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Abstract

This paper combines the multilevel Monte Carlo path simulation
method with quasi-Monte Carlo integration using a randomised rank-1
lattice rule. Using the Milstein discretisation of the stochastic differen-
tial equation for geometric Brownian motion, it is demonstrated that
the combination has much lower computational cost than either one on
its own for evaluating European, Asian, lookback, barrier and digital
options.

1 Introduction

This paper is the third in a sequence. The first paper [4] introduced the mul-
tilevel Monte Carlo method and proved that it can lower the computational
complexity of path-dependent Monte Carlo evaluations, and it presented nu-
merical results using the simplest Euler discretisation. The second paper [5]
showed that the computational cost can be further reduced by using the Mil-
stein discretisation. This has the same weak order of convergence but an im-
proved first order strong convergence, and it is the strong order of convergence
which is central to the efficiency of the multilevel method. The new ingredient
introduced in this third paper is quasi-Monte Carlo (QMC) integration based
on a randomised rank-1 lattice rule which, it will be shown, further reduces
the computational cost if implemented efficiently.

To set the scene, we consider an SDE with general drift and volatility
terms,

dS(t) = a(S, t) dt + b(S, t) dW (t), 0 < t < T, (1)

with given initial data S0. In the case of European and digital options, we are
interested in the expected value of a function of the terminal state, f(S(T )),
but in the case of Asian, lookback and barrier options the valuation depends
on the entire path S(t), 0<t<T .
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Using a simple Monte Carlo method with a numerical discretisation with
first order weak convergence, to achieve a r. m. s. error of ε would require
O(ε−2) independent paths, each with O(ε−1) timesteps, giving a computational
complexity which is O(ε−3). The first paper [4] introduced a new multilevel
approach which reduces the cost to O(ε−2(log ε)2) when using an Euler path
discretisation for a European option with a payoff with a uniform Lipschitz
bound. This multilevel approach is related to the two-level method of Kebaier
[9] and the multilevel method proposed by Speight [19].

The first paper also proved that the computational cost could be further
reduced to O(ε−2) for numerical discretisations with sufficiently good strong
convergence, and the second paper [5] demonstrated that this is attainable
using the Milstein path discretisation. Careful treatment was required for
Asian, lookback, barrier and digital options; the same treatment will be used
in this paper with the exception of the Asian option for which a slightly simpler
approach is used.

The paper begins by reviewing the multilevel approach, first with the Euler
path discretisation and then with the superior Milstein discretisation. QMC
methods based on rank-1 lattice rules are then introduced, with particular
attention to Brownian Bridge construction and the use of randomisation to
obtain confidence intervals. The combined multilevel QMC algorithm is pre-
sented and the following section provides numerical results for a range of
options. Unfortunately, at present there is no numerical analysis theory to
support the excellent performance which is observed.

2 Multilevel Monte Carlo method

Consider Monte Carlo path simulations with different timesteps hl = 2−l T ,
l = 0, 1, . . . , L. Thus on the coarsest level, l = 0, the simulations use just 1
timestep, while on the finest level, l=L, the simulations use 2L timesteps. For
a given Brownian path W (t), let P denote the payoff, and let P̂l denote its
approximation using a numerical discretisation with timestep hl. Because of
the linearity of the expectation operator, it is clearly true that

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]. (2)

This expresses the expectation on the finest level as being equal to the expec-
tation on the coarsest level plus a sum of corrections which give the difference
in expectation between simulations using different numbers of timesteps. The
idea behind the multilevel method is to independently estimate each of the ex-
pectations on the right-hand side in a way which minimises the overall variance
for a given computational cost.
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Let Ŷ0 be an estimator for E[P̂0] using N0 samples, and let Ŷl for l > 0 be

an estimator for E[P̂l−P̂l−1] using Nl paths. The simplest estimator is a mean
of Nl independent samples, which for l>0 is

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
. (3)

The key point here is that the quantity P̂
(i)
l − P̂

(i)
l−1 comes from two discrete

approximations with different timesteps but the same Brownian path. The
variance of this simple estimator is V[Ŷl] = N−1

l Vl where Vl is the variance of
a single sample. Combining this with independent estimators for each of the
other levels, the variance of the combined estimator

∑L
l=0 Ŷl is

∑L
l=0 N−1

l Vl,

while its computational cost is proportional to
∑L

l=0 Nl h
−1
l . Treating the Nl

as continuous variables, the variance is minimised for a fixed computational
cost by choosing Nl to be proportional to

√
Vl hl.

