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Abstract We consider the numerical solution of elliptic par-
tial differential equations with random coefficients. Such
problems arise, for example, in uncertainty quantification
for groundwater flow. We describe a novel variance reduc-
tion technique for the standard Monte Carlo method, called
the multilevel Monte Carlo method, and demonstrate numer-
ically its superiority. The asymptotic cost of solving the
stochastic problem with the multilevel method is always sig-
nificantly lower than that of the standard method and grows
only proportionally to the cost of solving the determinis-
tic problem in certain circumstances. Numerical calculations
demonstrating the effectiveness of the method for one- and
two-dimensional model problems arising in groundwater
flow are presented.
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1 Introduction

There are many situations in which modelling and computer
simulation are indispensable tools and where the mathe-
matical models employed have been demonstrated to give
adequate representations of reality. However, the parame-
ters appearing in the models often have to be estimated from
measurements and are, therefore, subject to uncertainty. This
uncertainty propagates through the simulations and quantify-
ing its impact on the results is frequently of great importance.

A good example is provided by the problem of assessing
the safety of a potential deep geological repository for radio-
active waste. Any radionuclides leaking from such a reposi-
tory could be transported back to the human environment by
groundwater flowing through the rocks beneath the earth’s
surface. The very long timescales involved mean that mod-
elling and simulation are essential in evaluating repository
performance. The study of groundwater flow is well estab-
lished and there is general scientific consensus that in many
situations Darcy’s Law can be expected to lead to an accurate
description of the flow [7]. The main parameter appearing in
Darcy’s Law is the hydraulic conductivity, which charac-
terises how easily water can flow through the rock under a
given pressure gradient. In practice it is only possible to mea-
sure the hydraulic conductivity at a limited number of spatial
locations, but it is required at all points of the computational
domain for the simulation. This fact is the primary source of
uncertainty in groundwater flow calculations. Understanding
and quantifying the impact of this uncertainty on predictions
of radionuclide transport is essential for reliable repository
safety assessments.

A widely used approach for dealing with uncertainty in
groundwater flow is to represent the hydraulic conductivity
as a random field [9,8]. The law of the field has to be esti-
mated from the available data, a significant undertaking in
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4 K. A. Cliffe et al.

its own right, but the major computational challenge is solv-
ing the partial differential equations (PDEs) that govern the
pressure field. These are elliptic PDEs with random coef-
ficients. Realistic random field models often need a rather
large number of stochastic degrees of freedom (>100s) for
their accurate representation (cf. Sect. 3.2). Consequently
stochastic Galerkin and stochastic collocation approaches,
based for example on polynomial chaos expansion [19,23],
are impractical since their cost grows exponentially with the
number of stochastic degrees of freedom, and truncating to
any feasible number leads to large systematic errors (bias).
To the best of our knowledge, there are currently no results
with stochastic collocation methods available in the literature
that can accurately treat the random field models considered
in this paper characterised by short correlation length, high
variance and low regularity.

Hence, standard Monte Carlo (MC) simulation is still the
method of choice in applications. These MC calculations
are, however, very expensive because the individual reali-
sations of the random field have low spatial regularity and
significant spatial variation making the problem of solving
for the pressure very costly. Furthermore, the notoriously
slow rate of convergence of the standard MC method means
that many such realisations are required to obtain accurate
results. The computational cost of solving elliptic PDEs with
random coefficients is therefore a major challenge in uncer-
tainty quantification for groundwater flow studies.

In this paper we address the problem of the large cost of
solving elliptic PDEs with random coefficients. Our approach
is based on the multilevel Monte Carlo method (MLMC) for
infinite-dimensional integration introduced by Giles in con-
nection with stochastic differential equations arising in math-
ematical finance [13,14]. Similar ideas have been introduced
by Heinrich for finite-dimensional parametric integration and
to solve integral equations [17], and by Brandt and his co-
workers to accelerate statistical mechanics calculations [2,3].
In parallel to our work, Barth et al. have recently also pro-
vided a theoretical analysis of the multilevel Monte Carlo
method in the context of elliptic PDEs with random coeffi-
cients [1]. However, they assume smoother coefficient fields
than we consider in this paper (see Sect. 5). For an analysis
of the case considered here see the recent paper [5].

In many applications, the quantity of interest is the
expected value of a functional of the PDE solution. The
MLMC method exploits the linearity of expectation, by
expressing the quantity of interest on the finest spatial grid
in terms of the same quantity on a relatively coarse grid and
“correction” terms. The dramatic reduction in cost associ-
ated with the MLMC method over standard MC is due to
the fact that most of the uncertainty can be captured on the
coarse grids and so the number of realisations needed on the
finest grid is greatly reduced. In this paper we explain how
these savings in computational cost arise and demonstrate

the effectiveness of the MLMC method by a set of numerical
results for an elliptic PDE with random coefficients.

The outline of the rest of this paper is as follows. In sec-
tion 2 we describe the MLMC algorithm in a general context
and present a theorem that estimates the cost of the algorithm
under certain, problem-dependent, assumptions, which we
carefully explain. In section 3 we set out the equations for a
model problem arising from groundwater flow, describe our
stochastic model, and present the numerical method used
for spatial discretisation. We present our numerical results
for one and two dimensional problems in section 4. In sec-
tion 5 we give our conclusions and make some suggestions
for future work.

A final comment is that the main novelty in this paper
lies in the use of the highly efficient multilevel Monte Carlo
method for a particularly important scientific application.
However, this is only one example of how it may be used
in connection with stochastic PDEs; a future paper will dis-
cuss its use for a stochastic parabolic PDE which arises in a
computational finance setting.

2 Monte Carlo simulations

We will start in this section with a review of the standard
Monte Carlo (MC) method and then go on to describe the
Multilevel Monte Carlo (MLMC) method. Both methods are
not restricted to differential equations with random coeffi-
cients, and so we describe them in more abstract terms.

To simplify the notation we will write a � b for two
positive quantities a and b, if a/b is uniformly bounded inde-
pendent of any parameters, in particular independent of the
number of samples N and the number of spatial degrees of
freedom M below. Furthermore, we write a � b, if a � b
and b � a.

