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1 Introduction

This paper introduces a novel method for analysing the tonal noise radiated
from non-axisymmetric turbofan inlets. It combines a standard finite ele-
ment (FE) discretisation of the acoustic field in the axial and radial direction
with a Fourier spectral representation [6] in the circumferential direction. Be-
cause relatively few Fourier modes need to be retained for an accurate field
representation, the method involves many fewer discrete unknowns than a
conventional 3D finite element analysis.

The noise source due to the fan blades is characterised by a single cir-
cumferential mode number, which in the case of an axisymmetric inlet would
produce a radiated acoustic field with the same circumferential mode num-
ber. However, real engine inlets are not axisymmetric, so in practice the
circumferential modes of the acoustic field are coupled and all are excited.
However, the level of asymmetry is quite moderate and this coupling is rela-
tively weak. This feature is used to construct a very efficient preconditioner
for the iterative solution of the asymmetric aeroacoustic problem.

2 Aeroacoustic equations

Given the standard assumption of irrotational flow with uniform entropy, the
velocity field is represented as the gradient of a potential function φ and the
density ρ and speed of sound c are given by

( ρ / ρ∞)γ−1 = ( c / c∞)2 = 1− (γ−1) ( q − q∞) / c2

∞
,

where q = 1

2
|∇φ|2 and ρ∞, c∞, q∞ are the freestream values. Integrating by

parts the steady mass equation gives the weak form of the steady equation,
∫

V

ρ∇φ · ∇w dV −

∫

∂V

β w dS = 0, (1)

for all smooth test functions w which are zero on the far-field boundary where
Dirichlet boundary conditions are specified for φ. The other two boundaries
have the Neumann boundary condition ∂φ/∂n = β, with β = 0 on the inlet
surface, and a prescribed massflow β 6= 0 on the fan face – see Fig.1(a).
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The propagation of acoustic waves of a single frequency ω is modelled
as the real part of a harmonic perturbation φ̂ exp(iωt) superimposed on the
steady mean flow given by (1). The weak form of the acoustic equation comes
from the linearisation of the unsteady mass conservation equation,
∫

V

ρ∇φ̂ · ∇w −
ρ

c2

(
∇φ·∇φ̂+i ω φ̂

)
(∇φ·∇w−i ω w) dV −

∫

∂V

β̂ w dS = 0,

(2)
where

β̂ = ρ
∂φ̂

∂n
−

ρ

c2

(
∇φ · ∇φ̂ + i ωφ̂

) ∂φ

∂n
.

All the boundary conditions of practical interest in engine inlet aeroacoustics
are represented by β̂. At the fan boundary, the field φ̂ is decomposed into a
sum of incident and radiated eigenmodes [5]. β̂ is in that case a function of the
incident mode prescribed to model the presence of the downstream fan as the
source of noise. At the far-field, ray theory is used to determine the angle at
which the acoustic waves cross the boundary and establish an expression for β̂
which minimises the reflection of acoustic waves back into the computational
domain. Finally, β̂ = 0 at the solid inlet surface but if acoustic liners are
present then additional modelling yields a modified boundary integral [2].

3 Axisymmetric discretisation and solution

The standard approach for axisymmetric inlets is based on cylindrical coordi-
nates (x, r). Using quadrilateral elements with bi-quadratic shape functions
Nn(ξ, η), the iso-parametric finite element representation for the coordinates
and the steady potential flow field is




x(ξ, η)

r(ξ, η)

φ(ξ, η)


 =

∑

n

Nn(ξ, η)




xn

rn

φn


 .

Given this representation, a Galerkin discretisation of equation (1) yields a
system of discrete nonlinear steady flow equations R(Φ) = 0, where Φ is the
vector of unknown potentials at the nodes of the computational mesh. These
nonlinear equations can be solved very efficiently using Newton iteration,
with the linear system of equations at each Newton step being solved by
direct Gaussian elimination.