In the particular case of an Euler discretisation, provided a(S, t) and b(S, t)
satisfy certain conditions [1, 10, 20] there is O(h1/2) strong convergence. From

this it follows that V[P̂l−P ] = O(hl) for a European option with a Lipschitz
continuous payoff. Hence for the simple estimator (3), the single sample vari-
ance Vl is O(hl), and the optimal choice for Nl is asymptotically proportional

to hl. Setting Nl = O(ε−2Lhl), the variance of the combined estimator Ŷ
is O(ε2). If L is chosen such that L = log ε−1/ log 2 + O(1), as ε → 0, then

hL = 2−L = O(ε), and so the bias error E[P̂L−P ] is O(ε) due to standard results
on weak convergence. Consequently, we obtain a mean square error which is
O(ε2), with a computational complexity which is O(ε−2L2) = O(ε−2(log ε)2).

This analysis is generalised in the following theorem [4]:

Theorem 2.1 Let P denote a functional of the solution of stochastic differ-
ential equation (1) for a given Brownian path W (t), and let P̂l denote the
corresponding approximation using a numerical discretisation with timestep
hl = M−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo samples,
and positive constants α≥ 1

2
, β, c1, c2, c3 such that

i) E[P̂l − P ] ≤ c1 hα
l

ii) E[Ŷl] =

{
E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V[Ŷl] ≤ c2 N−1
l hβ

l
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iv) Cl, the computational complexity of Ŷl, is bounded by

Cl ≤ c3 Nl h
−1
l ,

then there exists a positive constant c4 such that for any ε < e−1 there are
values L and Nl for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷl,

has a mean-square-error with bound

MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤





c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.

Proof See [4]. �

3 Milstein discretisation

The theorem proves that the best order of complexity is achieved using dis-
cretisations with β > 1. To achieve this for a scalar SDE, we use the Milstein
discretisation of equation (1) which is

Ŝn+1 = Ŝn + an h + bn ∆Wn + 1
2

∂bn

∂S
bn (∆Wn)2. (4)

In the above equation, the subscript n is used to denote the timestep index,
and an, bn and ∂bn/∂S are evaluated at Ŝn, tn.

All of the numerical results to be presented are for the case of geometric
Brownian motion for which the SDE is

dS(t) = r S dt + σ S dW (t), 0 < t < T.

By switching to the new variable X = log S, it is possible to construct nu-
merical approximations which are exact, but here we directly simulate the
geometric Brownian motion using the Milstein method as an indication of
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the behaviour with more complicated models, for example those with a local
volatility function σ(S, t).

The Milstein discretisation defines the numerical approximation at the dis-
crete times tn. Within the time interval [tn, tn+1] we use a constant coefficient
Brownian interpolation conditional on the two end values,

Ŝ(t) = Ŝn + λ (Ŝn+1−Ŝn) + bn

(
W (t) − Wn − λ (Wn+1−Wn)

)
, (5)

where

λ =
t − tn

tn+1 − tn
.

For the fine path, standard results on i) the expected average value, ii) the
distribution of the minimum, and iii) the probability of crossing a certain value,

will be used to obtain the value P̂l for Asian, lookback and barrier options,
respectively.

