
25th AIAA Applied Aerodynamics Conference, 25 - 28 June 2007, Miami

Efficient Hessian Calculation using Automatic

Differentiation

Devendra P. Ghate∗ and Michael B. Giles†

Oxford University Computing Laboratory, Oxford, Oxfordshire, OX1 3QD, UK

This paper outlines the basic formulation for Hessian calculation for a functional of interest

for aerodynamic applications. Complete analysis of the order of the computational cost

with the number of independent variables is also presented. An efficient implementation

strategy using automatic differentiation packages is outlined. Finally, results are presented

for a two dimensional airfoil code and compared with finite difference Hessian calculation.

Comparison of quadratic extrapolation of a functional of interest with the adjoint corrected

linear extrapolation is also presented.

I. Introduction

An algorithm to calculate the Hessian of a functional of interest is outlined here. In the context of aerody-
namics, the examples of functionals of interest are lift, drag or total pressure loss. Typically these quantities
are calculated after an iterative solution of nonlinear partial differential equations. This makes it difficult
to calculate the gradients and the Hessian. The most widely used method of finite difference is sensitive to
step-size selection and is computationally expensive.

We have already demonstrated the effective use of automatic differentiation1, 2 to automate the process of
Jacobian calculation in our previous publication.3 Automatic differentiation helps in keeping the linearised
version of the nonlinear codes in-sync with the continuous changes made in the nonlinear code. The Jacobian
obtained by this method is theoretically accurate to machine precision.2 The proposed method for Hessian
calculation is a natural extension of this. We now show how automatic differentiation can also be used to
compute the Hessian.

The Hessian thus obtained has various applications in optimisation algorithms, Monte Carlo simulations,
surrogate modelling and uncertainty analysis.

II. Background

The idea of calculating the Hessian matrix using automatic differentiation is not new and the automatic
differentiation community has been addressing the issue of calculating higher order derivatives for a number
of years. In one of the earliest papers, Christianson4 describes an algorithm for Hessian calculation using
reverse accumulation. There are two commonly used methods for calculating Hessians using automatic
differentiation: forward-on-forward and forward-on-reverse. Forward-on-forward is a straightforward double
application of automatic differentiation to the original code in forward mode. If there are n independent
variables and a single functional of interest, then the computational cost of this approach is O(n2). Similarly
in forward-on-reverse mode, the code is differentiated first in the reverse mode and then in the forward mode.
The computational cost for a functional of interest of dimension m with respect to n independent variables
is O(m × n).

∗DPhil Candidate
†Professor of Scientific Computing
Copyright c© 2007 by Devendra Ghate. Published by the American Institute of Aeronautics and Astronautics, Inc. with

permission.

1 of 11

American Institute of Aeronautics and Astronautics

Presently, most of the automatic differentiation tools (ADOL-C, ADIFOR, Tapenade) can be used to calcu-
late the Hessian using forward-on-forward or forward-on-reverse modes. These packages also provide in-built
driver routines that calculate the Hessian or Hessian-vector products. However the computational cost of
direct application of automatic differentiation as a black-box is unacceptable for large iterative solution
codes.

In the Aerospace community, the method described here was initially investigated by Taylor et al 5 along
with various other algorithms, but the publication does not go into the implementation details for a generic
fluid dynamics code. Here we aim to demonstrate the method in detail with the help of a two dimensional
airfoil code. The order of computational cost, efficient automatic differentiation implementation and the
mathematical background behind the idea are presented.

III. Basic Formulation

We are interested in the Hessian of a functional of interest j(α) = J(α, w(α)), j ∈ R
m with respect to

independent variables α ∈ R
n such that w(α) ∈ R

p satisfies the state equation

R(α, w) = 0. (1)

Henceforth w will be referred to as the intermediate variable. To take an example from the fluid dynamics
code,

w = [x, u]

where,

x are the grid variables which change according to the design variables, and

u are referred to as the state variables which are obtained by solving the state equation, e.g. the discretised
Navier-Stokes equations.

R(α, w) refers to such state equations augmented by the grid generation equations. Typically equation (1) is
a set of nonlinear equations and is solved using some fixed point iteration method which is computationally
expensive.

