
Defet and Adjoint Error CorretionMihael B. GilesOxford University Computing Laboratory, Oxford OX1 3QD, U.K.Abstrat. Motivated by appliations in aero-aoustis and eletromagnetis, this pa-per disusses the ombined use of defet orretion to improve the order of aurayof numerial solutions, and adjoint error orretion to improve the order of aurayof derived output funtionals suh as far-�eld boundary integrals. Numerial resultsfor the 1D Helmholtz equation on an irregular grid show fourth order auray for thenumerial solution, and sixth order auray for the boundary value.1 IntrodutionThe primary motivation for the work in this paper is the need for high order a-uray for aeroaousti and eletromagnetis alulations. In steady CFD alu-lations, grid adaptation an be used to provide high grid resolution in the limitedareas whih require it. However, using standard seond order aurate methods,the wave-like nature of aeroaousti and eletromagneti solutions would leadto grid re�nement throughout the omputational domain in order to redue thewave dispersion and dissipation to aeptable levels. The preferable alternativeis to use higher order methods, allowing one to use fewer points per wavelength,whih an lead to a very substantial redution in the total number of grid pointsfor 3D alulations. The diÆulty with this is that one often wants to use un-strutured grids beause of their geometri exibility, and the onstrution ofhigher order approximations on unstrutured grids is ompliated and ompu-tationally expensive.The urrent researh also followed from previous researh by Piere and Gileson the use of adjoint error orretion to obtain improved values for output fun-tionals [6℄. The relevane of this to aero-aousti and eletromagnetis is that oneis often interested in the value of a far-�eld boundary integral giving the radiatedaousti energy in aeroaoustis, or the radar ross-setion in eletromagnetis[5℄. Piere and Giles ahieved superonvergent results by using a reonstrutionproess to formulate a smooth approximate numerial solution. The residual er-ror in approximating the original p.d.e. was then evaluated, and an approximateadjoint solution was used to relate this residual error to the onsequential errorin the output funtional of interest. Removing this estimate of the error gave adoubling of the order of auray of the funtional in a number of test ases, in-luding the 2D Laplae and quasi-1D Euler equations [3℄. An alternative use forthe reonstrution and residual error evaluation would have been to use it to im-prove the whole solution through the well-known established of defet orretion



2 Mihael B. Giles(e.g. [1,4,7,8℄). However, defet orretion and adjoint error orretion are notmutually exlusive; the best auray is to be ahieved through the simultaneoususe of both tehniques.Aordingly, in this paper we examine the use of both to improve the au-ray in approximating the salar Helmholtz equation on an irregular 1D grid.The �rst setion desribes the model problem and the simple seond-order au-rate, pieewise linear, Galerkin �nite element method whih is used as the basiapproximation. The seond setion desribes the defet orretion in whih asmooth solution is reonstruted by ubi spline interpolation. The residual errorthen produes the soure term in a alulation of a orretion using the Galerkinsolver; this step is repeated if neessary. The third setion very briey reapsthe adjoint error orretion proedure. The �nal setion presents the numerialresults, showing global fourth order auray for the solution obtained with de-fet orretion. For the output funtional, whih in this ase in the solution atone end of the domain, fourth order auray is ahieved using either defet oradjoint error orretion on their own, but sixth order auray is obtained whenusing both.2 Problem desription and Galerkin methodThe model problem to be solved is the 1D Helmholtz equationu00 + �2u = 0; 0 < x < 10;subjet to the Dirihlet boundary ondition u = 1 at x = 0 and the radiationboundary ondition u0�i�u=0 at x=10. The analyti solution is u=exp(i�x)and the domain ontains preisely �ve wavelengths. The output funtional ofinterest is the value u(10) at the right hand boundary. This an be viewed asa model of a far-�eld boundary integral giving the radiated aousti energy inaeroaoustis, or the radar ross-setion in eletromagnetis [5℄.Integrating by parts, the weak form of the inhomogeneous equationu00 + �2u = f; 0 < x < 10;subjet to the same boundary onditions is�(w0; u0) + �2(w; u) + i�w�(10)u(10) = (w; f);for any di�erentiable w(x) with w(0)=0. Here the inner produt (w; u) is de�nedas (w; u) � Z 100 w�u dx;with w� denoting the omplex onjugate of w.The Galerkin solution on the irregular grid xj ; j = 0; 1; 2; : : : ; N , is de�nedas U(x) = NXj=0Uj�j(x)