Exactly the same approach could also be used on the coarse path with half
as many timesteps to obtain P̂l−1. However, this would not give an estimator Ŷl

with variance convergence rate β >1. To achieve the better convergence rate,
we first use the value of the underlying Brownian motion W (t) at the midpoint
(which has already been sampled and used for the fine path calculation) to
define an interpolated midpoint

Ŝn+ 1

2

= 1
2
(Ŝn+1+Ŝn) + bn

(
Wn+ 1

2

− 1
2
(Wn+1+Wn)

)
. (6)

We can then use the Brownian interpolation (with volatility bn) on each of the
half-intervals [tn, tn+ 1

2

] and [tn+ 1

2

, tn+1] which each correspond to one of the
timesteps on the fine path. A key point in this construction is that we have
not altered the expected value for P̂l−1, averaged over all underlying Brownian
paths W (t), and so we obtain an unbiased estimate for E[Pl−Pl−1]. This point
is discussed at greater length in the second paper [5].

4 Quasi-Monte Carlo method

QMC methods approximate an integral on a high-dimensional hypercube with
an N -point equal-weight quadrature rule of the form

∫

[0,1]d
f(x) dx ≈ 1

N

N−1∑

i=0

f(xi).

This is the same form which is used in the Monte Carlo method. However,
rather than choosing the d-dimensional points xi uniformly from the unit cube,
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as is the case with the Monte Carlo method, QMC methods choose the points
in some deterministic manner.

Sobol′ sequences [18] and digital nets [14] are two popular choices of QMC
points, which have been previously used for financial applications [8, 13]. In
this paper we use a rank-1 lattice rule [17] in which the points have the par-
ticularly simple construction

xi =

{
i

N
z

}
,

where z is a d-dimensional vector with integer components and the notation
{ · } denotes taking the fractional part of each component of the argument and
disregarding the integer part so that xi lies within the half-open unit cube.

For Monte Carlo integration it is well known that the error is O(N−1/2).
In one dimension, the lattice rule is equivalent to a rectangle rule and can
achieve O(N−1) convergence of the error, for a sufficiently smooth integrand.
For larger dimensions, it may be shown that for integrands with sufficient
smoothness and dimensions which become progressively less important, there
exist lattice rules for which the error decays at O(N−1+ε) for all ε > 0, see [11].
Unfortunately, many integrands in mathematical finance applications do not
have the required smoothness and so we may not apply the theory to claim
the O(N−1+ε) convergence. However, experimentation suggests that this rate
can in fact be achieved for many finance problems [12].

Two key aspects of the implementation of QMC methods are randomisation
and the factorisation of the covariance matrix. If we neglect for the moment
the discretisation errors which arise from finite timesteps, the standard Monte
Carlo method has the attractive feature that it provides both an unbiased
estimate of the desired value and a confidence interval for that estimate. The
QMC method lacks this feature but it can be regained by re-defining the ith

point to be

xi =

{
i

N
z + ∆

}
.

For a given offset vector ∆ ∈ [0, 1)d, this defines a set of N points, for which
one can compute the average

Ŷ =
1

N

N−1∑

i=0

f(xi).

If we now treat ∆ as a random variable then the expected value of Ŷ is equal
to the desired integral, and therefore Ŷ is an unbiased estimator. By choosing
a number of different random offsets ∆1, . . . ,∆q (q = 32 is used in this paper)
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and computing a separate Ŷj for each, one can construct a confidence interval
in the usual way.

For a scalar SDE with nT timesteps, the dimensionality of the problem is
d = nT , and the factorisation of the covariance matrix concerns the question of
how best to map the different dimensions of the hypercube to the nT Wiener
increments in the Milstein discretisation. The expected value of a financial
product whose value is determined by an asset whose dynamics are described
by (1), discretised at times tn =nh, is given by the integral

∫

Rd

p(x)
exp

(
−1

2
x

T Σ−1
x
)

(2π)d/2
√

det Σ
dx.

Here p(x) is the payoff function and the d-dimensional matrix Σi,j =min(ti, tj)
is the covariance matrix for the elements of x which are the underlying Wiener
path values Wn. Taking a matrix A such that AAT = Σ, and making the sub-
stitutions x=Ay and y =Φ−1(z) where Φ−1 is the inverse of the cumulative
Normal distribution function taken componentwise, this can be reformulated
as an integral over the unit cube

∫

Rd

p(Ay)
exp

(
−1

2
y

T
y
)

(2π)d/2
dy =

∫

[0,1]d
p(A Φ−1(z)) dz.

