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Abstrat. This paper gives an overview of the use of adjoint equations in aeronautial

design optimisation to obtain the sensitivity of an objetive funtion to hanges in any

number of design variables. Both the ontinuous and the disrete adjoint approah are

outlined and the author's preferene for the latter is explained.
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1 Introdution

There is a long history of the use of adjoint equations in optimal ontrol theory [27℄.

In uid dynamis, the �rst use of adjoint equations for design was by Pironneau [32℄.

However, within the �eld of aeronautial omputational uid dynamis, it is Jameson

who has applied the methods of optimal ontrol theory to formulate optimal design meth-

ods. The term `optimal' refers to the fat that one is trying to �nd the geometry whih

minimises some objetive funtion, suh as the drag. In a sequene of papers [20, 21, 23℄

Jameson has developed the adjoint approah for potential ow, the Euler equations and

the Navier-Stokes equations. The omplexity of the appliations within these papers also

progressed from 2D airfoil optimisation, to 3D wing design and �nally to omplete airraft

on�gurations [22, 33, 34℄. A number of other researh groups have also developed adjoint

CFD odes [26, 36, 4, 3, 5℄ using the same `ontinuous' approah in whih the �rst step is

to linearise the original partial di�erential equations. The adjoint p.d.e. and appropriate

boundary onditions are then formulated, and �nally the equations are disretised.

The alternative `disrete' approah takes a disretisation of the Euler or Navier-Stokes

equations, linearises the disrete equations and then uses the transpose of the linear

operator to form the adjoint problem. This approah has been developed by Elliott [7℄,

Anderson [31, 1℄, Mohammadi [28, 29℄ and Kim [25℄, and it is the approah favoured by

the present author.

This paper outlines both approahes, emphasising the underlying similarity in their

mathematis. The adjoint theory is presented �rstly in the ontext of linear algebra, in

whih it is most easily understood. This is the basis for the disrete adjoint CFD approah

in whih one works with the algebrai equations that ome from the disretisation of the

original uid dynami equations. The paper then treats the extension to p.d.e.'s as used

in Jameson's ontinuous adjoint approah. Here the emphasis is on the onstrution of

the adjoint p.d.e. and its boundary onditions, inluding the manner in whih geometri

perturbations are introdued.

The pros and ons of the two approahes are then disussed, but in the end it is a

matter of personal judgement. There are advoates for eah approah, but no suggestions

that one approah is learly better than the other. The paper onludes with a few simple

numerial test ases illustrating the omputation of lift and mass ow sensitivities.

For further information, see the exellent review by Newman et al [30℄ whih surveys

both ontinuous and adjoint methods, and the papers by Giles [12, 11℄, and Giles & Piere

[17℄ whih present a more extensive introdution to the adjoint approah to design and

some of the related design optimisation issues.
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2 Disrete adjoint approah

2.1 Fundamental linear algebra

Suppose one wishes to evaluate the vetor dot produt g

T

u, with u being the solution

of the linear system of equations

Au = f;

for some given matrix A and vetor f . An equivalent dual form is to evaluate v

T

f where

the adjoint solution v satis�es the linear system of equations

A

T

v = g:

Note the use of the transposed matrix A

T

, and the interhange in the roles of f and g.

The equivalene of the two forms is easily proved as follows,

v

T

f = v

T

Au = (A

T

v)

T

u = g

T

u:

Given a single f and a single g, nothing would be gained (or lost) by using the dual

form. However, if we want the value of the objetive funtion for p di�erent values of

f , and m di�erent value of g, the standard approah needs the solution of p di�erent

primal equations, whereas the adjoint approah needs the solution of m di�erent adjoint

alulations. Therefore, the adjoint approah is muh heaper when m�p.

2.2 Design sensitivities

Given a set of design variables, �, whih ontrol the geometry of the airfoil, wing or

airraft being designed, and a set of ow variables at disrete grid points, U , the aim is

to determine the sensitivity of a single objetive funtion J(U; �) to hanges in �. The

disrete ow equations, together with the boundary onditions, an be expressed as

R(U;X(�)) = 0;

where X is the vetor of grid point oordinates whih depends on �. For a single design

variable, we an linearise about a baseline geometry and ow solution to get

dJ

d�

=

�J

�U

dU

d�

+

�J

��

:

The ow sensitivity dU=d� satis�es the linearised ow equations

�R

�U

dU

d�

+

�R

��

= 0:

By de�ning

u =

dU

d�

; A =

�N

�U

; g

T

=

�J

�U

; f = �

�N

��
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we an onvert this into the standard form

dJ

d�

= g

T

u+

�J

��

;

subjet to

Au = f:

The term �J=�� is relatively easy to evaluate. The term g

T

u � v

T

f an be omputed

either by the diret approah, solving Au = f , or by the adjoint approah, solving A

T

v =

g. For a single design variable there would be no bene�t in using the adjoint approah,

but for multiple design variables, eah has a di�erent f , but the same g, so the adjoint

approah is omputationally muh more eÆient.

