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Abstract. When approximating the solutions of partial dif-
ferential equations, it is a few key output integrals which are
often of most concern. This paper shows how the accuracy
of these values can be improved through a correction term
which is an inner product of the residual error in the original
p.d.e. and the solution of an appropriately defined adjoint
p.d.e. A number of applications are presented and the chal-
lenges of smooth reconstruction on unstructured grids and
error correction for shocks are discussed.

1 Introduction

In performing aeronautical CFD calculations, engineers are
interested in the entire flow over an aircraft, but they are most
interested in the values of the lift, drag and moment on the
aircraft, each of which can be expressed as an integral over
the surface of the aircraft [17]. Other areas of CFD analysis
also have a particular interest in a few key integral quantities,
such as total production of nitrous oxides in combustion mod-
elling, or the net seepage of a pollutant into an aquifer when
modelling soil contamination.

Integral outputs are also important in other disciplines as
well. For example, in electrochemical simulations of the be-
havior of sensors, the quantity of interest is the total current
flowing into an electrode [1], and in radar cross-section cal-
culations the scattered field propagating from an aircraft in
a particular direction can be evaluated by a convolution inte-
gral over a closed surface surrounding the aircraft [8, 18].

In structural mechanics, the output of interest is some-
times the total force or moment exerted on a surface [22], but
more often it is a point quantity such as the maximum stress
or temperature. Even then, it is possible to use auxiliary func-
tions to convert point values into integral quantities which can
be approximated with much greater accuracy [4].
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The above examples are to motivate the subject of this
paper, improving the accuracy of integral output function-
als. There are a number of possible approaches one might
take, including adaptive grid refinement, increasing the order
of accuracy of the discretization, iterative refinement of the
numerical solution via defect correction, or Richardson ex-
trapolation. All of these approaches can be used to improve
global solution accuracy, yielding corresponding increases
in functional accuracy. However, for problems in which the
value of a functional is the most important quantitative out-
put of a simulation, another approach introduced by Giles and
Pierce [12, 20] is to use the approximate solution of an ap-
propriately defined adjoint problem to accurately estimate the
error in the functional due to the residual error in approxi-
mating the original partial different equation. By using this
estimate as a correction, one can often obtain twice the order
of accuracy for the output functional compared to the under-
lying global numerical solution.

The significance of the adjoint PDE for error analysis and
adaptivity has long been realized within the finite element
community [2–7, 15, 16, 18, 22, 23, 25, 26, 29, 30], where it is
well known that many finite element methods enjoy natural
superconvergence for functional estimates. The adjoint error
correction technique extends these results to approximate so-
lutions obtained by finite volume methods (or other means
of approximation) as well as offering the potential for further
improvement in the inherent finite element superconvergence.

In this paper we present the progress in applying the ad-
joint error correction ideas to a range of two-dimensional prob-
lems, and discuss two areas of current research, performing
smooth reconstructions on unstructured grids, and adjoint error
correction when there is a shock in the underlying flow solu-
tion. The paper begins with a presentation of the linear theory,
and its application to the 2D Poisson equation, on both struc-
tured and unstructured grids. It continues with the nonlinear
theory, including the complications introduced by boundary
conditions and boundary integrals. The nonlinear applications
include Burgers equations and a modified form of the 2D Euler
equations. In each case the order of accuracy of output func-
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tionals is doubled through the use of adjoint error correction.
The difficulty of adjoint error correction with a shock is then
discussed before making some final conclusions.

2 Linear analysis

2.1 Adjoint error correction

The explanation of the linear theory with homogeneous
boundary conditions follows that given in [14], which pro-
vides additional background on the use of adjoint error cor-
rection in algebraic applications.

Let u be the solution of the linear differential equation

Lu = f ,

on some domain Ω, subject to homogeneous boundary con-
ditions for which the problem is well-posed when f ∈ L2(Ω)
(meaning that f is a square-integrable function).