For simplicity consider that j is uni-dimensional, i.e. m = 1. The derivative of j with respect to one
individual component of α is given by

∂j

∂αi

=
∂J

∂αi

+
∂J

∂w

∂w

∂αi

. (2)

Differentiating equation (2) again gives us

∂2j

∂αi∂αj

=
∂2J

∂αi ∂αj

+
∂2J

∂αi∂w

(

∂w

∂αj

)

+
∂2J

∂αj∂w

(

∂w

∂αi

)

+
∂2J

∂w2

(

∂w

∂αi

∂w

∂αj

)

+
∂J

∂w

(

∂2w

∂αi ∂αj

)

(3)

The above equation tells us that the calculation of the Hessian requires the linear sensitivities of w. Also the
last term on the right hand side of the equation requires the second order sensitivity of w. The computational
cost of this calculation is

• one baseline nonlinear solution w,

• O(n) linear solutions of ∂w
∂αi

,

• O(n2) second derivatives of ∂2w
∂αiαj

, and

• O(n2) evaluations of the right-hand side of equation (3).

2 of 11

American Institute of Aeronautics and Astronautics

If the intermediate variables w are an explicit function of the design variables, then this is a simple task
using automatic differentiation. The original routines can be differentiated twice in the forward mode to
propagate the second order sensitivities. The calculation of the linear and second order sensitivities of the
intermediate variables will be computationally inexpensive.

However, we know that in case of fluid dynamics, the intermediate variables are an implicit function of the
design variables and they require an iterative procedure for the solution. This makes the calculation of the
linear and second order sensitivities of the intermediate variables w computationally expensive. A different
formulation is presented henceforth to reduce this computational cost.

Equation (3) can be rearranged as

∂2j

∂αi∂αj

=
∂J

∂w

∂2w

∂αi∂αj

+ D2
i,jJ, (4)

where

D2
i,jJ =

∂2J

∂αi ∂αj

+
∂2J

∂αi∂w

(

∂w

∂αj

)

+
∂2J

∂αj∂w

(

∂w

∂αi

)

+
∂2J

∂w2

(

∂w

∂αi

∂w

∂αj

)

. (5)

Differentiating the state equation (1) gives

∂R

∂αi

+
∂R

∂w

∂w

∂αi

= 0. (6)

Differentiating again we get,

∂R

∂w

∂2w

∂αi∂αj

+ D2
i,jR = 0, (7)

where D2
i,jR is similarly defined as D2

i,jJ in equation (5).

Now substituting for ∂2w
∂αi∂αj

in equation (4) from equation (7) we get

∂2j

∂αi∂αj

= −
∂J

∂w

(

∂R

∂w

)

−1

D2
i,jR + D2

i,jJ

= vT D2
i,jR + D2

i,jJ. (8)

Here v is the adjoint solution associated with the functional of interest J defined by the adjoint equation

(

∂R

∂w

)T

v +

(

∂J

∂w

)T

= 0. (9)

These are the same adjoints that are widely used in aerodynamic gradient calculation and optimisation.
Various methods for calculation of the adjoint solutions are available.6 Equation (8) is used to calculate the
complete Hessian. The entire formulation presented here is also valid for a multi-dimensional functional of
interest.

Now let us look at the computational cost for calculating the entire Hessian. First we need the solution of the
state equation (1) to calculate the baseline value of the intermediate variables w0 corresponding to the values
of the design variables α0 at which we need the Hessian. Then looking at equation (8) it is clear that we
need a single adjoint solution v(w0) corresponding to J . Also, equation (5) tells us that we need calculation
of the n linear solutions ∂w

∂αi
(w0) corresponding to the n independent variables αi. If these solutions are

available then we only need to evaluate D2
i,jJ and D2

i,jR for each entry of the Hessian, i.e. we evaluate these
functions for each pair of αi and αj .

Hence the total computational cost of the entire Hessian calculation is:

3 of 11

American Institute of Aeronautics and Astronautics

• Single baseline nonlinear solution w0,

• O(n) linear flow solutions ∂w
∂αi

(w0),

• single adjoint solution v(w0),

• O(n2) evaluations of D2
i,jJ, D2

i,jR, and

• O(n2) dot products for vT D2
i,jR.

As a single evauluation is much cheaper than an iterative solution, the cost of the last two items is negligible
and hence the computational cost of calculating the entire Hessian is approximately O(n).

The entire argument presented above for a single dimensional functional of interest J also holds true for the
general case of m dimensions. The net computational cost would be of the order O(n + m) because of the
O(m) adjoint solutions corresponding to all the functionals of interest.

The basic concept behind the Hessian calculation for a general case has been explained in this section. But
the mathematical formulation used in our implementation is slightly different and is presented in the next
section.

