthermore the nonlinear analysis corroborates the assumption that the am-
plitude of the oscillatory phenomena causing the numerical instabilities is small, and it also
reveals that their frequency is substantially different from that of the unsteady flow associated
with the blade vibration. In these circumstances the effects of the background unsteadiness
on the output of engineering interest can therefore be neglected.

It should be noted, finally, that these unsteady analyses are quite lengthy, despite the
fact that they are two-dimensional. The time-dependent calculation reported in this section

has required nearly 3 days of CPU-time using 8 processors of the OCCF computer cluster.

VI. Three-dimensional fan rotor

A. real and complex GMRES

The second test case we consider is the three-dimensional fan rotor of a civil turbofan engine
with 26 blades. The linear flutter analysis of the first flap mode for four points of a constant-
speed working line is reported in the article,” in which this test case is used to demonstrate
the effectiveness of the real GMRES solver for a typical industrial problem. The calculations
of the unsteady flow field of this rotor linearized about any of the four working conditions
failed to converge for all IBPA’s when the FPI (4) was used, but convergence could be
restored by using the real GMRES solver. Here we consider again this test case to test the
complex GMRES algorithm.

The surface mesh of two blades and the hub end wall is shown in figure 7. This grid
has only 157441 nodes and is quite coarse, but similar observations to those reported in

this section have also been made adopting finer computational meshes and analyzing other

22 of 38




similar test cases. Because of the grid coarseness in the wall proximity, wall functions have
been used to resolve the wall boundary layers.

The convergence histories of figure 7-b refer to the calculation of the linear harmonic
flow field with /BP A=180° based on a near-stall flow regime (working condition labeled D’
in figure 9-a of reference’). Four grid levels have been used for both the nonlinear and the
linear calculations, and all other numerical control parameters are also the same in either
case. The convergence history of HYD (not reported here) show that the residuals of the
nonlinear equations drop by more than three orders of magnitude and then end up in a low-
amplitude limit cycle. The residuals of the linear FPI, however, grow exponentially. This
is pointed out by the curve labeled 'FPI’ in figure 7-b, which shows again that convergence
is retrieved by using GMRES. The better numerical performance of the complex GMRES
solver over that of its real counterpart is also observed in this test case. The GMRES
residual histories of figure 7-b, in fact, have been obtained by using either implementation
for various values of ng, and n,y=3. As expected, the ratio between the number of Krylov
vectors needed to achieve the same asymptotic convergence rate o using either the real or
the complex solver is about 2 due to the duplication of the eigenmodes. Thus the complex
algorithm always needs significantly fewer multigrid cycles to go to convergence for a given
number of Krylov vectors.

Similarly to the turbine test case, the asymptotic convergence rate o of both the real
and complex GMRES algorithm increases monotonically with ng,. The price for the code
stabilization and the convergence speed up is once more the additional memory burden.
The memory requirement of the GMRES code for four values of ng, is reported in table 2.
The second column provides the overall memory allocation of HYDLIN corresponding to the
values of ng, given in the first column. The additional memory with respect to the reference
value of 441 Mbytes that the FPI-based code would require are provided in the third column
as percentage increments. Note that the use of GMRES with 30 Krylov vectors already
requires twice as much memory as the FPI. The CPU-time for performing a given number of
multigrid cycles using complex GMRES with n,;=3 and 10 < ng, < 30 is only from 0.82 to
1.37% higher than using the FPI (4). All the linear calculations of this test case have been
run using 8 processors of the OCCF computer cluster and the execution of 100 multigrid

cycles with ng, =30 has required about 1.5 hours.
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Ngy, Nem. ex. mem.
(Mb) (%)
8 571 29
15 672 52
30 888 101
60 1320 199

Table 2. Flutter analysis of the 3D fan rotor: memory required by GMRES solver for vari-
ous nk.

B. spectral analysis

The first 150 dominant eigenmodes of M ~!A determined using Arnoldi’s method with n,=1
are plotted in the complex plane of figure 8-a. The first six eigenvalues are labeled from
1 to 6 in order of decreasing distance from the center of the unit disc in the four enlarged
views of figure 8-b. Note that the first four are outliers and these are the modes causing
the instability of the FPI (4).
ascending branch O A of the residual curve (figure 7-b) and the spectral radius of (I — M~'A)
(radius of outlier 1) into equation (12) yields 39.60e —3 ~ 40.18¢ —3, which confirms the

correctness of the mathematical analysis.