The adjoint differential operator L∗ and associated homo-
geneous boundary conditions are defined by the identity

(v, Lu) = (L∗v, u) , (1)

that must hold for all u, v satisfying the respective boundary
conditions. Here the notation (., .) denotes an integral inner
product over the domain Ω, i.e.

(v, Lu) ≡

∫

Ω

vT Lu dV ,

allowing for the possibility that u, and hence v, may be a vec-
tor function rather than just a scalar.

The appropriate definition for L∗ can be constructed by
integration by parts, starting from (v, Lu), until all of the
derivatives are acting on v rather than u. In the process, the
adjoint boundary conditions come from the requirement that
the boundary terms that arise from the integration by parts
must be zero. Examples of this will be given later.

Suppose now that we are concerned with the value of
the functional J =(g, u), for a given function g ∈ L2(Ω). An
equivalent dual formulation of the problem is to evaluate the
functional J=(v, f ), where v satisfies the adjoint equation

L∗v = g ,

subject to the homogeneous adjoint boundary conditions. The
equivalence of the two forms of the problem follows immedi-
ately from the definition of the adjoint operator.

(v, f ) = (v, Lu) = (L∗v, u) = (g, u)

Suppose that uh and vh are approximations to u and v, re-
spectively, and satisfy the homogeneous boundary conditions.
The subscript h indicates that the approximate solutions are
derived from a numerical computation using a grid with aver-
age spacing h. When using finite difference or finite volume
methods, uh and vh might be created by interpolation through
computed values at grid nodes. With finite element solutions,
one might simply use the finite element solutions themselves,
or one could again use interpolation through nodal values and

thereby obtain approximate solutions that are smoother than
the finite element solutions.

It is assumed that uh and vh are sufficiently smooth that
Luh and L∗vh lie in L2(Ω). If uh and vh were equal to u
and v, then the residual errors Luh − f and L∗vh − g would
be zero. Thus, the magnitude of the residual errors is a com-
putable indication of the extent to which uh and vh are not the
true solutions.

Now, using the definitions and identities given above, we
obtain the following expression for the functional:

(g, u) = (g, uh)−
(

L∗vh , uh −u
)

+
(

L∗vh − g, uh −u
)

= (g, uh)− (vh, L(uh −u))+
(

L∗(vh −v), uh −u
)

= (g, uh)− (vh, Luh − f )+ (vh −v, L(uh −u)) . (2)

The first term in the final expression is the value of the
functional obtained from the approximate solution uh . The
second term is an inner product of the residual error Luh − f
and the approximate adjoint solution vh . The adjoint solution
gives the weighting of the contribution of the local residual
error to the overall error in the computed functional. There-
fore, by evaluating and subtracting this adjoint error term we
obtain a more accurate value for the functional.

The third term is the remaining error after making the
adjoint correction. If Luh − f = L(uh − u) is of the same
order of magnitude as uh −u then the remaining error has
a bound that is proportional to the product ‖uh −u‖ ‖vh −v‖

(using L2 norms), and thus the corrected functional value is
superconvergent. For example, if the solution errors uh −u
and vh −v are both O(h p) then the error in the functional is
O(h2p).

Furthermore, the remaining error term can be expressed as

(vh −v, L(uh −u)) =
(

vh −v, L L−1 (Luh − f )
)

=
(

L∗ (vh −v) , L−1 (Luh − f )
)

=
(

L∗vh − g, L−1 (Luh − f )
)

.

This has the computable a posteriori bound

∥

∥L−1
∥

∥

∥

∥Luh − f
∥

∥

∥

∥L∗vh − g
∥

∥ .

The problem with this bound is obtaining a value for the op-
erator norm ‖L−1‖. This can be calculated analytically in the
simplest cases, but for harder problems it may be necessary to
estimate it numerically.