IV. Formulation for Fluid Mechanics

We are interested in the Hessian of a functional of interest j(α) = J(α, x(α), u(α)), j ∈ R
m with respect to

the independent variables α ∈ R
n such that x(α) and u(α) satisfy the state equation

R(α, x(α), u(α)) = 0. (10)

α are the design variables and we are interested in the Hessian of the functional of interest with respect to
these design variables.

x are the grid variables which change according to the design variables. u are referred to as the flow variables.

For simplicity consider that j is uni-dimensional, i.e. m = 1. The derivative of j with respect to one
individual component of α is given by

∂j

∂αi

=
∂J

∂αi

+
∂J

∂x

∂x

∂αi

+
∂J

∂u

∂u

∂αi

. (11)

Differentiating equation (11) again gives us

∂2j

∂αi∂αj

=
∂J

∂u

∂2u

∂αi∂αj

+ D2
i,jJ (12)

where,

D2
i,jJ =

∂2J

∂αi ∂αj

+
∂J

∂x

∂2x

∂αi∂αj

+
∂2J

∂αi∂u

(

∂u

∂αj

)

+
∂2J

∂αj∂u

(

∂u

∂αi

)

+
∂2J

∂u2

(

∂u

∂αi

∂u

∂αj

)

+
∂2J

∂αi∂x

(

∂x

∂αj

)

+
∂2J

∂αj∂x

(

∂x

∂αi

)

+
∂2J

∂x2

(

∂x

∂αi

∂x

∂αj

)

(13)

Similarly, the entire process can be repeated for the state equation (10) to give

∂R

∂u

∂2u

∂αi∂αj

+ D2
i,jR = 0, (14)

4 of 11

American Institute of Aeronautics and Astronautics

where, D2
i,jR is similarly defined as D2

i,jJ in equation (13).

Now substituting for ∂2u
∂αi∂αj

in equation (12) from equation (14) we get

∂2j

∂αi∂αj

= −
∂J

∂u

(

∂R

∂u

)

−1

D2
i,jR + D2

i,jJ

= vT D2
i,jR + D2

i,jJ. (15)

where v is the adjoint solution associated with the functional of interest J defined by the adjoint equation

(

∂R

∂u

)T

v +

(

∂J

∂u

)T

= 0. (16)

Equation (15) is used to calculate the complete Hessian. It should be noted here that only the second
derivative of flow variables is replaced here by the flow adjoint solution. Typically, the grid generation
process is computationally much cheaper than the iterative flow solutions. Also, because of the involvement
of the CAD packages in the grid generation process, it is difficult to develop adjoint codes for the grid
generation process. Hence in our implementation we do not use grid adjoint solutions. The linear and
second derivatives of the grid variables x(α) are calculated in the forward mode and then passed on to the
routines in the flow solver.

However if the grid adjoint solution capability exists or is desirable then the earlier more generic formulation
can be used. The entire formulation presented here is also valid for a multi-dimensional functional of interest.
The order of the computational cost remains the same as the earlier generic formulation assuming that the
second order sensitivities of grid variables can be calculated cheaply. The next section discusses some of the
related implementation issues.

V. Implementation

Hessian code development process is a natural extension of the linear and adjoint code development reported
in our earlier work.3 The entire nonlinear code has to be written in a modular fashion with all the nonlinear
bits separated out from the time integration loop. Each of these functions containing nonlinear bits are then
double differentiated in the forward mode using the automatic differentiation software. For example the
original nonlinear wall flux calculation subroutine is

flux wall(x1,x2,q,res),

where, x1 and x2 are the nodes defining the wall edge, q is the state vector of the interior cell and res

is the residue vector. This subroutine is differentiated in forward mode using an automatic differentiation
software with x1,x2 and q as the independent variables and res as the dependent variable. The differentiated
subroutine is

flux wall d(x1,x1d,x2,x2d,q,qd,res,resd),

where all the variables appended with d are the perturbation variables. This subroutine is again differentiated
in the forward mode with x1, x1d, x2, x2d, q and qd as the independent variables while res and resd are
the dependent variables.

flux wall d2(x1,x1d0,x1d,x1dd,x2,x2d0,x2d,x2dd,

q,qd0,qd,qdd,res,resd0,resd,resdd)

Effectively each of the original variable gets linearised twice and we also have the second order perturbation
in the variables appended by dd. These variables correspond to the complete second order derivative of
the original variable, i.e. resdd is the complete second order derivative given by an expression similar to
equations (12) and (13) if x1d, x2d, qd are initialised with perturbations with respect to αi and x1d0, x2d0,
qd0 are initialised with perturbations with respect to αj . Now if we set qdd = 0, then essentially we are
calculating the D2

i,j operator applied to res. These perturbations have to be carried forward throughout the

solver code in a similar fashion to calculate the complete D2
i,jR over the entire grid. D2

i,jJ is evaluated in a
similar fashion.