The acoustic solution has the circumferential variation exp(iκθ), where κ
is the circumferential mode number of the specified incoming mode due to
the rotating fan. Using the finite element approximation

φ̂(ξ, η, θ) =
∑

n

exp (iκθ) Nn(ξ, η) φ̂n,

equation (2) yields a linear system of equations L̂ Φ̂ = f̂0 which can again be
efficiently solved by direct means.
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Fig. 1. (a) Coarse quadrilateral mesh around an axisymmetric inlet (A much finer
grid is used for acoustic calculations.) (b) Asymmetric inlet geometry described by
a series of axial sections at a number of equally spaced θ stations.

4 Non-axisymmetric discretisation and solution

The key to the non-axisymmetric discretisation is a spectral Fourier decom-
position in the circumferential direction,




x(ξ, η, θ)

r(ξ, η, θ)

φ(ξ, η, θ)


 =

∑

n

exp (imθ) Nn(ξ, η)




xmn

rmn

φmn


 .

This uses the same shape functions as in the axisymmetric case to interpo-
late in the (ξ, η) coordinates, but there is an additional summation over the
different circumferential modes. The xmn, rmn coefficients are first obtained
for the nodes on the inlet geometry, through an FFT of corresponding points
on a number of axial sections, as shown in Fig.1(b). The axisymmetric com-
ponent of the inlet geometry is then used to construct the axisymmetric grid
shown in Fig.1(a) and the non-axisymmetric component is interpolated onto
the interior grid nodes.

The unknowns are now the nodal values of each of the circumferential
modes (including the axisymmetric mode m = 0) of the steady potential.
Only a limited number of modes −M≤m≤M need to be retained in the so-
lution; in practice, this number is very small relative to the number of nodes
in the circumferential direction which would be required by an accurate stan-
dard 3D FE solution. With the above spectral representation, the Galerkin
discretisation of the steady equation (1) gives a discrete system of nonlinear
equations of the form R(Φ) = 0, with the steady potential values grouped
by circumferential mode within the vector Φ = (Φ−M , . . . ,Φ0, . . . ,ΦM ).

There are now two important questions, how to efficiently evaluate the
residual R(Φ), and how to solve the equations to obtain the steady solution.
The finite element construction of R(Φ) requires for each element the evalu-
ation of a 3D integral over (ξ, η, θ). The integration over (ξ, η) is performed



4 M. C. Duta, M. B. Giles, and A. Laird

using Guass quadrature, while the integration over θ follows a pseudo-spectral
approach. This starts with the circumferential modal values φ̂mn, and per-
forms an FFT to obtain the values and circumferential derivatives at a num-
ber of equally spaced points circumferentially. These are used to form nodal
residuals which are then combined through an inverse FFT to obtain the
modal residuals. It is important that enough points are used circumferen-
tially to avoid aliasing errors.

The equations are again solved by Newton iteration, but it is no longer
efficient to use direct solution methods to solve the resulting linear Newton
update equations, since the solution cost is approximately proportional to
M3. Instead, since the Jacobian matrix ∂R/∂Φ is symmetric and positive
definite, the linear equations are solved iteratively using the Conjugate Gra-
dient (CG) method [1]. The iterative convergence rate is greatly improved
through the use of a preconditioner. The preconditioner is based on the ob-
servation that if the geometry is axisymmetric, then the Jacobian matrix
∂R/∂Φ becomes block-diagonal, with each of the circumferential modes be-
coming decoupled. It is this block-diagonal matrix, based on the axisymmetric
component of the geometry and the steady flow field, and constructed in the
standard way using Guass quadrature, which is therefore used as the pre-
conditioner. Inverting the preconditioner as part of the preconditioned CG
iteration requires the solution of a separate 2D system of equations for each
circumferential mode, which is done efficiently by direct solution.

The acoustic field is represented by

φ̂(ξ, η, θ) =
∑

m

∑

n

exp (i(κ+m)θ) Nn(ξ, η) φ̂mn.