If the approximate solutions uh and vh are the finite elem-
ent solutions from a Galerkin finite element discretisation,
then the correction term

(vh , Luh − f )

is automatically zero, due to the requirement that the finite
element residual is orthogonal to all members of the finite
element space [24]. Thus, the Galerkin finite element method
gives naturally superconvergent estimates for integral out-
puts, in the sense that a single order of accuracy improvement
in the solution, through increasing the degree of the poly-
nomials in the finite element space, leads to two orders of
accuracy improvement in the value of the functional.

However, there is usually a loss of accuracy because of
a lack of smoothness in the finite element solution. Typic-
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ally, if the solution errors are O(h p), then the residual error
Luh − f is O(h p−m) where m is the degree of the differential
operator, the degree of the highest derivative in the operator.
Hence, the remaining error in the functional is O(h2p−m).

If one takes the finite element solution and reconstructs
smoother solutions uh and vh , then there is the possibility
of recovering O(h2p) accuracy for the functional, at the cost
of carrying out an adjoint calculation to evaluate the adjoint
error correction. This will be demonstrated in the following
example.

2.2 2D Poisson equation on structured grids

Consider the two-dimensional Poisson equation,

∇2u = f ,

on the unit square [0, 1]× [0, 1] subject to homogeneous
Dirichlet boundary conditions. The dual problem is

∇2v = g ,

with the same boundary conditions, and the adjoint identity is
easily verified,

∫

Ω

v ∇2u d A = −

∫

Ω

∇v ·∇u d A =

∫

Ω

∇2v u d A .

For this example, the equations are approximated using
a Galerkin finite element method with piecewise bilinear
elements on a uniform Cartesian grid. Finite element error an-
alysis reveals that the solution error for the primal problem,
and the error in the computed functional using the finite elem-
ent solution are both O(h2).

However, we can obtain an improved value for the func-
tional by first using bi-cubic spline interpolation through the
computed nodal values to construct an improved approxi-
mate solution uh(x, y) with an error whose value and gradient

Fig. 1. Error in output integral from 2D Poisson equation on structured
grids, with and without adjoint error correction. Superimposed lines have
slope −2 and −4

are both O(h2) [19]. Using a similarly reconstructed approx-
imate adjoint solution vh(x, y), one can then compute the
adjoint error correction term resulting in a corrected func-
tional whose accuracy is O(h4).

In the numerical implementation, all inner product inte-
grals are approximated by 3×3 Gaussian quadrature on each
square cell to ensure that the numerical quadrature errors are
of a higher order. Figure 1 shows the results obtained for the
functions

f(x, y) = x(1 − x)y(1 − y) , g(x, y) = sin(πx) sin(πy) .

The ordinate is the log of the number of cells in each dimen-
sion, and lines of slope −2 and −4 are superimposed. As
predicted by the analysis, the base error in the functional is
clearly second order whereas the error in the corrected value
of the functional as well as the error bound are fourth order.

2.3 2D Poisson equation on unstructured grids

With unstructured grids, the problem is how to construct
a smooth approximation uh given a finite element solution
Uh . The aim is that the smooth reconstruction should have
the same L2 accuracy as the underlying finite element solu-
tion, but the H1 error, being a weighted combination of the
error in the solution and its gradient, should have an improved
order of accuracy so that the adjoint correction will produce
an output functional with an improved order of accuracy.

It can be shown that a one-dimensional cubic spline uh(x)
minimises the “spline energy”

∫

(u′′
h)

2 dx subject to satisfying
the specified knot conditions uh(x j) = u(x j), and appropriate
end conditions.

Building on this idea, it seems a natural extension to de-
fine a 2D unstructured grid reconstruction by minimising

∫∫

(∆uh)
2 +h−s (uh −Uh)

2 d A .