5 of 11

American Institute of Aeronautics and Astronautics

VI. Validation Checks

Although automatic differentiation by definition removes all the user intervention and associated errors, it
is always a good practice to introduce validation checks to ensure the correctness of the implementation.
Validation checks for Hessian calculation are developed on the similar lines as discussed in our previous
publication for the linear and adjoint code development.3 Unfortunately, it is not so straightforward as the
linear and adjoint code development. Still some simple checks can be introduced.

Given fully converged nonlinear u and linear ∂u
∂αi

solutions the following equations should be satisfied in the
entire domain to machine precision

R(x, u) = 0, and
∂R

∂x

∂x

∂αi

+
∂R

∂u

∂u

∂αi

= 0.

These checks ensure that the converged nonlinear and linear solutions are being correctly introduced in the
Hessian code. Also, it is desirable to ensure that the adjoint solution is consistent with the linear solutions
using the checks discussed in our previous publication.3

Finally, it should be tested that the calculated Hessian is symmetric, i.e.

∂2j

∂αi∂αj

=
∂2j

∂αj∂αi

.

This identity should be satisfied to machine precision. This calculation would require n2 evaluations of the
D2

i,jJ and D2
i,jR functions. Once this has been validated then only the upper diagonal Hessian matrix can

be calculated requiring n(n+1)
2 evaluations.

However the final validation has to be the comparison with finite difference results. These are presented in
the next section.

VII. Results

A two dimensional airfoil code is used to demonstrate these ideas. The nonlinear solver using finite difference
discretisation with two step predictor-corrector time integration is developed. Tapenade7 developed by
Laurent Hascoët and co-workers at Inria, France is used here for automatic differentiation. A consistent
linear and adjoint codes were developed for the baseline nonlinear airfoil code using Tapenade. The entire
source code along with a driver program can be downloaded from our website.8

Three modes of artificial perturbation are introduced to the baseline geometry. Figure 1 shows the three
modes of perturbation namely: thickness, angle-of-attack and leading edge shape.

A Makefile is written to calculate all the relevant linear, nonlinear and adjoint versions of the code using
Tapenade. A separate program air hes is written which calls all the appropriate double differentiated
subroutines to calculate the D2

i,jR and D2
i,jJ functions, and finally the entire Hessian with respect to these

three modes. Despite the fact that the Hessian is symmetric, all nine components are calculated. The
Hessian thus calculated is compared with the central finite difference approximation given by

∂2j

∂αi∂αj

(α0) =
1

2∆αj

(

∂j
∂αi

(α0 + ∆αj) −
∂j
∂αi

(α0 − ∆αj)
)

.

This expression is used instead of the second order finite difference of the nonlinear solution to minimise the
sensitivity to the step-size. Also, the linear perturbations calculated using a linear solver are accurate to
machine precision.

The far-field conditions in non-dimensional units are:

• Pressure = 1,

• Density = 1,

6 of 11

American Institute of Aeronautics and Astronautics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0.1

Mode 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0.1
Mode 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0.1
Mode 1

Figure 1. Artificial modes of perturbation introduced in NACA0012 airfoil

• Mach = 0.4, and

• Flow Angle = 3o.

Table 1 shows the comparison between the Hessian calculated directly and the finite difference calculations
using appropriate stepsize. Good agreement between these two is the final verification of the correctness of
the Hessian code implementation.