In fact, inserting the data relative to the slope ogp4 of the

Both the Arnoldi>” and the RPM®'® modal analysis show that the eigenvectors associ-
ated with the complex eigenvalues 1 and 2 correspond to a mild hub corner stall, whereas
those associated with the pairs 3 and 4 correspond to a separation bubble on the suction
side close to the leading edge in the hub region. The numerical instabilities of the standard
linear iteration are therefore due to the fact that the linearization of the unsteady equations
is performed about of a base flow containing traces of these two unsteady phenomena. The
eigenmode corresponding to the complex conjugate pair 5 takes non-zero values both at the
same locations as the first 4 and in the proximity of a shock on the suction side close to
the blade tip. Similarly to the turbine test case, the dominant eigenmodes described above
have been found to be independent of the TBPA and this might be due again to their high

spatial localization.
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C. real and complex RPM

The convergence histories of the real and complex RPM solvers performing one multigrid
iteration per stabilized iteration (ny = 1) are provided in figures 9-a and 9-b respectively.
The residual curves of the FPI-based code and the GMRES solver using ng, =30 and n,=3
are also reported for completeness. The discontinuities of the RPM convergence curves at the
iterations labeled from 1 to 4 in both figures occur when the first four dominant modes (i.e.
the four outliers with the same labels in figures 8-b) are included in the unstable eigenspace
P. The slope of the branches 5F; is determined by the spectral radius of the projection
of the preconditioned operator onto the stable subspace Q, which is the distance of the
eigenvalue 5 from the center of the unit disc (figure 8-a). This value is the same for both
the real and complex operators and for this reason the slope of the branch 5Ej is the same
in the real and complex convergence plots. The same remarks apply to the branches 5y Fj:
the convergence speed-up occurring at the iteration labeled 5 takes place when the dominant
eigenvalue 5 is also appended to P. The branches 5y,F; are steeper than the branches 5E)
because the spectral radius of the RPM iteration is now determined by the eigenvalue 6,
which is closer than the eigenvalue 5 to the center of the unit disc. Inserting in equation (12)
the computed data relative to the slope of the branch 55F; and the radius of the eigenvalue
6 yields —8.28¢ —3 ~ —8.15e —3, which demonstrates once again the correctness of the
mathematical models presented in the preceding sections. The overall number of iterations
needed to achieve a given convergence level using either real or complex RPM is comparable
and it differs only because of the 'numerical transient’ during which all outliers are appended
to P. The only difference between the real and complex solvers is again that the additional
memory required by the complex solver is half that needed by the real solver. In this case, the
total memory used by the real and complex RPM-based HYDLIN are 615 and 528 Mbytes
respectively. But more importantly, figure 9-b shows that the complex RPM solver allows
one to achieve a convergence rate similar to that of complex GMRES 30 with a substantially
lower memory allocation, as the GMRES code required 888 Mbytes. The cost of a multigrid
cycle in the framework of the complex RPM code is about 1% higher than in the FPI-based
code.

The first five dominant eigenvalues in figure 8-b are also marked with an empty circle.
This symbol denotes the estimates of the least stable modes of M ~4 based on the eigenvalues
of the matrix H. The RPM eigenvalues are in very good agreement with the first five

eigenvalues determined with Arnoldi’s method. Similarly, the first five dominant eigenvectors
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of M~!A have been computed using the eigenvectors of H and they have been found to be

in excellent agreement with those determined using Arnoldi’s method.

VII. Conclusions

The stabilization of an existing linear flow solver based on a preconditioned multigrid
iteration had been achieved by using two alternative methods, GMRES and RPM. This
paper has presented a comparative analysis of the real and complex implementations of the
GMRES and RPM algorithms. The GMRES- and RPM-stabilized harmonic codes have been
used to compute and analyze the unsteady flow field due to the blade vibration of a two-
dimensional turbine section and a three-dimensional fan rotor. A time-accurate nonlinear
analysis of the flow field of the former test case has also been carried out to provide further
evidence of the relationship between the unsteady flow features of the background state and
the numerical instabilities of the FPI.

The linear harmonic flow equations can be viewed either as a complex or a real aug-
mented system. The use of the preconditioned multigrid iteration for solving either forms is
mathematically equivalent. Numerically, the real iteration needs fewer floating point opera-
tions due to the fact that all elements of the linear operator arising from the linearization of
the nonlinear unsteady equations are either purely real or purely imaginary. Therefore the
choice of real arithmetic for the implementation of the core part of the linear code performing
the preconditioned FPI was made on the basis of the reduced number of operations and also
the better code optimization achieved by FORTRAN compilers with real rather complex
arithmetic.