The first term in the integral ensures that uh is smooth, the
second term that it does not deviate too significantly from
the finite element solution. The minimisation gives the Euler–
Lagrange equation

hs ∆2uh +uh = Uh . (3)

The issue now is the choice of the exponent s. Suppose
that Uh is the piecewise linear solution to the same 2D Pois-
son equation on an unstructured triangular grid such as that
shown in Fig. 2. The L2 error in Uh is O(h2) but the piece-
wise constant gradient gives a first order H1 error. Choosing
s ≥ 2 ensures that the L2 error in uh is still O(h2). Within this
range, a lower value for s will provide more smoothing, so
s = 2 as the choice most likely to make the H1 error O(h2).
Despite this, however, the best that we are currently able to
prove for the Poisson equation on a periodic domain [15], is
that the choice s = 8/5 leads to a reconstructed solution uh

whose H1 error is O(h8/5).
The numerical results in Figs. 3 and 4 use the smoothing

coefficient 0.01h2. The reconstruction p.d.e. is approximated
with quintic Argyris finite elements, and solved using the
FEMLAB package [9]. Figure 3 shows the improvement in
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Fig. 2. One of the unstructured grids used for the Poisson equation approx-
imation and reconstruction

Fig. 3. H1 error in approximate 2D Poisson solution on unstructured grids,
with and without smooth reconstruction. Superimposed lines have slope −1
and −2

Fig. 4. Error in output integral from 2D Poisson equation on unstructured
grids with smooth reconstruction. Superimposed lines have slope −2 and
−4

the H1 error. The original piecewise linear finite element so-
lution has an H1 error which is O(h), whereas the Argyris
reconstruction is O(h2). Figure 4 shows the corresponding
improvement in the output functional through using adjoint
error correction. As expected, it is O(h2) before correction,
and O(h4) afterwards.

It should be noted that solving the reconstruction equation
with its bi-quadratic smoothing is quite an expensive proced-
ure. For the application here it is not cost-effective; it would
be much more efficient to use quadratic elements for the ori-
ginal finite element discretisation. However, it could well be
a very efficient approach for applications involving the non-
linear systems of p.d.e.’s. For such applications, the cost of
the iterative solution of the nonlinear discrete equations may
far exceed the cost of the symmetric positive-definite scalar
reconstruction equations for each component of the solution.

3 Nonlinear analysis

3.1 Adjoint error correction

Let u be the solution of the nonlinear differential equation

N(u) = 0 ,

in the domain Ω, subject to the nonlinear boundary condi-
tions

D(u) = 0 ,

on the boundary ∂Ω.
The linear differential operators Lu and Bu are defined to

be the Fréchet derivatives of N and D, respectively,

Lu ũ ≡ lim
ε→0

N(u + εũ)− N(u)

ε
,

Bu ũ ≡ lim
ε→0

D(u + εũ)− D(u)

ε
.

It is assumed that the nonlinear functional of interest,
J(u), has a Fréchet derivative of the following form,

lim
ε→0

J (u + εũ)− J(u)

ε
= (g(u), ũ)+ (h, Cu ũ)∂Ω .

Here the dimension of the operator Cu (which may be dif-
ferential) is required to equal the dimension of the adjoint
boundary operator B∗

u , to be defined shortly.
The corresponding linear adjoint problem is

L∗
uv = g(u)

in Ω, subject to the boundary conditions

B∗
uv = h

on the boundary ∂Ω. The adjoint identity defining L∗
u , B∗

u and
the boundary operator C∗

u is

(v, Lu ũ)+
(

C∗
uv, Bu ũ

)

∂Ω
=

(

L∗
uv, ũ

)

+
(

B∗
uv, Cu ũ

)

∂Ω
, (4)

for all ũ, v.
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We now consider approximate solutions uh, vh of the pri-
mal and dual problems, respectively. The analysis will use the
quantities

L∗
uh

vh , B∗
uh

vh , C∗
uh

vh .

Note that these can be evaluated since uh and vh are both
known, whereas we would not be able to evaluate the Fréchet
derivatives based on the unknown analytic solution u.