Let XM be a random vector over an infinite dimensional
probability space (�,F , P) that takes values in R

M . Further-
more let QM = G(XM ) be some linear or nonlinear func-
tional of XM . This may be a single component or a norm of
XM , or it may be a more complicated nonlinear functional
(e.g. a higher order moment). We assume that as M → ∞
the expected value E[QM ] → E[Q], for some (inaccessible)
random variable Q : � → R, and that (in mean) the order
of convergence is α, i.e.
∣
∣
E[QM − Q]∣∣ � M−α.

We are interested in estimating E(Q). Thus, given M ∈ N

sufficiently large, we compute approximations (or estima-
tors) Q̂M of E(QM ) and quantify the accuracy of our approx-
imations via the root mean square error (RMSE)

e(Q̂M ) :=
(

E[(Q̂M − E(Q))2]
)1/2

.
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Multilevel Monte Carlo methods and applications 5

In our PDE application, choosing M sufficiently large cor-
responds to choosing a fine enough spatial approximation.
The random variable Q will in this case typically be a func-
tional of the solution, and QM will be the same functional of
the discretised solution.

The computational ε-cost Cε(Q̂M ) is then quantified by
the number of floating point operations that are needed to
achieve a RMSE of e(Q̂M ) < ε.

2.1 Standard Monte Carlo simulation

The standard Monte Carlo estimator for E(QM ) is

Q̂MC
M,N := 1

N

N
∑

i=1

Q(i)
M , (1)

where Q(i)
M is the i th sample of QM and N independent sam-

ples are computed in total. We assume that the cost to com-
pute one sample Q(i)

M of QM is

C(Q(i)
M ) � Mγ , for some γ > 0.

There are two sources of error in the estimator (1): the
approximation of Q by QM , which is related to the spa-
tial discretisation in the case of our PDE application; and
the sampling error due to replacing the expected value by
a finite sample average. The contribution of both of these
errors becomes clear when we expand the mean square error
(MSE):

e(Q̂MC
M,N )2

= E

[(

Q̂MC
M,N − E[Q̂MC

M,N ] + E[Q̂MC
M,N ] − E[Q]

)2
]

= E

[

(Q̂MC
M,N − E[Q̂MC

M,N ])2
]

+
(

E[Q̂MC
M,N ] − E[Q]

)2

= V[Q̂MC
M,N ] +

(

E[Q̂MC
M,N ] − E[Q]

)2
. (2)

Since E[Q̂MC
M,N ] = E[QM ] and V[Q̂MC

M,N ] = N−1
V[QM ],

we get

e(Q̂MC
M,N )2 = N−1

V[QM ] +
(

E[QM − Q]
)2

, (3)

and so the first term in the MSE is the variance of the MC
estimator, which represents the sampling error and decays
inversely with the number of samples. The second term is
the square of the error in mean between QM and Q.

Hence, a sufficient condition to achieve a RMSE of ε with
this estimator is that both of the terms are less than ε2/2.
Under the assumption that V[QM ] is approximately con-
stant, independent of M , this can be achieved by choosing
N � ε−2 and M � ε−1/α , where the convergence rate α is as
defined previously and problem dependent. In other words,
we need to take a large enough number of samples N , as well

as a large enough value for M , so that Q̂MC
M,N is a sufficiently

accurate approximation of our quantity of interest E[Q].
Since the cost to compute one sample of QM was assumed

to satisfy C(Q(i)
M ) � Mγ , we have C(Q̂MC

M,N ) � N Mγ and
so the total computational cost of achieving a RMSE of O(ε)

is

Cε(Q̂MC
M,N ) � ε−2−γ /α.

2.2 Multilevel Monte Carlo simulation

The main idea of multilevel Monte Carlo (MLMC) simula-
tion is very simple. We sample not just from one approxima-
tion QM of Q, but from several. Let us recall the main ideas
and the main theorem from [14].

Let {M� : � = 0, . . . , L} be an increasing sequence in N

called levels, i.e. M0 < M1 < . . . < ML =: M , and assume
for simplicity that there exists an s ∈ N\{1} such that

M� = s M�−1, for all � = 1, . . . , L . (4)

As for multigrid methods applied to discretised (determinis-
tic) PDEs, the key is to avoid estimating E[QM�

] directly on
level �, but instead to estimate the correction with respect to
the next lower level, i.e. E[Y�] where Y� := QM�

− QM�−1 .
Linearity of the expectation operator then implies that

E[QM ] = E[QM0 ] +
L
∑

�=1

E[QM�
− QM�−1 ] =

L
∑

�=0

E[Y�],

(5)

where for simplicity we have set Y0 := QM0 .
Hence, the expectation on the finest level is equal to the

expectation on the coarsest level, plus a sum of corrections
adding the difference in expectation between simulations on
consecutive levels. The multilevel idea is now to indepen-
dently estimate each of these expectations such that the over-
all variance is minimised for a fixed computational cost.

Let Ŷ� be an unbiased estimator for E[Y�], e.g. the standard
MC estimator

Ŷ MC
�,N�

:= 1

N�

N�∑

i=1

(

Q(i)
M�

− Q(i)
M�−1

)

(6)

with N� samples. Then the multilevel estimator is simply
defined as

Q̂ML
M :=

L
∑

�=0

Ŷ�. (7)

If the individual terms are estimated using standard MC,
i.e. (6) with N� samples on level �, this is the multilevel Monte
Carlo (MLMC) estimator and we denote it by Q̂MLMC

M,{N�}. It is

important to note that the quantity Q(i)
M�

−Q(i)
M�−1

in (6) comes
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6 K. A. Cliffe et al.

from using the same random sample ω(i) ∈ � on both levels
M� and M�−1.

For the rest of this paper, for simplicity, we will always
use standard MC to estimate the terms on the different lev-
els. Note however, that this could be replaced by any other
unbiased estimator, e.g. randomised quasi-Monte Carlo (cf.
[15,16]).