For Monte Carlo integration the choice of the matrix A makes no difference,
but for QMC integration it is very important [2, 8, 13]. While any choice of
A such that AAT = Σ is suitable, there are three established ways in which
the matrix A may be chosen. Firstly, A may be chosen to be the Cholesky
factor of Σ. This is the simplest method and corresponds to taking the nth

component of xi to define ∆Wn through

∆Wn =
√

h Φ−1(xi,n).

This would correctly map a uniform [0, 1] distribution for xn into a Normal
distribution for ∆Wn with zero mean and variance h. This method is often
referred to as the standard construction and is usually used for Monte Carlo
integration due to the simplicity of its construction.

A second way in which A may be chosen is to use a Brownian Bridge
construction [2, 8]. Under this method, the first component of x is used to
define W (T ), the second component defines W (T/2) (conditional on the first),
the third and fourth components define W (T/4) and W (3T/4) (conditional
on the first two), and so on. Note that in the standard and Brownian Bridge
constructions, the matrix A is not explicitly used, but rather implicitly used
in the recursive construction.

The final way is known as the “Principal Components Analysis” (PCA)
method. In this method A is chosen to be the matrix with nth column equal to
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√
λnvn where λn is the nth largest eigenvalue of Σ and vn is the corresponding

eigenvector [8].

Several authors [2, 13, 8] have found the Brownian Bridge and PCA con-
structions to be much better for some problems, although it is known that
there are problems from mathematical finance for which the standard con-
struction performs much better than the Brownian Bridge, see [16]. In our
numerical experiments we use the Brownian Bridge construction, since for our
applications it consistently outperforms the standard construction.

The final implementation issue is the choice of the generating vector z. We
use a vector using the construction algorithm of Dick et al [3]. This particular
type of lattice rule is said to be extensible since it can be used as a sequence
with differing values of N . The construction algorithm is particularly efficient
due to the fast FFT implementation technique of Nuyens and Cools [15].

5 Multilevel QMC algorithm

At level l in the multilevel formulation, Nl is defined to be the number of QMC
points, and Ŷl is the computed average of P̂l (for l=0) or P̂l−P̂l−1 (for l>0)
over the 32 sets of Nl QMC lattice points, each set having a different random
offset. An unbiased estimate of its variance Vl is computed in the usual way
from the differing values for the 32 averages.

On the assumption that there is first order weak convergence, the remaining
bias at the finest level E[P − P̂L] is approximately equal to ŶL. Being more

cautious (to allow for the possibility that Ŷl changes sign as l increases before
settling into its first order asymptotic convergence) we estimate the magnitude
of the bias using

max
{

1
2

∣∣∣ŶL−1

∣∣∣ ,
∣∣∣ŶL

∣∣∣
}

.

The mean square error is the sum of the combined variance
∑L

l=0 Vl plus the

square of the bias E[P−P̂L]. We choose to make each of these smaller than ε2/2,
so that overall we achieve a user-specified RMS accuracy of ε. The variance
is reduced by increasing the number of lattice points on each level, while the
bias is reduced by increasing the level of path refinement (i.e. increasing L).

Given this outline strategy, the multilevel QMC algorithm proceeds as
follows:

1. start with L=0

2. get an initial estimate for VL using 32 random offsets and NL = 1

8



3. while
L∑

l=0

Vl > ε2/2, double Nl on the level with largest Vl / (2lNl)

4. if L<2 or the bias estimate is greater than ε/
√

2, set L := L+1 and go
to step 2

Step 3 is based on the fact that doubling Nl will eliminate most of the
variance Vl at a cost proportional to the product of the number of timesteps
2l and the number of lattice points Nl. The choice of level l aims to maximise
the reduction in variance per unit cost.

6 Numerical results

6.1 European call option

The European call option we consider has the discounted payoff

P = exp(−rT ) (S(T ) − K)+,

where the notation (x)+ denotes max(0, x). Figure 1 shows the numerical
results for parameters S(0)=1, K =1, T =1, r=0.05, σ=0.2.