The analysis also requires averaged Fréchet derivatives
defined by

L(u,uh) =

1
∫

0

L|u+θ(uh−u) dθ ,

B(u,uh) =

1
∫

0

B|u+θ(uh−u) dθ ,

C(u,uh) =

1
∫

0

C|u+θ(uh−u) dθ ,

g(u, uh) =

1
∫

0

g(u + θ(uh −u)) dθ ,

so that,

N(uh)− N(u) = L(u,uh) (uh −u) ,

D(uh)− D(u) = B(u,uh) (uh −u) ,

J(uh)− J(u) =
(

g(u, uh), uh −u
)

+
(

h, C(u,uh)(uh −u)
)

∂Ω
.

We now obtain the following:

J(uh)− J(u)

= (g(u, uh), uh −u)+
(

h, C(u,uh)(uh −u)
)

∂Ω

=

(

L∗
uh

vh, uh −u
)

+

(

B∗
uh

vh , Cuh
(uh −u)

)

∂Ω

−

(

L∗
uh

vh − g(u, uh), uh −u
)

−
(

h,
(

Cuh
−C(u,uh)

)

(uh −u)
)

∂Ω

−

(

B∗
uh

vh −h, Cuh
(uh −u)

)

∂Ω

=
(

vh, Luh
(uh −u)

)

+

(

C∗
uh

vh, Buh
(uh −u)

)

∂Ω

−
(

L∗
uh

vh − g(u, uh), uh −u
)

−
(

h,
(

Cuh
−C(u,uh)

)

(uh −u)
)

∂Ω

−

(

B∗
uh

vh −h, Cuh
(uh −u)

)

∂Ω

=
(

vh, L (u,uh)(uh −u)
)

+

(

C∗
uh

vh, B(u,uh)(uh −u)

)

∂Ω

−

(

L∗
uh

vh − g(u, uh), uh −u
)

−
(

h,
(

Cuh
−C(u,uh)

)

(uh −u)
)

∂Ω

−
(

B∗
uh

vh −h, Cuh
(uh −u)

)

∂Ω

+
(

vh ,
(

Luh
− L(u,uh)

)

(uh −u)
)

+

(

C∗
uh

vh ,
(

Buh
− B(u,uh)

)

(uh −u)

)

∂Ω

= (vh, N(uh ))+

(

C∗
uh

vh , D(uh)

)

∂Ω

−

(

L∗
uh

vh − g(u, uh), uh −u
)

−
(

h,
(

Cuh
−C(u,uh)

)

(uh −u)
)

∂Ω

−

(

B∗
uh

vh −h, Cuh
(uh −u)

)

∂Ω

+
(

vh,
(

Luh
− L(u,uh)

)

(uh −u)
)

+
(

C∗
uh

vh ,
(

Buh
− B(u,uh)

)

(uh −u)
)

∂Ω
.

In the final result, the first line is the adjoint correction
term taking into account the residual errors in satisfying both
the p.d.e. and the boundary conditions. The other lines are the
remaining errors, which include the consequences of nonlin-
earity in L, B, C and g as well as residual errors in approxi-
mating the adjoint problem.

If the solution errors for the nonlinear primal problem and
the linear adjoint problem are of the same order, and they are
both sufficiently smooth that the corresponding residual er-
rors are also of the same order, then the order of accuracy
of the functional approximation after making the adjoint cor-
rection is twice the order of the primal and adjoint solutions.
However, rigorous a priori and a posteriori analysis of the re-
maining errors is much harder than in the linear case [19] and
practical a posteriori error bounds have yet to be obtained for
the quasi-1D and 2D Euler equations.

3.2 Burgers equation

The first nonlinear test case involves Burgers equation.

∂u

∂t
+

∂

∂x

(

1

2
u2

)

= 0 .

This is to be solved on the interval 0 < x < 1, for 0 < t < 0.3,
subject to the initial conditions

u(x, 0) = u0(x) ≡ − tanh(2x −1) .

Since the value u(x, t) is constant along characteristics de-
fined by

dx

dt
= u ,

the solution along characteristics leading from the initial con-
ditions is given implicitly by u(x, t) = u0(x0) where x0 is the
root of the equation

x = x0 +u0(x0) t .