2.3 Implementation issues

The above desription of the disrete adjoint approah makes it seem straightforward,

and this is one of the strengths of the disrete approah. However, in implementing it, a

number of important issues arise, of whih the most important are:

� Programming of adjoint matrix-vetor produt

We have written by hand our adjoint ode [13℄ to evaluate A

T

v, but this is not a

very easy task. A better alternative may be to follow Mohammadi [28, 29℄ in using

automati di�erentiation software [8, 9, 19℄, however this too is not without its

diÆulties. For the evaluation of f = ��N=�� we have used the \omplex variable

tehnique" [35℄ used by Anderson et al [2℄. This is a very e�etive tehnique whih

is easily implemented.

� Solid wall boundary onditions for node-based disretisations

The implementation of solid wall boundary onditions for node-based disretisations

involves the disarding of momentum residuals at wall nodes, to be replaed by a

no-ux or no-slip ondition for invisid and visous ases, respetively. In addition,

the disarded momentum residuals sometimes form part of the funtional to be eval-

uated. Both of these features introdue some additional omplexity in formulating

the adjoint problem [13℄.

� Iterative solution of adjoint equations

The eigenvalues of A

T

are exatly the same as those of A. Therefore, many stan-

dard iterative methods, suh as the GMRES method used by Anderson [3℄, are

guaranteed to onverge with the same asymptoti rate of onvergene as for the

original nonlinear ode. In our work [13℄, we use a speial form of preonditioned

time-marhing with multigrid, and obtain exatly the same onvergene history for

the sensitivity from the adjoint ode as we do from a linearised ow perturbation

ode. This also provides a very useful hek on the orretness of our programming.
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3 Continuous adjoint approah

3.1 Fundamental theory

Duality in the ase of p.d.e.'s is a natural extension of duality in the linear algebra

formulation. Using (V; U) to denote an integral inner produt over some domain 
,

(V; U) �

Z




V

T

U dx;

suppose one wants to evaluate the funtional (g; u), where u is the solution of the p.d.e.

Lu = f;

on the domain 
 subjet to homogeneous boundary onditions on the boundary �
.

Using the adjoint formulation, the idential funtional takes the form (v; f) where v is

the solution of the adjoint p.d.e.

L

�

v = g;

plus appropriate homogeneous adjoint b..'s. The adjoint operator L

�

is de�ned by the

identity

(V; LU) = (L

�

V; U);

whih must hold for all funtions V; U satisfying the respetive homogeneous boundary

onditions. Given the de�nitions, the proof of the equivalene of the two forms of the

problem is trivial

(v; f) = (v; Lu) = (L

�

v; u) = (g; u):

Thus far, the theory looks extremely similar to the linear algebra behind the disrete

approah. However, in general, the objetive funtion of interest involves integrals over

the boundary, rather than over the domain, and the boundary onditions are not ho-

mogeneous. To handle this, the following more general form of the adjoint identity is

required.

(V; LU)




+ (C

�

V;BU)

�


= (L

�

V; U)




+ (B

�

V; CU)

�


for all funtions U; V , with the notation (:; :)

�


denoting an inner produt over the bound-

ary. B and C are both boundary operators (possibly involving normal derivatives) given

in the de�nition of the original problem. B

�

and C

�

are the orresponding adjoint bound-

ary operators whih an be found by integration by parts. Using this adjoint identity, it

follows immediately that

(v; f)




+ (C

�

v; f

2

)

�


= (g; u)




+ (g

2

; Cu)

�


when the primal problem is

Lu = f in 
; and Bu = f

2

on �
;

and the adjoint problem is

L

�

v = g in 
; and B

�

v = g

2

on �
:
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There are some restritions on what an be imposed as b..'s and objetive funtions.

The analysis is ompliated (see [23℄ and [14℄ for details) but it reveals that on a solid

surfae, the boundary integral term in the objetive funtion must be a weighted integral

of the linear perturbation in the pressure when using the Euler equations. Similarly, for

the Navier-Stokes equations it must be a weighted integral of the linear perturbation in

the normal and tangential fores on the surfae, and either the heat ux or the surfae

temperature (depending whether one is speifying the surfae temperature or adiabati

onditions, respetively).

3.2 Design sensitivities

The most ompliated step in the ontinuous approah to design sensitivities is formu-

lating the linearised ow equations. In two dimensions, Jameson uses urvilinear oordi-

nates (�; �) orresponding to grid lines of a strutured grid, with the airfoil surfae being

de�ned as �=0 [21℄. The transformed Euler equations an be written as

�

��

 

F

�y

��

�G

�x

��

!