Since all the expectations E[Y�] are estimated indepen-
dently, the variance of the MLMC estimator is V[Q̂M L

M ] =
∑L

�=0 N−1
� V[Y�], and expanding as in (2–3) in the previous

section leads again to the following form for the MSE:

e(Q̂ML
M )2 := E

[(

Q̂ML
M − E[Q])2

]

=
L
∑

�=0

N−1
� V[Y�] +

(

E[QM − Q]
)2

. (8)

As in the standard MC case before, we see that the MSE
consists of two terms, the variance of the estimator and the
approximation error. Note that the second term is exactly
the same as before in (2), and so it is sufficient to choose
M = ML � ε−1/α again. To then achieve an overall RMSE
of ε, the first term in (8) has to be less than ε2/2 as well.
We claim that this is cheaper to achieve in MLMC for two
reasons:

– If QM converges to Q in mean square, then V[Y�] =
V[QM�

− QM�−1 ] → 0 as � → ∞, and so fewer sam-
ples are required on finer levels to estimate E[Y�];

– The coarsest level � = 0 can be kept fixed for all ε, and
so the cost per sample on level � = 0 does not grow as
ε → 0.

In practical applications, M0 must be chosen sufficiently
large to provide a minimal level of resolution of the problem.
In our PDE application, this cut-off point is related to the spa-
tial regularity of the PDE solution, which in turn depends on
the regularity of the covariance function of the conductivity
field and on the correlation length. We will return to this point
in Sect. 4.1.

The computational cost of the multilevel Monte Carlo esti-
mator is

C(Q̂ML
M ) =

L
∑

�=0

N� C�.

where C� := C(Y (i)
� ) represents the cost of a single sample of

Y�. Treating the N� as continuous variables, the variance of
the MLMC estimator is minimised for a fixed computational
cost by choosing

N� �

√

V[Y�]/C�, (9)

with the constant of proportionality chosen so that the overall
variance is ε2/2. The total cost on level � is proportional to√

V[Y�] C� and hence

C(Q̂ML
M ) �

L
∑

�=0

√

V[Y�] C�.

If the variance V[Y�] decays faster with � than C� increases,
the dominant term will be on level 0. Since N0 � ε−2, the
cost savings compared to standard MC will in this case be
approximately C0/CL � (M0/ML)γ � εγ/α , reflecting the
ratio of the costs of samples on level 0 compared to samples
on level L .

If the variance V[Y�] decays slower than the cost C�

increases, the dominant term will be on the finest level L , and
the cost savings compared to standard MC will be approx-
imately V[YL ]/V[Y0] which will be small. Hence, in both
cases we have a significant gain.

This outline analysis is made more precise in the following
theorem:

Theorem 1 Let Ŷ� := Ŷ MC
�,N�

and suppose that there are pos-

itive constants α, β, γ > 0 such that α ≥ 1
2 min(β, γ ) and

(i)
∣
∣
E[QM�

− Q]∣∣ � M−α
�

(ii) V[Y�] � M−β
�

(iii) C� � Mγ

� ,

Then, for any ε < e−1, there exist a value L (and corre-
sponding M ≡ ML ) and a sequence {N�}L

�=0 such that

e(Q̂ML
M )2 := E

[(

Q̂ML
M − E[Q]

)2
]

< ε2,

and

C(Q̂ML
M ) �

⎧

⎨

⎩

ε−2, if β > γ,

ε−2(log ε)2, if β = γ,

ε−2−(γ−β)/α, if β < γ.

Proof The proof, which is given in Appendix A, is a slight
generalisation of the proof in [14]. �	

The (optimal) values of L and {N�}L
�=0 can be computed

“on the fly” from the sample averages and the (unbiased) sam-
ple variances of Y�. To do this we need to assume further that
there exists an M ′ ∈ N such that the decay in |E[QM − Q]|
is actually monotonic for M ≥ M ′ and satisfies
∣
∣
E[QM − Q]∣∣ � M−α.

This ensures, via the triangle inequality, that |E[YL ]| �

M−α (since s > 1 in (4)), and hence |ŶL | � M−α for NL

sufficiently large, providing us with a computable error esti-
mator to determine whether M is sufficiently large or whether
the number of levels L needs to be increased. It can in fact
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Multilevel Monte Carlo methods and applications 7

even be used to further improve the MLMC estimate by elim-
inating the leading order bias term via Richardson extrapo-
lation (see [14, Sect. 4.2] for details).

Putting these ideas together, the MLMC algorithm can be
implemented in practice as follows:

1. Start with L = 0.
2. Estimate V[YL ] by the sample variance of an initial num-

ber of samples.
3. Calculate the optimal number of samples N�, � =

0, 1, . . . , L based on (9).
4. Evaluate extra samples at each level as needed for the

new N�.
5. If L ≥ 1, test for convergence using ŶL � M−α .
6. If not converged, set L = L + 1 and go back to step 2.

Note that in the above algorithm, step 3 aims to make the
variance of the MLMC estimator less than 1

2ε2, while step 5
tries to ensure that the remaining bias is less than 1√

2
ε.

3 Application to PDEs: a model problem

In this section we will apply Multilevel Monte Carlo to ellip-
tic PDEs with random coefficients arising in subsurface flow.

Probabilistic uncertainty quantification in subsurface flow
is of interest in a number of situations, as for example in
risk analysis for radioactive waste disposal or in oil reservoir
simulation. The classical equations governing (steady state)
single phase subsurface flow consist of Darcy’s law coupled
with an incompressibility condition (see e.g. [6,7]):

q+k∇ p = g, ∇ · q = 0, in D ⊂ R
d , d = 1, 2, 3, (10)

subject to suitable boundary conditions. In physical terms,
p denotes the pressure (or more precisely the pressure head)
of the fluid, k is the hydraulic conductivity tensor, q is the
filtration velocity (or Darcy flux) and g are the source terms.

3.1 Model problem

A typical approach to quantify uncertainty in p and q is
to model the hydraulic conductivity as a random field k =
k(x, ω) on D × � with a certain mean and covariance struc-
ture that has to be inferred from the data. This means that
(10) becomes a system of PDEs with random coefficients,
which can be written in second order form as

− ∇ · (k(x, ω)∇ p(x, ω)) = f (x), in D, (11)

with f := −∇ ·g. The solution p itself will also be a random
field on D × �. For simplicity we assume that the boundary
conditions and the sources g are known (and thus determin-
istic), and restrict ourselves to the case D = (0, 1)d .