The Dirichlet boundary conditions at x = 0 and x = 1 are cho-
sen to be consistent with this, for the same function u0(x),
so that this solution is extended to include the characteristics
entering through the side boundaries, as illustrated in Fig. 5.

The functional of interest is chosen to be the integral

1
∫

0

u4(x, T ) dx

evaluated at the final time T = 0.3.
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Fig. 5. Characteristics of Burgers equation testcase

Given a smooth solution u(x, t), the linearised equation is

∂ũ

∂t
+

∂

∂x
(uũ) = 0 ,

and the linearised output functional is

1
∫

0

4u3(x, T )ũ(x, T ) dx

The corresponding adjoint equation is

∂v

∂t
+u

∂v

∂x
= 0 ,

subject to the final conditions v(x, T ) = 4u3(x, T ).
After further analysis, it is found that the appropriate ad-

joint boundary operator is Cuv ≡ u v on x = 0 and x = 0, and
Cuv ≡ v on t = 0.

The original nonlinear Burgers equation and the linear ad-
joint equation are both approximated using the Lax–Wendroff
method. This gives approximate solutions un

j and vn
j at a dis-

crete set of uniformly spaced grid points, and uniformly
spaced time levels.

The reconstructed solutions uh and vh are defined by
piecewise bilinear interpolation on each (x, t) computational
cell. Because of the second order accuracy of the Lax–
Wendroff discretisation, this gives approximate solutions
which are second order accurate. However, the space and time
derivatives are only first order accurate, so the residual error
from the nonlinear equation will be only first order, and it
would appear therefore that the remaining error after adjoint
error correction will be third order accurate.

Despite this, the results in Fig. 6 show the adjoint error
correction yields fourth order accuracy. A similar result has
been obtained previously for the steady quasi-1D Euler equa-
tions, with piecewise linear interpolation of a second order
solution [19]. In that case, it was proved that the remain-
ing error was indeed fourth order because the leading order
component of the first order residual error was orthogonal

Fig. 6. Error in Burgers equation output integral, with and without adjoint
error correction. Superimposed lines have slope −2 and −4

to the leading order component of the adjoint solution error.
A similar explanation must hold for the current test case as
well.

One key feature of this testcase was the importance of the
adjoint correction term associated with the boundary condi-
tions. The piecewise linear interpolation on the boundaries
gives a second order error in satisfying the Dirichlet boundary
conditions. In the absence of the adjoint boundary correction
term, this leads to a second order error in the functional, so it
is vital to include this term in the correction.

3.3 Modified 2D Euler equations

The second nonlinear testcase is based on the 2D Euler equa-
tions governing the inviscid flow of a compressible, ideal gas.
These can be written as

∂F

∂x
+

∂G

∂y
= 0

where

F =









ρqx

ρq2
x + p

ρqxqy

ρqx H









, G =









ρqy

ρqxqy

ρq2
y + p

ρqy H









,

with ρ being the density, qx, qy the velocity components, p
the pressure, and H the stagnation enthalpy define by

H =
γ

γ −1

p

ρ
+

1

2

(

q2
x +q2

y

)

.

One difficulty with using the 2D Euler equations is the
lack of suitable testcases for which an analytic solution is
known. This difficulty is avoided here by modifying the Eu-
ler equations so that a known u ≡ (ρ, qx, qy, p)T is a solution
of the modified equations [21]. The testcase uses a 2D duct
with a very mild variation in duct height, as shown in Fig. 7.
The 2D solution is constructed from the analytic solution to
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Fig. 7. Grid for modified 2D Euler equation testcase

Fig. 8. Analytic and computed surface pressure distribution

the quasi-1D Euler equations

∂

∂x





Aρqx

Aρq2
x

Aρqx H



+ A
∂

∂x





0

p

0



 = 0 ,

where A(x) is the duct height, and the stagnation enthalpy H
depends solely on ρ, qx, p, each of which are functions only
of x. qy is then defined to vary linearly across the duct, satis-
fying the flow tangency boundary condition on either side.