Modes Finite Difference Direct

1 - 1 − 3.111203625702499E − 07 −3.111203862791910E − 07

1 - 2 −2.097600811599999E − 06 −2.097600748629300E − 06

1 - 3 −9.959223201885120E − 07 −9.959223212828186E − 07

2 - 1 −2.097600747610895E − 06 −2.097600748629318E − 06

2 - 2 −2.159687423428786E − 04 −2.159687424802269E − 04

2 - 3 −1.746537857481162E − 04 −1.746537859860203E − 04

3 - 1 −9.959222904915369E − 07 −9.959223212828262E − 07

3 - 2 −1.746537861210817E − 04 −1.746537859860204E − 04

3 - 3 −1.970937036569875E − 05 −1.970937034187627E − 05

Table 1. Comparison between direct Hessian calculation and finite difference calculation for Lift. (Bold digits are
matching digits)

VIII. Extrapolation

One of the major applications of the Hessian thus obtained is in extrapolation. It is interesting to compare the
performance of the quadratic extrapolation using linear and Hessian solutions with the linear extrapolation
using adjoint correction.9 For the sake of completeness, the two expressions are given here. The quadratic

7 of 11

American Institute of Aeronautics and Astronautics

2.9 2.92 2.94 2.96 2.98 3 3.02 3.04 3.06 3.08 3.1

−1

−0.5

0

0.5

1

1.5
x 10−8

α

Di
ffe

re
nc

e
in

 lif
t

Low Subsonic

Nonlinear
Quadratic Extrap. with Hessian
Adjoint corrected linear Extrap.

Figure 2. Comparison between the errors from the cubic fit for the quadratic and the adjoint corrected linear extrap-
olation for low subsonic case (Mach = 0.4 and AOA = 3o)

extrapolation is given by

jα = jα0
+ ∂j

∂α
(α − α0) + 1

2
∂2j
∂α2 (α − α0)

2,

while adjoint corrected linear extrapolation is

jα = jα0
+ ∂j

∂α
(α − α0) − v(α0)

T R
(

x(α), u(α0) + ∂u
∂α

(α − α0)
)

.

The adjoint corrected linear extrapolation thus obtained has a third order leading error (i.e. O
(

(∆α)3
)

).
Extrapolation about a base angle-of-attack (AOA) is carried out using the second mode of perturbation.
A set of nonlinear simulations converged to full machine precision is carried out by varying α from 2.9o

to 3.1o in the steps of 0.001o. The nonlinear lift thus obtained is compared with the two methods of
extrapolation described above. Figure 2 plots the difference between these extrapolations and a cubic fit
of the lift (calculated using nonlinear simulations) for the low subsonic range (Mach = 0.4 and AOA = 3o)
against the angle-of-attack. Both the approaches look equally accurate in this case. As the perturbation in
α is very small, we see extremely small error with respect to the cubic fit of the nonlinear lift.

Similarly, Figure 3 shows comparison for a higher subsonic test case with Mach = 0.65 and AOA = 10o.
The behaviour of the nonlinear lift is not smooth with some pronounced kinks. Further investigation of this
curious behaviour revealed that these kinks are arising because of the fundamental non differentiability of
the underlying function.

A key quantity Adt which is area of a cell divided by the local time-step in the nonlinear calculations is
calculated as

Adt =

∑

i

|u dyi − v dxi| + c

√

dx2
i + dy2

i

CFL
, (17)

Here, u and v are the velocity components in x and y directions respectively, while dx and dy are the
projections of the length of an edge. Local speed of sound is denoted by c. CFL is the Courant-Friedrichs-
Lewy number. The summation is over the four edges forming a cell.

8 of 11

American Institute of Aeronautics and Astronautics

9.9 9.92 9.94 9.96 9.98 10 10.02 10.04 10.06 10.08 10.1
−10

−8

−6

−4

−2

0

2

4
x 10−8

α

Di
ffe

re
nc

e
in

 lif
t

High Subsonic

Nonlinear
Quadratic Extrap. with Hessian
Adjoint corrected linear Extrap.

Figure 3. Comparison between quadratic and adjoint corrected linear extrapolation for high subsonic case (Mach = 0.65
and AOA = 10o)

Because of the term with the absolute function, though this is C0 continuous, it is not C1 continuous. To
elaborate the problem more clearly, consider a generic function

g(x) = |f(x)|

with f(x) being infinitely differentiable. Now g(x) is continuous on the entire real line but there is a
discontinuity in g′(x) at all x with f(x) = 0 and f ′(x) 6= 0. Investigation of a relatively large kink in
Figure 3 at α = 9.995o revealed that |u dy − v dx| changes its sign in multiple cells between α = 9.994 and
α = 9.995. These small perturbations accumulated over multiple cells account for the kink in the nonlinear
lift value. If the Hessian is calculated near such a sensitive point then it introduces error.