The solid lines in the top left plot show the behaviour of the variance
P̂l, while the dashed lines show the variance of P̂l− P̂l−1. The four sets of
calculations use different numbers of lattice points. The calculations with just
one lattice point correspond to standard Monte Carlo. The calculations with
16, 256 and 4094 lattice points show the variance of the average over the
set of lattice points multiplied by the number of lattice points; for standard
Monte Carlo this quantity would be independent of the number of points,
and therefore this is a fair basis of comparison which accounts for the cost
of 4096 points being 4096 times greater than a single point. The solid line
results show that the QMC method on its own is very effective in reducing
the variance compared to the standard Monte Carlo method. The dashed
line results show that in conjunction with the multilevel approach the QMC
is effective at reducing the variance on the coarsest levels, but the benefits
diminish on the finer levels. This is probably because the multilevel approach
itself extracts much of the low-dimensional content in the integrand, so that
on the finer levels the correction is predominantly high-dimensional and so the
QMC approach is less effective. However, most of the computational cost of
the multilevel method is on the coarsest levels, and so we will see that the
combination does reduce the overall cost significantly.

The top right plot shows that E[P̂l−P̂l−1] is approximately O(hl), corre-
sponding to the expected first order weak convergence. Each line in the bottom
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Figure 1: European call option

left plot shows the values for Nl, l = 0, . . . , L, with the values decreasing with
level l as expected. It can also be seen that the value for L, the maximum
level of timestep refinement, increases as the value for ε decreases, requiring a
lower bias error.

The bottom right plot shows the variation with ε of ε2 C where the com-
putational complexity C is defined as

C = 32
∑

l

2lNl,

which is the total number of fine grid timesteps on all levels. One line shows the
results for the multilevel QMC method and the other shows the corresponding
cost of a standard QMC simulation of the same accuracy, i.e. the same bias
error corresponding to the same value for L, and the same variance. It can be
seen that ε2C is roughly constant for the standard QMC method, and this is
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at a level which is comparable to that achieved previously using the multilevel
method on its own. However, combining the multilevel method with QMC
gives additional savings of factor 20-100, with the computational cost being
approximately proportional to ε−1. This is the best one could hope for using
QMC since in the best cases its error is inversely proportional to the number
of points, and hence, at best, inversely proportional to the computational cost.

6.2 Asian option

The Asian option we consider has the discounted payoff

P = exp(−rT ) max
(
0, S−K

)
,

where

S = T−1

∫ T

0

S(t) dt.

On the fine path, this is approximated by the expected value of the average
of the Brownian interpolation which is

Ŝf = T−1

nT−1∑

1

1
2
h (Ŝf

n +Ŝf
n+1),

where nT =T/h is the number of fine path timesteps.

On the corresponding coarse path, with half as many timesteps, the mid-
point values for each coarse timestep are interpolated as defined in (6), and
then the expected value for the average of the Brownian interpolation over all
of the half-timesteps is

Ŝc = T−1

nT /2−1∑

1

1
2
h (Ŝc

m+2Ŝc
m+ 1

2

+Ŝc
m+1),

Figure 2 shows the numerical results for parameters S(0)=1, K =1, T =1,
r = 0.05, σ = 0.2. The top left plot shows the behaviour of the variance of
both P̂l and P̂l− P̂l−1. The standard QMC method is effective at reducing
the variance on all levels, but with the multilevel estimator its effectiveness is
limited to the coarsest levels.

The slope of the latter is approaching a value approximately equal to −2,
indicating that Vl = O(h2

l ), corresponding to β = 2. On level l = 2, which has
just 4 timesteps, Vl is already more than 1000 times smaller than the variance
V[P̂l] of the standard Monte Carlo method with the same timestep. The top

right plot shows that E[P̂l−P̂l−1] is approximately O(hl), corresponding to first
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Figure 2: Asian option

order weak convergence, α=1. This is used to determine the number of levels
that are required to reduce the bias to an acceptable level [4].