The same conclusions, however, do not hold when the restarted GMRES algorithm is used
to solve either the complex system or its augmented real counterpart: for a given number
of Krylov vector per restarted cycle the number of preconditioned multigrid cycles required
to drop the residuals by a given amount is substantially lower when GMRES is applied to
the complex equations. In particular, the numerical investigations carried out so far show
that the same convergence rate of the residuals can be obtained by using either the complex
GMRES solver with a given number of Krylov vectors or the real solver with twice as many
vectors. This is possibly due to the fact that the eigenmodes of the complex system are
duplicated through the complex conjugation when the real augmented system is considered.

This feature plays a significant role for the application of the linear harmonic flow analysis
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to the daily engineering practice when the available computing resources are limited: the use
of the complex solver allows one to halve the additional memory requirement for the Krylov
vectors with negligible enhancement of the CPU-time with respect to the real solver. In
all test cases we have considered, the convergence rate increases with the number of Krylov
vectors per restarted cycle for both the real and the complex GMRES algorithm. This
observation, however, cannot be generalized as the opposite trend has also been observed by
other researchers in some special problems.?

The use of the complex RPM solver also leads to a halving of the additional memory
usage, since the real system has twice as many outliers as the complex counterpart.

For a given set of multigrid parameters (that is for a given preconditioner), the asymptotic
convergence rate of RPM depends on the spectral radius of the projection of the precondi-
tioned linear operator onto the stable subspace Q. Hence a significant convergence speed
up can be achieved by appending to the unstable subspace P, not only the outliers but also
the first few dominant modes in the unit circle. The extra memory allocation depends on
the overall number of eigenmodes included in P, which is greater or equal to the number of
outliers. The additional memory required by a run in which 5 modes are included in P is
about 20 % that of the standard code. The convergence rate of the GMRES solver depends
on the spectrum of M;A (and hence on the number of multigrid cycles per GMRES step),
but also on the number of Krylov vector per restarted GMRES cycle. The extra memory
allocation depends on the latter parameter, but not on the number of outliers. The use
of GMRES 30 for a typical three-dimensional viscous problem yields an additional memory
usage which is about twice that used by the standard multigrid iteration. Hence the more
convenient choice of the stabilizing solver in the presence of outliers depends on the number
of unstable modes: the complex RPM solver should be used in problems with a small number
of outliers (lying between 10 and 20), whereas the adoption of the complex GMRES solver
is advisable for test cases with more unstable modes.
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Figure 1. (a) Mesh for the two-dimensional turbine section and (b) Mach contours for transonic
conditions.
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Figure 2. Flutter analysis of the 2D turbine (/BPA=180°): convergence histories of complex

and real GMRES solvers (n,=3).
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Figure 3. Flutter analysis of the two-dimensional turbine (I BPA=180°): (a) first 150 dominant

eigenvalues of M4 and (b) enlarged views with outliers.
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Figure 4. Pressure amplitude of dominant eigenmodes: (a) eigenvector associated with the
outlier 1 and (b) eigenvector associated with the eigenvalue 3.
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Figure 5. Flutter analysis of the 2D turbine (IBPA=180°): convergence history of the (a) real
and (b) complex RPM iterations.
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Figure 6. (a) Computational domain of the nonlinear time-accurate calculation and positions
at which the unsteady flow is sampled , and (b) time-dependent pressure at the positions

labeled from 1 to 8 (first passage).
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Figure 7. (a) Fan geometry and surface mesh and (b) convergence histories of complex and

real GMRES solvers (IBPA=180°n,=3).
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Figure 8. Flutter analysis of the three-dimensional fan rotor (IBPA = 180°): (a) first 150
dominant eigenvalues of //~4 and (b) enlarged views with outliers.

37 of 38



7 2 i
CA ---- FPI SA ---- FPI
, — real RPM — cmpx RPM
P N R - real GMRES 30 3 e - cmpx GMRES 30

Iogm(rms)

-10

Iogm(rms)

-10

1% 500 1000 1500 2000 2500 3000 1% 500 1000 1500 2000 2500 3000
# mg cycles # mg cycles
(a) (b)
Figure 9. Flutter analysis of the 3D fan rotor (/BPA=180°): convergence history of the (a)
real and (b) ,complex RPM iterations.
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