This constructed solution is not an exact solution of the
2D Euler equations, but instead is the exact solution of an
equation

∂F

∂x
+

∂G

∂y
= S ,

for an appropriately defined source term S(x, y). This then
is the modified form of the 2D Euler equations which is
used in this testcase. In practice, the magnitude of S(x, y) is
extremely small, so it is thought this is a fair test of the appli-
cability of the adjoint error correction methodology to the 2D
Euler equations.

The nonlinear equations and the corresponding linear ad-
joint equations are approximated using a variant of Jameson’s
SYN82 CFD code. This uses second order central differ-
encing with a scalar numerical dissipation on a cell-centred
grid [21]. The values at dummy points outside the computa-
tional domain are computed by second order extrapolation,
and then the approximate solutions uh and vh defined by
bi-cubic spline interpolation. As usual, all integrals are ap-
proximated by Gauss quadrature, use 3×3 points in each cell
for the 2D integrals.

Fig. 9. Density equation residual error for reconstructed solution

Fig. 10. Error in 2D Euler surface pressure integral, with and without ad-
joint error correction. Superimposed lines have slope −2 and −4

It is observed that the residual error, obtained by sub-
stituting the approximate solutions into the modified Euler
equations, has second order magnitude over most of the do-
main, but it is first order in an area of size O(h) adjacent to
the upper and lower walls. This residual boundary layer is
clearly seen in Fig. 9. Since it is expected that the nonlinear
and adjoint solutions will be second order accurate through-
out the domain, this leads one to expect that the remaining
error will be O(h4). The results presented in Fig. 10 confirm
that the adjoint error correction yields fourth order accuracy,
whereas the uncorrected results are only second order accu-
rate. The remaining error data point which looks anomalous is
due to a change in the sign of the error. Since we are plotting
the logarithm of the magnitude of the error, it produces this
unusually low value before then settling into its asymptotic
behaviour demonstrating fourth order convergence.

3.4 Quasi-1D flow with a shock

Flows with shocks pose a major challenge to both adjoint
calculations and adjoint error correction. The correct for-
mulation of the inviscid adjoint equations has to consider
linearised perturbations to the shock location. Using this ap-
proach, Giles & Pierce showed that the adjoint equations cor-
responding to the steady quasi-1D Euler equations require the
specification of an interior boundary condition at the shock
location, and derived closed form analytic solutions [13]. Nu-
merical results using either the “continuous” approach (ap-
proximating the analytic adjoint equations, using numerical
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smoothing in place of the shock boundary condition) or the
“discrete” approach (linearising and transposing the discrete
flow equations) yield convergent results [11].

Ulbrich has recently developed the analytic formulation of
the adjoint equations for unsteady 1D equations with scalar
fluxes, such as Burgers equations [27, 28]. However, numer-
ical results by Giles [10] indicate that the “discrete” adjoint
approach does not necessarily yield convergent results, unless
one uses numerical smoothing which leads to an increasing
smoothing of the shock. It seems likely that there will be simi-
lar problems with the convergence of solutions to the steady
adjoint 2D Euler equations, although such convergence errors
may be very small for weak shocks.

In addition to these problems in calculating adjoint solu-
tions, there is the further problem for adjoint error correction
that any reconstructed solution which is continuous must nec-
essarily have a residual error at the shock location which does
not tend to zero as the grid is refined. Even worse, it is likely
to be inversely proportional to the grid spacing and therefore
increase without bound. Also, the local error in the solution
will be O(1). This undermines the whole basis for the adjoint
error correction which assumes small errors, allowing a lin-
earised treatment which leads naturally to the linear adjoint
flow equations.