In this general form solving (11) is extremely challenging
computationally and so in practice it is common to use rela-
tively simple models for k(x, ω) that are as faithful as possible
to the measured data. One model that has been studied exten-
sively is a lognormal distribution for k(x, ω), i.e. replacing
the conductivity tensor by a scalar valued field whose log is
Gaussian. It guarantees that k > 0 almost surely (a.s.) in �

and it allows the conductivity to vary over many orders of
magnitude, which is typical in subsurface flow.

When modelling a whole aquifer, a whole oil reservoir, or a
sufficiently large region around a potential radioactive waste
repository, the correlation length scale for k is typically sig-
nificantly smaller than the size of the computational region.
However, the correlation is typically large enough to fall out-
side the domain of stochastic homogenisation techniques. In
addition, typical sedimentation processes lead to fairly irreg-
ular structures and pore networks, and faithful models should
therefore also only assume limited spatial regularity of k. A
covariance function that has been proposed in the application
literature (cf. [18]) is the following exponential two-point
covariance function

C(x, y) := σ 2exp

(

−‖x − y‖p

λ

)

, x, y ∈ D, (12)

where ‖ · ‖p denotes the �p-norm in R
d and typically p = 1

or 2; throughout this paper we use p = 1 for simplicity. The
parameters σ 2 and λ denote the variance and the correlation
length, respectively, and in subsurface flow applications typ-
ically only σ 2 ≥ 1 and λ ≤ diam D = 1 will be of interest.
This choice of covariance function implies that k is homoge-
neous and it follows from Kolmogorov’s theorem [20] that
k(·, ω) ∈ C0,η(D) a.s. with η < 1/2.

In order to apply the proposed Multilevel Monte Carlo
Method to this application, we need to be able to do two
things:

– sample from the input random field k(x, ω),
– for a given sample, i.e. for fixed ω, perform a spatial dis-

cretisation of the PDE in (11) on two consecutive grids
and solve it.

3.2 Sampling from the input random field

Several techniques exist to produce samples of k, includ-
ing circulant embedding as studied in [16] or the Karhunen-
Loève (KL) expansion [12]. We only describe and apply the
KL-expansion here. Let Z(x, ω) := log k(x, ω). We can then
expand Z in terms of a countable set of uncorrelated, zero
mean random variables {ξn}n∈N such that

Z(x, ω) = E [Z(x, ·)] +
∞
∑

n=1

√

θn ξn(ω) bn(x), (13)
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8 K. A. Cliffe et al.

where {θn}n∈N are the eigenvalues and {bn}n∈N the norma-
lised eigenfunctions of the covariance operator with kernel
function C(x, y) defined in (12). For more details on the
derivation and for properties of the KL-expansion, see e.g.
[12]. However, an important point to note is that for Gauss-
ian random fields Z the random variables {ξn}n∈N are a set
of independent standard Gaussian variables.

In the case of the 1-norm ‖·‖1, i.e. p = 1, in (12), analytic
expressions for the eigenpairs of the covariance operator are
available. Following e.g. [12], we get for d = 1, D = (0, 1)

and σ 2 = 1 in (12):

θ1D
n = 2λ

λ2w2
n + 1

, n ∈ N,

bn(x)1D = An
(

sin(wn x) + λwn cos(wn x)
)

, (14)

where {wn}n∈N are the (real) solutions of the transcendental
equation

tan(w) = 2λw

λ2w2 − 1
,

and the constant An is chosen so that ‖bn‖L2(0,1) = 1. For
d = 2, and D = (0, 1)2 the eigenpairs can then be expressed
as

θ2D
n = θ1D

in
θ1D

jn , b2D
n (x) = b1D

in
(x1) b1D

jn (x2),

for some in, jn ∈ N.
For σ 2 different to 1, the eigenfunctions are the same as

above and the eigenvalues (both in 1D and 2D) are sim-
ply multiplied by σ 2. In the (practically more realistic) case
p = 2 and for many other covariance functions, efficient
ways to compute KL-expansions using multipole or matrix
compression techniques can be found in [10,11,21].

In practice we have to truncate the expansion (13) after
a finite number mKL of terms. Let ZmKL denote the KL-
expansion of Z truncated after mKL terms. Since {ξn}n∈N is
a sequence of i.i.d. standard Gaussian random variables and
‖bn‖L2(D) = 1, the accuracy of the truncated KL-expansion
depends directly on the decay of the eigenvalues θn . With
the kernel function C(x, y) in (12) the covariance operator is
self-adjoint, non-negative and compact, which implies that it
has a countable sequence of real, non-negative eigenvalues
that tend to 0. Furthermore it is of trace class, i.e. the sum of
all eigenvalues is finite. In order to decide how many modes
to include we make the following observations. (They follow
easily from (14) in the case p = 1 for our model problem;
more details on the general case can be found in [21].)

– The eigenvalues θn decay quadratically with respect to
n, e.g. θn � n−2.

– If λ < diam(D), then there is a pre-asymptotic phase
where the KL-eigenvalues do not decay significantly.
This is clearly visible in the left plot in Fig. 1.

– Moreover

∞
∑

n=1

θn = σ 2 meas(D). (15)

where meas(D) := ∫

D dx (see e.g. [11]).

The identity (15) can be used in practice to ensure that
a sufficient fraction of the variance is captured by the first
mKL terms. This is what we did in our numerical experi-
ments later. In order to get an idea about the error resulting
from truncating the KL–expansion, note first that

E

[

‖Z − ZmKL‖2
L2(D)

]

= E

⎡

⎣

∥
∥
∥

∞
∑

n=mKL+1

√

θn ξn(ω) bn

∥
∥
∥

2

L2(D)

⎤

⎦

=
∞
∑

n=mKL+1

θn

Since θn = O(n−2), this implies that the RMSE of ZmKL

in the L2(D)–norm is O(m−1/2
KL ). It is known that the error

in the expected value of functionals of the solution resulting
from a truncation of the KL-expansion usually decays more
rapidly (see e.g. [4]). Indeed, our numerical computations
show that the expected value of a typical quantity of inter-
est, i.e. the effective hydraulic conductivity keff defined in
(18) in Sect. 4, decays like O(m−1

KL) in 1D (cf. Fig. 1, right,
in which the reference value E[keff(Z)] is evaluated using
5000 KL modes). However, in absolute terms, even in 1D
and especially for short correlation lengths λ, a very large
number of KL-modes needs to be included to achieve even
just a relative error (or bias) of 10−2.