The Galerkin discretisation of equation (2) yields the discrete acoustic equa-

tions L̂ Φ̂ = f̂ , with Φ̂ = (Φ̂−M , . . . , Φ̂0, . . . , Φ̂M ) comprising the complex
amplitudes grouped by circumferential mode number, coupled together by
the matrix L̂. The forcing term is f̂ = (0, . . . , f̂0, . . . , 0) and reflects the fact
that the forcing duct mode (m=0) is prescribed at the fan face which is nec-
essarily axisymmetric. The Quasi-Minimal Residual (QMR) [1, 3] method is
used to solve the equations iteratively. Although not guaranteed to converge,
it has been found to behave very well on this acoustic problem. As with the
solution of the linear Newton equations for the steady problem, the spectral
acoustic problem is preconditioned using the block-diagonal matrix given by
the axisymmetric components of the geometry and the steady flow field. This
effectively requires the direct solution of a separate 2D axisymmetric equa-
tion for each of the circumfernetial modes for each step of the QMR iteration.
However, the CPU cost can be reduced by performing an LU factorisation of
each of the axisymmetric matrices, so that then each QMR iteration requires
only a back-solve for each circumferential mode.
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Fig. 2. (a) The variation of the modal “energy” distribution with the number
of circumferential modes used to represent the solution. (b) The QMR iteration
convergence histories for the inlet with 1◦, 2◦ and 5◦ scarfing.

5 Example

The numerical results are for the real engine inlet shown in Fig.1. The inlet
is asymmetric with a scarfing angle of 5◦ (the angle with which the plane of
the inlet front is tilted with respect to the engine axis) and was defined by a
series of axial sections equally spaced circumferentially at 22.5◦, Fig.1(b).

The Mach number of the steady flow is specified to be 0.3 in freestream
and 0.4 at the fan face. The source of acoustic excitation is the rotation of
the shocks attached to the fan blades and considering 26 fan blades with a
tip Mach number 1.2, the circumferential mode number is κ = 26 and the
reduced frequency of the first blade passing frequency (based on engine radius
and freestream speed of sound) is ωR/c∞=30.

Using bi-quadratic elements and a minimum of 8 nodes per wavelength,
the axisymmetric mesh has 14,000 nodes. To determine the number of circum-
ferential modes required to accurately represent the acoustic field, a series of
calculations were performed with M = 4, 6, 8 and 12 modes. The distribution
of “energy” (the RMS of the solution vector in each mode) across modes was
computed, Fig.2(a). It was thus found that M = 8 is sufficient to represent
the circumferential variation. This corresponds to 0.25 million unknowns and
the advantage of the spectral discretisation becomes clear as the equivalent
acoustic calculation using a standard 3D FE formulation with at least 8 nodes
per wavelength in the circumferential direction would require approximately
3 million unknowns.

Finally, keeping the axisymmetric mean of the inlet geometry and scaling
the asymmetry modes, configurations with scarfing angles of 1◦ (almost ax-
isymmetric), 2◦ and 5◦ (original geometry) were obtained. Fig.2(b) depicts
the QMR convergence histories for the acoustic problems in these three cases,
demonstrating clearly how the convergence rate is fastest when the precon-
ditioner is most effective, i.e. when the degree of asymmetry is smallest.
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6 Conclusions

This paper has introduced a new method for the analysis of the tonal noise
radiated from non-axisymmetric turbofan inlets. It combines a standard FE
discretisation of the acoustic field in the axial and radial coordinates with a
Fourier spectral representation in the circumferential direction. As a relatively
small number of Fourier modes are enough for an accurate field representa-
tion, the method is far less costly than the conventional 3D FE approach.
The most novel feature of the work is the iterative solution technique using
a preconditioner based on an axisymmetric gemoetry and steady flow field.
A numerical example illustrates how few Fourier modes need to be retained,
and demonstrates the effectiveness of the preconditioner.
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