Defet and Adjoint Error Corretion 3where the �j(x) are the usual pieewise linear `hat' funtions for whih �j(xi)=Æij . The value U0 is given by the Dirihlet boundary ondition. The values ofthe other oeÆients Uj for j>0 are obtained from the equations�(�0i; U 0) + �2(�i; U) + i��i(10)U(10) = 0; i = 1; 2; : : : ; N:It is well established that this disretisation is seond order aurate, produingdispersion but no dissipation on a uniform grid.3 Defet orretionThe �rst step in the defet orretion is to de�ne a new approximate solutionuh(x) by ubi spline interpolation of the nodal values Uj . The hoie of endonditions for the ubi spline is very important. A natural ubi spline wouldhave u00h=0 at both ends, but this would introdue small errors at eah end sineu00 6=0 for the analyti solution. Instead, at x=10 we require the splined solutionto satisfy the analyti boundary ondition by imposing u0h� i�uh = 0. At x=0,the analyti boundary ondition is already imposed through having the orretvalue for the end point U(0). Therefore, here we require that u00h + �2uh = 0 sothe splined solution satis�es the o.d.e. at the boundary.The solution error, e = u(x)� uh(x) satis�es the inhomogeneous Helmholtzequation e00 + �2e = �(u00h+�2uh); 0 < x < 10;the right-hand-side of whih is the residual error of the approximation uh(x).Given the homogeneous Dirihlet boundary ondition at x = 0, and the sameradiation boundary ondition at x=10, the Galerkin approximation to the erroris given by the equations�(�0i; E0) + �2(�i; E) + i��i(10)E(10) = �(�i; u00h+�2uh); i = 1; 2; : : : ; N:Adding the nodal orretions Ej to the original nodal values Uj gives a orretedsolution. The whole proedure an then be repeated to improve the auray.This follows the proedure desribed by Barrett et al who also showed that itonverges to a solution of an appropriately de�ned Petrov-Galerkin disretisa-tion, with the trial spae being the spae of ubi splines, while the test spaeis the spae of pieewise linear funtions [1℄.4 Adjoint error orretionWe begin with a presentation of the linear theory for adjoint error orretion inappliations with inhomogeneous boundary onditions and boundary funtion-als; for the nonlinear theory, see [3℄.Let u be the solution of the linear di�erential equationLu = f;



4 Mihael B. Gilesin the domain 
, subjet to the linear boundary onditionsBu = e;on the boundary �
. In general, the operator B may be di�erent on di�erentparts of the boundary, and in some appliations (e.g. inow and outow setionsfor the onvetion p.d.e.) even its dimension may di�er.The output funtional of interest is taken to beJ = (g; u) + (h;Cu)�
 ;where (:; :) represents an integral inner produt over the domain 
 and (:; :)�
represents an integral inner produt over the boundary �
. In [3℄, the theorywas presented for real variables, but here we are onsidering omplex variablesand so for the general ase of vetor variables u; v the inner produt (v; u) isde�ned as (v; u) � Z
 vHu dVwith vH being the Hermitian (omplex onjugate transpose) of v.The boundary operator C may be algebrai (e.g. Cu � u) or di�erential(e.g. Cu � �u�n ), but must have the same dimension as the adjoint boundaryondition operator B� to be de�ned shortly. Note that the omponents of h maybe set to zero if the funtional does not have a boundary integral ontribution.The orresponding linear adjoint problem isL�v = g;in 
, subjet to the boundary onditionsB�v = h;on the boundary �
. The fundamental identity de�ning L�, B� and the bound-ary operator C� is(L�v; u) + (B�v; Cu)�
 = (v; Lu) + (C�v;Bu)�
 ;for all u; v. This identity is obtained by integration by parts, and in a previouspaper we desribe the onstrution of the appropriate adjoint operators for thelinearized Euler and Navier-Stokes equations [2℄. We will follow the same proesslater to onstrut the adjoint boundary operators for the Helmholtz equation.Given approximate solutions uh; vh we de�ne eh; fh; gh; hh byLuh = fh; L�vh = gh;Buh = eh; B�vh = hh;and hene obtain



Defet and Adjoint Error Corretion 5(g; u) + (h;Cu)�
 = (g; uh) + (h;Cuh)�
� (gh; uh � u)� (hh; C(uh � u))�
+ (gh � g; uh � u) + (hh � h;C(uh � u))�
= (g; uh) + (h;Cuh)�
� (L�vh; uh � u)� (B�vh; C(uh � u))�
+ (gh � g; uh � u) + (hh � h;C(uh � u))�
= (g; uh) + (h;Cuh)�
� (vh; L(uh � u))� (C�vh; B(uh � u))�
+ (gh � g; uh � u) + (hh � h;C(uh � u))�
= (g; uh) + (h;Cuh)�
� (vh; fh � f)� (C�vh; eh � e)�
+ (gh � g; uh � u) + (hh � h;C(uh � u))�
 :In the �nal result, the �rst line is the funtional based on the approximatesolution uh. The seond line is the adjoint orretion term whih now inludes aterm related to the extent to whih the primal solution does not orretly satisfythe boundary onditions. The third line is the remaining error for whih an aposteriori error bound an be found, in priniple [6℄.To apply this theory to the Helmholtz problem, the �rst step is to onstrutthe appropriate adjoint problem. Integration by parts reveals that the Helmholtzequation is self-adjoint, so L�v � v00 + �2v;and (v; Lu)� (L�v; u) = �vHAu�100 ;where u = � ududx � ; v = � vdvdx � ;and A = � 0 1�1 0� :At x = 10 we haveBu � u0 � i�u � Bu; B = (�i� 1) ;and Cu � u � Cu; C = (1 0) :To satisfy the adjoint identity [2℄, we require B� and C� suh thatA = ��C�B� �H �BC � :