3.3 Spatial discretisation

The particular choice of spatial discretisation scheme is not
essential to the multilevel MC approach. However, many
quantities of interest in subsurface flow depend on an accu-
rate and mass-conservative representation of the flux q, and
so in this context finite volume (FV) or mixed finite elements
(FEs) are usually preferred over standard Lagrange FEs. For
a short and simple description and a fast implementation of
mixed FEs applied to our model problem see eg. [6] or [16].
In this paper we will describe and use a standard cell-centred
FV method instead.

Let us briefly describe our discretisation for d = 2. The
one-dimensional case is analogous. We start by subdividing
[0, 1]2 uniformly into a mesh of m×m square cells and denote
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Fig. 1 Left plot of the KL eigenvalues in decreasing order as a func-
tion of their index, for different choices of the correlation length λ and
for d = 1. Right corresponding relative error (or bias)

∣
∣E[keff (Z)] −

E[keff (ZmKL )]∣∣/E[keff (Z)] in a typical quantity of interest (here the
effective hydraulic conductivity keff defined in Sect. 4) as a function of
the number of KL modes included

by Di, j the cell ( i−1
m , i

m ) × (
j−1
m ,

j
m ) with i, j = 1, . . . m,

and by xi, j its centre. To discretise (11) we integrate (11)
over each cell to obtain a set of m2 algebraic equations
∫

Di, j

−∇ · (k∇ p) =
∫

Di, j

f, for all 1 ≤ i, j ≤ m. (16)

Then, using the Divergence Theorem, we transform the left
hand side integral into a boundary integral

∫

∂ Di, j
−k∇ p · n

and approximate all the resulting integrals in (16) by quad-
rature.

Let ki, j and fi, j be the values of k and f at xi, j , respec-
tively, and let pi, j denote our approximation to p at xi, j .
Then the right hand side in (16) can be approximated by
the midpoint rule as fi, j/m2. To approximate the left hand
side we treat each edge of ∂ Di, j separately. The contribution
from the edge between Di, j and Di+1, j can be approximated
again by the midpoint rule, and as it is customary in subsur-
face flow applications, we use the harmonic average ki+ 1

2 , j
of ki, j and ki+1, j to approximate k on the edge. To approxi-
mate ∇ p · n on the edge we use the central finite difference
(pi+1, j − pi, j )/|xi+1, j − xi, j |. The contributions from the
other edges are approximated similarly, leading to the fol-
lowing final form of the (i, j)th equation:

−ki, j− 1
2

pi, j−1 − ki− 1
2 , j pi−1, j + �i, j pi, j

−ki+ 1
2 , j pi+1, j − ki, j+ 1

2
pi, j+1 = fi, j/m2 (17)

where �i, j = ki, j− 1
2
+ki− 1

2 , j +ki+ 1
2 , j +ki, j+ 1

2
. A Neumann

boundary condition, i.e. a prescribed flux −k∇ p ·n = gN , on
any part of the outer boundary of (0, 1)2 is straightforward
to incorporate. We simply replace the respective flux term on
the left hand side of (17) by gN (xm+ 1

2 , j )/m (again obtained
via the midpoint rule). To enforce a Dirichlet boundary con-
dition, i.e. a prescribed pressure p = gD , we simply replace
the harmonic average on the respective edge by ki, j and the
central difference by a one-sided difference.

The resulting linear system takes the standard five-point
stencil form. It is sparse and highly ill-conditioned, but it can

be solved efficiently and robustly either with algebraic mul-
tigrid methods [22] or a sparse direct solver. The solution is
an M = m2 dimensional vector XM containing approxima-
tions pi, j of the pressure p at the points xi, j , i, j = 1, . . . m.
Typical quantities of interest QM = G(XM ) to derive from
this solution vector will be discussed in the next section.

For the MLMC method we need a sequence of such spatial
approximations to construct our levels. We choose a coars-
est mesh size m0 and set m� = 2�m0, for all � ∈ N. Then
the mesh size on level � is h� = m−1

� and the length of the
random vector XM�

is M� = m2
� .

4 Numerical results

In this section we examine the performance of the MLMC
method in computing the expected values of some quantities
of interest for our model problem in 1D and 2D. In particular,
we consider (11) on D = (0, 1)2 with f ≡ 0 and subject to
the boundary conditions

p|x1=0 = 1, p|x1=1 = 0,

∂p

∂n

∣
∣
∣
x2=0

= 0,
∂p

∂n

∣
∣
∣
x2=1

= 0,

and the corresponding ODE in 1D with p(0) = 1 and p(1) =
0. To discretise our model problems in space we use the finite
volume method described in the previous section.

The statistics of several functionals of the solution are
commonly of interest, e.g. the variance of the pressure or of
the flow rate at a certain point in the domain, or the average
travel time of a particle convected in the fluid. Here we will
mainly focus on the expected value of the cumulative outflow
from the region D on the boundary x1 = 1. This is related to
the effective (horizontal) conductivity of the region D (see
e.g. [16]) which is defined as

keff := −
1∫

0

k
∂p

∂x1

∣
∣
∣
x1=1

dx2. (18)
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10 K. A. Cliffe et al.

In addition, we will also look at the horizontal flux −k ∂p
∂x1

at
the centre of the domain.

To quantify the cost of the algorithms in the figures below,
we assume that the number of operations to compute one
sample on level � is C� = C∗ Mγ

� for some fixed constant C∗
that may depend on λ and σ 2 but is independent of �. In the
case of 1D we have γ = 1. In 2D, for an optimal iterative
linear solver such as algebraic multigrid we also have γ ≈ 1.
A sparse direct solver on the other hand, such as the one
provided by Matlab through the backslash operation, will
usually be slightly suboptimal in 2D, but will have at worst
γ = 1.5. In the results presented below, unless otherwise
stated, we always present the standardised costs, scaled by
1/C∗, and assume γ = 1.