+

�

��

 

�F

�y

��

+G

�x

��

!

= 0;

where F and G represent the usual invisid uxes in the x and y diretions. A small

perturbation ~� to a design parameter produes hanges suh as

F �! F +

�F

�U

dU

d�

~�

�x

��

�!

�x

��

+

�

2

x

����

~�:

Terms not depending on ~� all anel, and terms depending on ~�

2

are negleted. Hene,

we get the linearised equations,

�

��

  

A

�y

��

�B

�x

��

!

u

!

+

�

��

  

�A

�y

��

+B

�x

��

!

u

!

=

�

�

��

 

F

�

2

y

����

�G

�

2

x

����

!

�

�

��

 

�F

�

2

y

����

+G

�

2

x

����

!

;

where

A =

�F

�U

; B =

�G

�U

; u =

dU

d�

:

The boundary ondition on an invisid wall is that there is no ow normal to the surfae

�=0. This remains true as � hanges but one needs to onsider the linearised perturbation

to the unit normal, whih eventually leads an inhomogeneous boundary term.

For omplex geometries, it is often not possible to use strutured grids. However, the

same idea of using perturbed urvilinear oordinates an be extended to unstrutured

grids [11, 17℄.
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Figure 1: Alternative approahes to forming disrete adjoint equations

3.3 Implementation issues

With the ontinuous adjoint approah, the disretisation of the adjoint equations an be

arried out without regard for the disretisation of the nonlinear ow problem. However,

the standard issues of auray, stability and onvergene remain to be addressed.

When onsidering ows with shoks, the analyti formulation should treat the shoks

as disontinuities aross whih the Rankine-Hugoniot shok jump relations are enfored.

This leads to the important result that the adjoint variables are ontinuous aross the

shok and that an additional adjoint boundary ondition must be imposed [16℄. However,

imposing suh a b.. would be ompliated, as it would require the automati identi�ation

of the shok loation in the nonlinear ow alulation, so in pratie, the standard pratie

is not to enfore this ondition. Quasi-one-dimensional results have demonstrated that

the inlusion of numerial smoothing automatially leads to satisfation of the adjoint

boundary ondition at the shok [15℄, and results in higher dimensions do not indiate

any partiular anomalies.

4 Relative advantages of two approahes

The di�erene between the disrete and ontinuous approahes is shown shematially

in Figure 1. In both ases one obtains a set of disrete adjoint equations. In the disrete

approah one starts by disretising the nonlinear p.d.e.; these equations are then linearised

and transposed. In the the ontinuous adjoint approah, the disretisation is the �nal

step, after �rst linearising and forming the adjoint problem. One ould even follow an

intermediate path, linearising the original equations, disretising them and then taking

the transpose. In priniple, if eah of the steps is performed orretly, and all of the

solutions are suÆiently smooth (e.g. no shoks) then in the limit of in�nite grid resolution

all three approahes should be onsistent and onverge to the orret analyti value for

design sensitivity.

However, there are important oneptual di�erenes between the di�erent approahes,

and for �nite resolution grids there will be di�erenes in the omputed results. In the
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author's opinion, the main advantages of the disrete approah are:

� Creation of the adjoint program is oneptually straightforward, and in the future

will hopefully be relatively easy using automati di�erentiation software.

� Iterative methods based on those used for the solution of the nonlinear ow equations

are guaranteed to be stable, and with the same highly-optimised rate of onvergene.

� There are numerous self-onsisteny heks whih an be performed, omparing

nonlinear ux routines with their adjoint ounterparts, to identify programming

errors.

On the other hand, the advantages of the ontinuous approah are:

� The physial signi�ane of the adjoint variables and the role of adjoint b..'s is

muh learer. Only by onstruting the adjoint ow equations an one develop a

good understanding of the nature of adjoint solutions, suh as the ontinuity at

shoks, the logarithmi singularity at a soni point in quasi-1D ows [16℄ but not in

2D or 3D (in general) and the inverse square-root singularity along the stagnation

streamline upstream of an airfoil in 2D [14℄.

� The adjoint program is simpler and requires less memory beause one is free to

disretise the adjoint p.d.e. in any onsistent way.

It remains an open question as to whether one approah is better when there are non-

linear disontinuities suh as shoks. For quasi-1D Euler alulations, both approahes

give numerial results whih onverge to the analyti solution [16℄. For the disrete ap-

proah, this follows beause the integrated pressure an be proved to be predited with

seond order auray [10℄. The linearised disretisation should therefore yield pertur-

bations to the integral of pressure that are at least �rst-order aurate. The disrete

adjoint formulation, whih is onstruted using this linearised operator, must therefore

behave orretly to �rst order at the shok. For the ontinuous approah, in the absene

of expliit enforement of the orret adjoint b.. at the shok, the orret asymptoti

behaviour an be explained as the e�et of numerial smoothing, given that the orret

analyti solution is the only smooth solution at the shok [15℄.