6 Mihael B. GilesSolving this gives ��C�B� � = �BC ��HAH = � 1 0�i� �1�and hene B�v � �v0�i�v and C�v � �v. Similarly, at x=0, we obtain B�v = vand C�v = v0.Now, noting that in our appliation f=g=0, and h has value 0 at x=0 and1 at x=10, then the full spei�ation of the adjoint problem isv00 + �2v = 0; 0 < x < 10;with v=0 at x=0 and �v0 � i�v = 1 at x=10.Let vh be an approximate solution of this problem, obtained by the sameGalerkin and ubi spline reonstrution approah as uh, with or without defetorretion. Noting that the ubi spline reonstrution ensures that the boundaryonditions are satis�ed exatly, the orreted approximation to the value u(10)is uh(10)� (vh; u00h+�2uh):The theory gives the error in this orreted funtional as being(vh � v; u00h+�2uh):In the absene of defet orretion, both terms in this inner produt are seondorder in the average grid spaing and so the error is fourth order. With defetorretion, the �rst term is fourth order while the seond term remains seondorder. Therefore, the error remaining after the adjoint error orretion is sixthorder.5 Numerial resultsNumerial results have been obtained for grids with 4, 8, 16, 32, 64 and 128 pointsper wavelength. To test the ability to ope with irregular grids, the oordinatesfor the grid with N intervals are de�ned asx0 = 0; xN = 10; xj = 10N (j + �j) ; 0<j<N;where �j is a uniformly distributed random variable in the range [�0:3; 0:3℄.Figure 1 shows the L2 norm of the error in the reonstruted ubi splinesolution before and after defet orretion. Without defet orretion, the erroris seond order, while with defet orretion it is fourth order. Note that a seondappliation of defet orretion makes a signi�ant redution in the error eventhough it remains fourth order. This is beause one appliation of the defetorretion proedure gives a orretion whih is seond order in magnitude, witha orresponding error whih is seond order in relative magnitude and therefore
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Fig. 1. L2 error in the numerial approximation to u(x)fourth order in absolute magnitude. It is this error whih is orreted by a seondappliation of the defet orretion proedure.Figure 2 shows the error in the numerial value for the output funtionalu(10). Without any orretion, the error is seond order. Using either defetorretion or adjoint error orretion on their own inreases the order of aurayto fourth order, but using them both inreases the auray to sixth order. Notethat the alulation with 8 points per wavelength plus both defet and adjointerror orretion gives an error whih is approximately 2 � 10�3. This is moreaurate than the alulation with 128 points per wavelength and no orretions,and omparable to the results using 14 points and defet orretion, or 30 pointswith adjoint error orretion.In 3D, the omputational ost is proportional to the ube of the number ofpoints per wavelength, so this indiates the potentially huge savings o�ered bythe ombination of defet and adjoint error orretion. The ost of omputing theorretions is �ve times the ost of the original alulation, due to the additionaltwo alulations for the defet orretion, and the one adjoint alulation plusits two defet orretions. In pratie, the seond defet orretion for the primaland adjoint alulations make negligible di�erene to the value obtained after
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Fig. 2. Error in the numerial approximation to u(10)the adjoint error orretion, so these an be omitted, reduing the ost of theorretions to just three times the ost of the original alulation.6 Conluding remarksThe numerial results whih have been presented show the potential o�ered bydefet orretion and adjoint error orretion, but there is muh work to be doneto ahieve this potential for multi-dimensional appliations. There will be someproblems in the representation and approximation of urved boundaries andboundary integrals, but the key issue is likely to be the smooth reonstrutionof a numerial solution from nodal data. On a strutured grid, ubi splineinterpolation an be used in eah diretion, but on an unstrutured grid onewould need a suitable generalisation of ubi spline interpolation to produe areonstruted solution of suÆient smoothness. This will be the main hallengein trying to reprodue similar improvements in auray for aeroaousti andeletromagneti alulations on 3D unstrutured grids.
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