The relative performance of the individual methods is very
similar if actual CPU times are used instead (see Fig. 7). How-
ever, since our code is not optimised, we did not want to use
these to assess the performance directly.

4.1 Results in 1D

Let us start by solving the 1D version of (11) on D = (0, 1)

with boundary conditions p(0) = 1 and p(1) = 0, and
choose as the quantity of interest Q = −k ∂p

∂x |x=1. We will
first numerically confirm the assumptions in Theorem 1,

and estimate values of the parameters α and β. We also
confirm the predicted bound on the cost of the MLMC
estimator.

Figure 2 shows results for the case λ = 0.3, σ 2 =
1, mKL = 800 and m0 = 16. The top left plot shows the
behaviour of the variance of Q� and of Y� = Q� − Q�−1

for each level �. The slope of the line for V[Y�] is approxi-
mately equal to −2, indicating that V[Y�] � h2

� � M−2
� , or

β ≈ 2. We also see that V[Q�] is approximately constant on
all levels shown, numerically verifying the assumption made
in Sect. 2.1 for large enough values of M . The top right plot
shows the expected value of Q� and of Y� = Q� − Q�−1.
The slope of the line for E[Q� − Q�−1] is roughly equal to
−1.75, indicating that E[Q − Q�] � h1.75

� � M−1.75
� , or

α ≈ 1.75.
The bottom two plots are related to the implementation of

the MLMC algorithm and to its cost. The left plot shows
the number of samples N� used on each level, and the
right plot shows a comparison of the cost of standard MC
with the cost of MLMC. Note that the MLMC algorithm
does not only result in large savings in the computational
cost, but that the cost of the MLMC estimator also grows
more slowly than the cost of the standard MC estimator as
ε → 0.

Before moving on to 2D, we briefly return to the point
made in Sect. 2.2 about the choice of the mesh size h0 = m−1

0

Fig. 2 Performance plots for
λ = 0.3, σ 2 = 1, mKL = 800
and m0 = 16 in 1D. The
quantity of interest is the
outflow −k ∂p

∂x at x = 1
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Fig. 3 Performance plots for
λ = 0.3, σ 2 = 1, mKL = 1400
and m0 = 8 in 2D. The quantity
of interest is the effective
hydraulic conductivity keff
defined in (18)

0 1 2 3 4
−15

−10

−5

0

level l

lo
g 2

 v
ar

ia
nc

e

Q
l

Q
l
− Q

l−1

0 1 2 3 4

10
5

10
10

level l

N
l

10
−3

10
0

10
2

accuracy ε

ε2
 C

os
t

Std MC
MLMC

ε=0.005

ε=0.001

ε=0.0005

ε=0.0003

0 1 2 3 4
−15

−10

−5

0

level l

lo
g 2

 |m
ea

n|

Q
l

Q
l
− Q

l−1

on the coarsest level. As we see in the top left plot of Fig. 2,
for large values of h�, the variances of Q� and Y� are close.
Increasing h� even further, the two graphs will eventually
cross, and V [Y�] will be larger than V [Q�]. In this situa-
tion, the contributions to the cost of the MLMC method from
level � will actually be bigger than those using standard MC,
rendering any further coarsening useless. It turns out that the
two graphs cross when h� ≈ λ. It is in fact also at this same
point h� ≈ λ where V[Q�] ceases to be constant. Thus, the
optimal choice for the coarsest level is such that h0 is slightly
smaller than λ.

4.2 Results in 2D

As in 1D we choose λ = 0.3 and σ 2 = 1, but we set m0 = 8
and include mKL = 1400 KL-modes. The quantity of interest
is the effective hydraulic conductivity keff defined in (18). We
start again by numerically estimating the rates α and β for
Theorem 1 and by comparing the costs of the MLMC method
to standard MC. Figure 3 is similar to Fig. 2 for 1D. The top
two plots give graphs of the variances and the expected val-
ues of Q� and Y�. They suggest that V [Y�] � h2

� � M−1
�

and thus β ≈ 1, and E[Q − Q�] � h1.75
� � M−0.875

� , or
α ≈ 0.875. Note that in terms of M� the rates are exactly 1/2
those in 1D. In terms of h� they are the same. In the bottom

right plot, the savings of the MLMC algorithm over standard
MC are again considerable.

We now take a step away from Theorem 1, and analyse the
gains of introducing different numbers of levels in the MLMC
algorithm in more detail. First in Fig. 4, we fix the standard
deviation of our multilevel estimator Q̂M L

M (i.e. the sampling
part of the error in (8)), and study how the computational
cost of the MLMC method grows with grid size M = m2

L for
various numbers L of levels. It is very clearly visible that the
multilevel methods outperform standard MC dramatically.
Note that the cost to estimate E[QL ] to the required accu-
racy on a (finest) grid of size mL = 32 with standard MC is
about the same as that of the 4-level method on a grid of size
mL = 128. In the left plot in Fig. 4 we use γ = 1 (typical
for an optimal iterative method such as AMG), whereas in
the right plot we use γ = 1.5 (worst case for a sparse direct
solver). We see that the gain is actually larger in the second
case. For example, on the finest mesh with mL = 128, the
ratio of the costs of standard MC and the MLMC method
with 4 levels is 67 for γ = 1.5, whereas this ratio is only 20
for γ = 1.