It should be noted here that these errors are extremely small and in comparison to the convergence and
discretisation errors in the real-life applications, these are not significant. However, such errors accumulated
from multiple sources for highly complex codes may create significant errors. The current example of a two
dimensional inviscid solver is too simplistic to assess the true extent of errors that might be introduced.

Also it should be noted that the adjoint corrected linear extrapolation performs better than the quadratic
extrapolation in this case. It closely follows the trend of the underlying nonlinear solution.

To confirm that this was the only source of error for the non-smooth behaviour, we modified the time-step
calculation slightly to avoid the sign change. The time-step calculation as given in equation 17 was modified
to

Adt =
1

CFL

∑

i

c dsi

(

√

(mx
dyi

dsi
− my

dxi

dsi
)2 + ε2 + 1

)

,

where dsi =
√

dx2
i + dy2

i , mx = u
c
, my = v

c
and ε = 0.1. ε is chosen to ensure that the derivative of Adt is

always defined. The entire simulations are carried out again and the results were presented in Figure 4. The
smooth behaviour of the nonlinear lift confirms the hypothesis.

9 of 11

American Institute of Aeronautics and Astronautics

9.9 9.92 9.94 9.96 9.98 10 10.02 10.04 10.06 10.08 10.1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10−8

α

Di
ffe

re
nc

e
in

 lif
t

High Subsonic with modified timestep calculation

Nonlinear
Quadratic Extrap. with Hessian
Adjoint corrected linear Extrap.

Figure 4. Comparison between quadratic and adjoint corrected linear extrapolation for high subsonic case (Mach = 0.65
and AOA = 10o) with the modified time-step calculation

IX. Conclusion

Black-box use of automatic differentiation on fluid mechanics codes for Hessian calculation is still not compu-
tationally acceptable. An alternative computationally cheaper formulation for Hessian calculation has been
described. Successful use of automatic differentiation has been demonstrated for generating all the necessary
double differentiated routines. A Makefile can be generated to automatically keep in-sync with changes
in the original nonlinear code. A set of checks have been introduced which at least point out any obvious
inconsistencies in the nonlinear, linear and adjoint solutions used during the Hessian calculation.

A conscious effort is required while developing any nonlinear solvers to avoid inherently non-differentiable
component functions. It will be increasingly difficult to track down these problems in complex codes. Adjoint
corrected linear extrapolation seems to perform at least as well as the quadratic extrapolation. In non-smooth
regions, adjoint corrected linear extrapolation closely follows the nonlinear trend in contrast to the quadratic
extrapolation using the Hessian which may introduce relatively large errors.

Acknowledgments

This research was performed as part of the MCDO project funded by the UK Department for Trade and
Industry and Rolls-Royce plc, and coordinated by Yoon Ho, Leigh Lapworth and Shahrokh Shahpar.

We are very grateful to Laurent Hascoët for making Tapenade available to us, and for being so responsive
to our queries.

10 of 11

American Institute of Aeronautics and Astronautics

References

1“http://www.autodiff.org,” .
2Greiwank, A., Evaluating Derivatives, SIAM, Frontiers in Applied Mathematics, 2000.
3Giles, M. B., Ghate, D., and Duta, M., “Using Automatic Differentiation for Adjoint CFD Code Development,” Indo-

French Workshop, Dec. 2005, Also available as NA05/25.
4Christianson, B., “Automatic hessians by reverse accumulation,” IMA Journal of Numerical Analysis, Vol. 12, 1992,

pp. 135–150.
5Sherman, L. L., Taylor III, A. C., Green, L. L., and Newman, P. A., “First- and Second-Order Aerodynamic Sensitivity

Derivatives via Automatic Differentiation with incremental Iterative Methods,” Journal of Computational Physics, Vol. 129,
1996, pp. 307–331.

6Giles, M. B., Duta, M. C., Muller, J. D., and Pierce, N., “Algorithm developments for discrete adjoint methods,” AIAA

Journal , Vol. 42(2), 2003.
7Hascoët, L., “http://www-sop.inria.fr/tropics,” .
8Ghate, D. and Giles, M. B., “Source code for airfoil testcase for Hessian calculation using Tapenade

http://www.comlab.ox.ac.uk/devendra.ghate/hessian/,” .
9Giles, M. B. and Pierce, N. A., “Adjoint Recovery of Superconvergent Functionals from PDE Approximations,” SIAM

Review , Vol. 42(2), 2000, pp. 247–264.

11 of 11

American Institute of Aeronautics and Astronautics