The bottom two plots again have results from five multilevel calculations
for different values of ε. It can be seen that ε2C is very roughly constant for the
standard QMC method (again at a level comparable to that achieved previ-
ously by the multilevel method on its own [5]), while ε2C decreases significantly
with decreasing ε for the combined multilevel QMC method.

6.3 Lookback option

The lookback option we consider has the discounted payoff

P = exp(−rT )

(
S(T ) − min

0<t<T
S(t)

)
.

12



0 2 4 6 8
−40

−35

−30

−25

−20

−15

−10

−5

0

l

lo
g 2 v

ar
ia

nc
e

 

 

1
16
256
4096

0 2 4 6 8
−20

−15

−10

−5

0

l
lo

g 2 |m
ea

n|

 

 

P
l

P
l
− P

l−1

0 2 4 6 8
10

0

10
1

10
2

10
3

10
4

10
5

l

N
l

 

 
ε=0.0001
ε=0.0002
ε=0.0005
ε=0.001
ε=0.002

10
−4

10
−3

10
−3

10
−2

10
−1

10
0

ε

ε2  C
os

t

 

 
Std QMC
MLQMC

Figure 3: Lookback option

For the fine path calculation on the time interval [tn, tn+1], a standard Brow-
nian interpolation result (see section 6.4 in [8]) gives the minimum value as

Ŝf
n,min = 1

2

(
Ŝf

n + Ŝf
n+1 −

√(
Ŝf

n+1−Ŝf
n

)2

− 2 b2
n h log Un

)
, (7)

where Un is a uniform random variable on [0, 1]. Taking the minimum over all

timesteps gives an approximation to min0<t<T S(t) from which P̂l is calculated.

For the coarse path calculation, P̂l−1 is defined similarly, except that for
each timestep the mid-point value is first constructed using (6), and then the
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minimum over the timestep is given by

Ŝc
m,min = min

{
1
2

(
Ŝc

m + Ŝc
m+ 1

2

−
√(

Ŝc
m+ 1

2

−Ŝc
n

)2

− b2
m h log U2m−1

)
,

1
2

(
Ŝc

m+ 1

2

+ Ŝc
m+1 −

√(
Ŝc

m+1−Ŝc
m+ 1

2

)2

− b2
m h log U2m

)}
.

(8)

Note the re-use of the uniform random variables U2m−1 and U2m from the two
fine timesteps corresponding to this coarse timestep; it is this which ensures
that the minimum from the coarse path is very close to the minimum from the
fine path, resulting in a low variance for P̂l−P̂l−1.

Figure 3 shows the results for parameters S(0)=1, T =1, r=0.05, σ=0.2.
The results are qualitatively similar to the previous two cases.

6.4 Barrier option

The barrier option which is considered is a down-and-out call for which the
discounted payoff is

P = exp(−rT ) (S(T ) − K)+ 1τ>T ,

where 1τ>T is an indicator function taking value 1 if the argument is true, and
zero otherwise, and the crossing time τ is defined as

τ = inf
t>0

{S(t) < B} .

For the fine path simulation, following a standard approach for continu-
ously monitored barrier crossings (see section 6.4 in [8]), the conditional ex-
pectation of the payoff can be expressed as

exp(−rT ) (Ŝf
nT

− K)+

nT−1∏

n=0

p̂n,

where p̂n, the probability the path did not cross the barrier during the nth

timestep, is equal to

p̂n = 1 − exp

(
−2 (Ŝf

n−B)+(Ŝf
n+1−B)+

b2
n h

)
. (9)

For the coarse path calculation, we again use equation (6) to construct a

midpoint value Ŝc
m+1/2 for each timestep. Given this value, the probability
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Figure 4: Barrier option

that the Brownian interpolation path does not cross the barrier during the
mth coarse timestep is

p̂c
m =

{
1 − exp

(
−2 (Ŝc

m−B)+(Ŝc
m+1/2−B)+

b2
m h

)}

×
{

1 − exp

(
−2 (Ŝc

m+1/2−B)+(Ŝc
m+1−B)+

b2
m h

)}
. (10)