In Fig. 5, we keep the spatial discretisation on the finest
level mL fixed and study how the computational cost grows
as the tolerance on the required standard deviation of the esti-
mator is decreased (using γ = 1). We can see in the left plot
that for Q = keff the standard MC estimator only achieves
a standard deviation of 3.7 × 10−4 for approximately the
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Fig. 4 Plots of the standardised cost (scaled by 1/C∗) versus mL for a fixed tolerance of δ = 10−3 for the maximum standard deviation of the
MLMC estimator for E [keff ] for λ = 0.3, σ 2 = 1, mKL = 1400 assuming γ = 1 (left plot) and γ = 1.5 (right plot)
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Fig. 5 Same test case as in Fig. 4. Standard deviation of the MLMC
estimator Q̂M L

L versus the standardised computational cost for fixed
mL = 128. The horizontal line represents the estimated spatial discret-

isation error on this grid. Quantities of interest: E [keff ] (left plot) and

E

[

−k ∂p
∂x1

]

at the centre of the domain (right plot)

same cost as the MLMC estimator with 4 levels needs to
reach a standard deviation of 7 × 10−5 which is below the
discretisation error on that grid. More than 20 times more
computational work is needed with standard MC to achieve
a standard deviation that is smaller than the discretisation
error. Again this gain is bigger if we assume γ = 1.5 in our
cost model. In the right plot in Fig. 5 we show that a similar
behaviour is observed for other quantities of interest, such as
the horizontal flux −k ∂p

∂x1
at the centre of the domain. Note

however that there seems to be not much gain in including a
4th level in this case. This is related to the fact discussed at
the end of Sect. 4.1. In Fig. 6 we see that indeed the graphs
of V[Q�] and V[Y�] are very close for m� = 8 in this case.
We also observe that the rate of decay for V[Y�] and E[Y�] is
smaller for this quantity of interest, α ≈ 0.375 and β ≈ 0.5
here.

Finally in Fig. 7 we give some actual CPU times for a
slightly harder test case, i.e. λ = 0.1, σ 2 = 1, mKL = 500
and Q = keff . These were obtained with our Matlab imple-
mentation on a 3 GHz Intel Core 2 Duo E8400 processor
with 3.2 GByte of RAM using the sparse direct solver pro-
vided in Matlab through the standard backslash operation
to solve the linear systems for each sample. The value for
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Fig. 6 Plots of V[Q�] and V[Y�] (left plot), as well as E[Q�] and E[Y�]
(right plot) in the case λ = 0.3, σ 2 = 1, mKL = 1400 in 2D, with
m0 = 4 and Q = −k ∂p

∂x1
at the centre of the domain

γ we observed numerically in this case was 1.2 in 2D. We
see that even with our non-optimised implementation it is
possible to obtain a RMSE for Q̂ML

M of less than 10−3 in just
over 100 s. In the right plot in Fig. 7 we further see that the
advantage of the MLMC method is not restricted to comput-
ing expected values, but is just as apparent when computing
the second order moment of quantities of interest.
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Fig. 7 Same plots as in Figs. 4 and 5 for λ = 0.1, σ 2 = 1, mKL =
500, but using actual CPU time in seconds to quantify the cost (Matlab
implementation running on a 3 GHz Intel Core 2 Duo E8400 proces-

sor with 3.2 GByte of RAM). Left plot E[keff ], with fixed maximum
standard deviation 10−3. Right plot E[k2

eff ], with mL = 256

5 Conclusions and further work

With the numerically observed values for α and β in the
previous section (cf. Figs. 2, 3 and 6) it is possible also to
compare the theoretically predicted costs given by Theorem 1
for each of the two quantities of interest we studied and we
do this in Table 1. This allows us also to project the expected
gains of the MLMC method over the standard MC method to
3D. The numerical results above suggest that α ≈ 1.75/d and
β ≈ 2/d for Q = keff , where d = 1, 2, 3 is the spatial dimen-
sion. For the flux at the centre of the domain α ≈ 0.75/d and
β ≈ 1/d.

We see from Table 1 that asymptotically the MLMC leads
to a huge improvement over standard MC for both quantities
of interest. In cases where the variance of Y� decays rela-
tively rapidly, as is the case for Q = keff , then a relatively

Table 1 Predicted asymptotic order of cost to achieve a RMSE of ε

from Theorem 1 in the case of γ = 1, α = 1.75/d and β = 2/d (top
table) and γ = 1, α = 0.75/d and β = 1/d (bottom table) for the
standard MC (C(Q̂MC

M )) and MLMC (C(Q̂ML
M )) estimators

d C(Q̂MC
M ) C(Q̂ML

M ) C(Q̂MC
1 )

1 ε−18/7 ε−2 ε−2

2 ε−22/7 ε−2(log ε)2 ε−2

3 ε−26/7 ε−18/7 ε−2

d C(Q̂MC
M ) C(Q̂ML

M ) C(Q(i)
M )

1 ε−10/3 ε−2(log ε)2 ε−4/3

2 ε−14/3 ε−10/3 ε−8/3

3 ε−6 ε−14/3 ε−4

In the top table we compare with the cost C(Q̂MC
1 ) to obtain a RMSE

of ε with the standard MC estimator for a single random variable, i.e.
M = 1. In the bottom table we compare with the cost C(Q(i)

M ) to obtain
one sample on the finest grid

large portion of the computational effort is spent on the coarse
grids. Indeed, if we would have β > γ in d = 1, 2, 3, then the
MLMC method would have a cost that is of asymptotic order
ε−2. Note that this is the same asymptotic cost as applying
standard MC to a problem with only one random variable,
i.e. M = 1. We see in the top table in Table 1 that the cost of
MLMC estimator for Q = keff does indeed have an asymp-
totic order close to ε−2, for d = 1, 2, 3.

When the variance of Y� decays more slowly, on the other
hand, as is the case for the flux at the centre of the domain,
then a relatively large portion of the computational effort is
spent on the finest grid. We would like to point out here that
if we are in the situation that β < γ for d = 1, 2, 3 and
β = 2α, then the MLMC method has a cost that asymptoti-
cally is of the order ε−γ /α . Note that this is proportional to
the cost of obtaining one sample on the finest grid and thus to
solving a deterministic PDE to the same accuracy ε. For the
horizontal flux −k ∂p

∂x1
at the centre of the domain, we do not

quite have β = 2α, but we see in the bottom table in Table 1
that the asymptotic order of the cost of the MLMC estimator
is indeed close to that of the cost of obtaining one sample on
the finest grid.

To conclude, in this paper we successfully applied the
MLMC algorithm to elliptic PDEs with random coefficients.
The numerical results clearly show the advantage of using
the MLMC estimator over a standard MC estimator for this
type of model problem for several quantities of interest. They
further show that the gain of the MLMC estimator is not lim-
ited to smooth or easy problems. The improvements are in
fact even more pronounced when the linear solver is not quite
optimal (γ > 1), or in cases where the discretisation error is
large (α and β are small).