However, in 2D and 3D there is no proof of seond order auray for quantities suh

as lift and drag, and there is a disontinuity in the gradient of the adjoint variables at

the loation of the shok. Therefore it remains an open question as to whether either

approah will give a onsistent approximation to the gradient of the objetive funtion

in the limit of in�nite grid resolution. Numerial results for test ases with strong shoks

indiate there may be a problem with the disrete approah [13℄, but results using both

approahes suggest that any inonsisteny is very small when the shoks are weak.
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5 Nonlinear optimisation

Returning to the design problem, the aim is to �nd the set of design variables � whih

minimise the nonlinear objetive funtion J(U; �), where U is an impliit funtion of �

through the ow equations

N(U; �) = 0:

These nonlinear ow equations and the orresponding linear adjoint equations are both

large systems whih are usually solved by an iterative proedure.

There are two main optimisation strategies using the design sensitivities obtained from

the adjoint problem. The �rst is to use a simple steepest desent algorithm,

�� = ��

dJ

d�

;

where � ontrols the step size. The advantage of this method is that partially-onverged

ow and adjoint solutions may be used to evaluate the gradients as long as these gradients

are properly preonditioned (through numerial smoothing) prior to updating � [21℄. As

a result, the ost per design yle is relatively low.

In the seond approah, approximations to the Hessian matrix of seond derivatives

d

2

J

d�

i

d�

j

;

are used to speed onvergene via a quasi-Newton proedure suh as BFGS [18℄. This

method requires more aurate ow and adjoint solutions, whih must generally be on-

verged almost fully during eah design iteration. As a result, the ost of eah design yle

is signi�antly inreased.

The relative eÆieny and robustness of the two strategies is still subjet to debate,

but the reent paper by Jameson and Vassberg [24℄ omparing the two tehniques presents

onvining support for the �rst approah.

6 Numerial results

Figures 2{4 give some examples of adjoint results from another paper [13℄. Figure 2

is an invisid test ase. The symbols show the variation in lift oeÆient with angle of

attak for a NACA0012 airfoil at a freestream Mah number of 0.68. Eah of the lines has

a slope given by the lift sensitivity alulated by the adjoint ode based on the nonlinear

ow onditions at the angle of attak at the entral point.

Figure 3 is similar, but for a visous test ase, the RAE2822 airfoil at a freestream Mah

number of 0.725 and a Reynolds number of 6:5� 10

6

. The Spalart-Allmaras turbulene

model is used, and the adjoint ode inorporates the linearisation of the turbulene model.

Again there is good agreement between the nonlinear and adjoint results.

Finally, Figure 5 shows an example of a di�erent kind of adjoint alulation. This is

a test ase of unsteady ow over a asade of at plate airfoils, with the unsteadiness
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Figure 3: Lift vs. angle of attak for a RAE 2822 pro�le at M = 0:725, Re = 6:5�10
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being aused by inoming wakes with a sinusoidal pro�le. This test ase is relevant to the

problems of strutural vibration due to fored response and utter in turbomahinery. The

standard analysis uses harmoni linear unsteady ow analysis to ompute the unsteady

ow for a single frequeny of unsteady foring. This is expressed as the real part of a

omplex amplitude multiplying a harmoni unsteady term,

u(x; y; t) = Rfû(x; y) exp(i!t)g :

The key output is a omplex quantity alled the \worksum" whih represents the gen-

eralised fore for a partiular vibration mode within the ontext of lassial Lagrangian

mehanis. The �gure shows the real and imaginary omponents of this quantity for the

bending mode of vibration, and its variation as a funtion of the interblade phase angle

whih is related to the pith of the inoming wakes. The adjoint alulation omputes

the same quantity using the omplex onjugate transpose of the linear harmoni disrete

matrix [13, 6℄. The linear and adjoint odes produes idential values for the worksum,

and they agree well with the values produed by another ode LINSUB based on semi-

analyti theory [37℄. The bene�t of the adjoint approah for suh unsteady problems is

that it an give the level of fored response for any inoming wake of a partiular fre-

queny, whih is useful in ertain design appliations aiming to minimise fored response

vibrations [6℄. There is also the potential of using it for the design of blades whih a

redued suseptibility to utter.

7 Conlusions

This paper has reviewed the underlying theory for optimal design using adjoint methods

to obtain the sensitivity of an objetive funtion with respet to a large number of design

variables. Both the ontinuous and the disrete approahes have been overed, and their

relative strengths have been ommented on. It is hoped that this will enourage and help

others to develop adjoint tehniques as an integral part of engineering design systems.

Although the ideas have been presented in the ontext of aeronautial design, the ideas are

equally relevant to any area of engineering design involving large numbers of ontinuous

design variables.
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