It appears the only solution to this problem is to approach
it from the perspective of well-resolved viscous shocks. Let
uε be the solution of the “viscous” quasi-1D Euler equations
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In the limit ε → 0, uε will converge to the discontinuous
inviscid solution u at every point other than at the shock point.
Furthermore, if J(u) represents an output functional such as
the integral of the pressure, then a matched inner and outer
asymptotic analysis reveals that

J(uε) = J(u)+aε+ O(ε2) ,

for some constant a, and accordingly,

J(u) = J(uε)− ε
d

dε
J(uε)+ O

(

ε2
)

.

This gives a method for correcting for the functional error
introduced by the viscosity ε. Furthermore, the quantity

d
dε

J(uε) can be evaluated by the adjoint approach since by
definition the gradient with respect to ε is based on infinitesi-
mal perturbations to the viscous solution.

This gives half of the approach to handling shocks. The
other half involves a discrete approximation uε,h to the vis-
cous solution. If the discrete approximation resolves the vis-
cous shock sufficiently well, the difference J(uε)− J(uε,h)
can be estimated by the adjoint error correction method, and
combined with the viscous correction to produce a supercon-
vergent approximation to the true inviscid functional.

In the numerical results presented in Fig. 11, ε = N−2

where N is the number of grid points. Adaptive grid refine-
ment is used so that the shock region has a fixed fraction
of the grid points, giving a very well-resolved shock as N
increases.

The error in the viscous error correction will be O(ε2) =
O(N−4). The numerical discretisation is second order accu-
rate, and cubic spline interpolation is used as usual, so it was
hoped that the error remaining after the adjoint error correc-
tion, correcting for both the viscous and discretisation errors,
would be O(N−4). However, the results in Fig. 12 show the
remaining error after adjoint error correction is O(N−3.5).

This is a substantial improvement on the second order ac-
curacy of the uncorrected functional, but not the fourth order
accuracy which was hoped for. It is thought the explana-
tion for this is that the O(N−2) residual error upstream and
downstream of the shock leads to an O(N−2) displacement in
the shock position. The shock width is also O(N−2), so this
shock displacement leads to a solution error which is O(1)
within the shock. Even though this error is over an extremely
small region of size O(N−2), it invalidates the linearisation
basis for the adjoint error correction, preventing the O(N−4)
convergence.

Fig. 11. Quasi-1D Mach number distributions on a sequence of grids with
adaptive resolution of the shock

Fig. 12. Error in the quasi-1D pressure integral, with and without adjoint
error correction. Superimposed lines have slope −2 and −3.5



Progress in adjoint error correction for integral functionals 121

Currently, the reason for the O(N−3.5) convergence is
not understood. Research into this is continuing, and it is
still hoped to obtain fourth order convergence. This may re-
quire the inclusion of deforming grids into the adjoint error
analysis, because in practice the O(N−2) shock displace-
ment would lead to a corresponding displacement of the grid
points, because of the grid adaptation, and so there would
not be an O(1) perturbation to the flow values at the grid
points. Indeed, it is more likely that the perturbation would be
O(N−2), fully allowing accurate adjoint error correction.

4 Conclusions

This paper has reviewed the theory behind adjoint error cor-
rection, and presented results showing the progress in ap-
plying it to a range of two-dimensional linear and nonlinear
applications.

The two main challenges being addressed currently are
the reconstruction of smooth approximate solutions on un-
structured grids, and error correction when there are shocks.
Initial results for the unstructured grid reconstruction have
been obtained through the solution of a p.d.e. with bi-
harmonic smoothing. The results provide the anticipated
improvement in the output functional, doubling its order of
convergence, but the computational cost is very significant.
If alternative, cheaper reconstruction methods cannot be de-
veloped, this approach will only be worthwhile in cases in
which the solution of the primal and adjoint equations is itself
extremely expensive.

For the error correction with shocks, the key is the use of
discrete solutions with a well-resolved viscous shock. The ad-
joint error correction is then split into two parts, one dealing
with the consequences of the viscosity and the other the ef-
fect of the numerical discretisation. The initial results are very
promising, with a convergence order of 3.5, but further re-
search is needed to understand the origin of this convergence
rate, and to modify the procedure to achieve the fourth order
convergence being sought.
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