There was nothing special about our choice of uniform
grids and isotropic model problems. The MLMC estimator
is expected to perform equally well on locally refined grids
and for anisotropic problems provided a suitable hierarchy
of grid levels can be constructed. The numerical experiments
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14 K. A. Cliffe et al.

suggest ways to further improve the performance of the
MLMC algorithm. Firstly, as discussed, in order to choose
the coarse level M0 independent of λ it would be better to
choose smoother approximations of the random field on the
coarse meshes, e.g. by truncating the KL-expansion earlier.
This will not affect the asymptotic order of the cost as ε → 0,
but it would lead to larger gains of MLMC over standard MC
for a fixed tolerance ε. A way to improve the asymptotic order
of convergence of the MLMC method may be the use of a dif-
ferent estimator on each of the levels, such as a randomised
quasi–Monte Carlo estimator [15,16].

This paper has not addressed the challenges of numerical
analysis, but the assumptions of Theorem 1 have recently
been verified theoretically for certain quantities of interest in
the context of finite element spatial discretisations in [1] and
[5]. The former considers coefficient fields k ∈ W 1,∞ that are
bounded uniformly from above and away from zero. The lat-
ter analyses the more challenging case studied in this paper,
where k is not uniformly bounded and is only in C0,η, with
η < 1/2.
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Appendix A: Proof of the generalised multilevel Monte
Carlo Theorem 1

Let us denote the hidden constants in Assumptions (i), (ii)
and (iii) by c1, c2 and c3, respectively. Recall that we assume
that

M� = s M�−1, for all � = 1, . . . , L ,

for some s ∈ N \ {1}, cf (4). Without loss of generality, we
shall also assume that M0 = 1. If this is not the case, this
will only scale the constants c1, c2 and c3.

Note also that since standard Monte Carlo estimators are
unbiased, we have

E[Ŷ�] =
{

E[QM�
], � = 0

E[QM�
− QM�−1 ], � > 0

(19)

Then, using the notation �x� to denote the unique integer
n satisfying the inequalities x ≤ n < x + 1, we start by
choosing L to be

L =
⌈

α−1 logs(
√

2 c1 ε−1)
⌉

< α−1 logs(
√

2 c1 ε−1) + 1 (20)

so that

s−α ε√
2

< c1 s−α L ≤ ε√
2
, (21)

and hence, due to (19) and assumption (i),

(

E[Q̂ML
M ] − E[Q]

)2 ≤ 1
2 ε2.

This 1
2ε2 upper bound on the square of the bias error, together

with the 1
2ε2 upper bound on the variance of the estimator

to be proved later, gives an ε2 upper bound on the estimator
MSE.

Using the left-hand inequality in (21), we obtain the fol-
lowing inequality which will be used later,

L
∑

�=0

sγ � <
sγ L

1 − s−γ
<

sγ (
√

2 c1)
γ /α

1 − s−γ
ε−γ /α. (22)

We now need to consider the different possible values
for β.

(a) If β = γ , we set N� = ⌈

2 ε−2 (L + 1) c2 s−β �
⌉

so that

V[Q̂ML
M ] =

L
∑

�=0

V[Ŷ�] ≤
L
∑

�=0

c2 N−1
� s−β � ≤ 1

2 ε2,

which is the required upper bound on the variance of
the estimator. Since N� ≤ 2ε−2 (L + 1) c2 s−β � + 1,

the computational complexity is bounded by

C(Q̂ML
M ) ≤ c3

L
∑

�=0

N� sγ �

≤ c3

(

2 ε−2(L + 1)2 c2 +
L
∑

�=0

sγ �

)

For ε < e−1 < 1 we have 1 < log ε−1 and ε−γ /α ≤
ε−2 ≤ ε−2(log ε)2 since α ≥ 1

2γ . Hence, using the
inequalities in (20) and (22), it follows that C(Q̂ML

M ) �
ε−2(log ε)2.

(b) For β > γ , we set

N� =
⌈

2 ε−2 c2
(

1 − s−(β−γ )/2
)−1

s−(β+γ )�/2
⌉

so

that

L
∑

�=0

V[Ŷ�] ≤ 1
2 ε2

(

1 − s−(β−γ )/2
) L
∑

�=0

s−(β−γ )�/2

< 1
2 ε2.

Since

N�<2ε−2c2

(

1−s−(β−γ )/2
)−1

s−(β+γ )�/2+1,

the computational complexity is bounded by

C(Q̂ML
M )≤c3

(

2 ε−2 c2

(

1−s−(β−γ )/2
)−2 +

L
∑

l=0

sγ l

)

.
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Again for ε < e−1 < 1 we have ε−γ /α ≤ ε−2 and
hence due to inequality (22) we have C(Q̂ML

M ) � ε−2.
(c) For β < γ , we set

N�=
⌈

2ε−2c2s(γ−β)L/2
(

1−s−(γ−β)/2
)−1

s−(β+γ )�/2
⌉

so that

L
∑

�=0

V[Ŷ�]

< 1
2 ε2 s−(γ−β)L/2

(

1 − s−(γ−β)/2
) L
∑

�=0

s(γ−β)�/2

< 1
2 ε2.

Since

N� < 2ε−2c2s(γ−β)L/2(1 − s−(γ−β)/2)−1

×s−(β+γ )�/2 + 1,

the computational complexity is bounded by

C(Q̂ML
M )

≤ c3

(

2ε−2c2s(γ−β)L/2(1−s−(γ−β)/2)−1

×
L
∑

�=0

s(γ−β)�/2 +
L
∑

�=0

sγ �

)

≤ c3

(

2ε−2c2s(γ−β)L(1−s−(γ−β)/2)−2+
L
∑

�=0

sγ �

)

.

Using the first inequality in (21),

s(γ−β)L <
(√

2 c1

)(γ−β)/α

sγ−β ε−(γ−β)/α.

Also, for ε < e−1 < 1 we have ε−γ /α ≤ ε−2−(γ−β)/α

since α ≥ 1
2β. Hence, due to inequality (22), we have

C(Q̂ML
M ) � ε−2−(γ−β)/α .
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