Figure 4 has the results for parameters S(0) = 1, K = 1, B = 0.85, T = 1,
r =0.05, σ =0.2. The top left plot shows that the variance for the multilevel
Monte Carlo estimator is approximately O(hβ

l ) for a value of β slightly less

than 2. An explanation for this is that a small O(h
1/2
l ) fraction of the paths

have a minimum which lies within O(h
1/2
l ) of the barrier, for which the product
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∏
p̂n is neither close to zero nor close to unity. The fine path and coarse path

trajectories differ by O(hl), due to the first order strong convergence of the

Milstein scheme. Since the p̂n have an O(h
−1/2
l ) derivative, this results in the

difference between
∏

p̂n for this small subset of coarse and fine paths being

O(h
1/2
l ), giving a contribution to the variance which is O(h

3/2
l ).

The top left plot also shows that the QMC method on its own is less
effective on the finer levels. Because of this, the bottom right plot shows that
ε2C increases slightly as ε is reduced for the standard QMC method. The
combined multilevel QMC method again performs very well, though ε2C does
not decrease quite as much as ε is reduced compared to the previous examples.

6.5 Digital option

The digital option which is considered has the discounted payoff

P = exp(−rT ) 1{S(T ) > K}.

To achieve a good multilevel variance convergence rate, we follow the same
procedure used previously [5], smoothing the payoff using the technique of
conditional expectation (see section 7.2.3 in [8]) in which we terminate the

path calculations one timestep before reaching the terminal time T . If Ŝf
nT−1

denotes the fine path value at this time, then if we approximate the motion
thereafter as a simple Brownian motion with constant drift anT−1 and volatility

bnT−1, the probability that Ŝf
nT

> K after one further timestep is

p̂f = Φ

(
Ŝf

nT−1+anT−1h − K

bnT−1

√
h

)
, (11)

where Φ is the cumulative Normal distribution. For the fine-path payoff P̂ f
l

we therefore use P̂ f
l =exp(−rT ) p̂f .

For the coarse-path payoff, we note that given the Brownian increment
∆W for the first half of the last timestep, which is already known because it
corresponds to the last of the computed timesteps in the fine path calculation,
then the probability that Ŝc

nT /2 > K is

p̂c = Φ

(
Ŝc

nT /2−1+anT−1h+bnT−1∆W − K

bnT−1

√
h/2

)
, (12)

where anT /2−1 and bnT /2−1 are the drift and volatility based on Ŝc
nT /2−1.

Figure 5 has the results for parameters S(0)=1, K =1, T =1, r=0.05, σ=
0.2. The top left plot shows that the variance of the multilevel method without

16



0 2 4 6 8
−40

−35

−30

−25

−20

−15

−10

−5

0

l

lo
g 2 v

ar
ia

nc
e

 

 

1
16
256
4096

0 2 4 6 8
−20

−15

−10

−5

0

l
lo

g 2 |m
ea

n|

 

 

P
l

P
l
− P

l−1

0 2 4 6 8
10

0

10
2

10
4

10
6

l

N
l

 

 
ε=0.0001
ε=0.0002
ε=0.0005
ε=0.001
ε=0.002

10
−4

10
−3

10
−2

10
−1

10
0

10
1

ε

ε2  C
os

t

 

 
Std QMC
MLQMC

Figure 5: Digital option

QMC is approximately O(h
3/2
l ), corresponding to β =1.5. The reason for this

is similar to the argument for the barrier option. O(h
1/2
l ) of the paths have a

minimum which lies within O(h
1/2
l ) of the strike, for which the p̂ is neither close

to zero nor close to unity. The fine path and coarse path trajectories differ by
O(hl), due to the first order strong convergence of the Milstein scheme. Since

p̂ has an O(h
−1/2
l ) derivative, this results in the difference between p̂ for the

coarse and fine paths being O(h
1/2
l ), and that results in the variance being

O(h
3/2
l ).

One strikingly different feature is that the variance of the level 0 estima-
tor, V0, is zero. This is because at level l=0 there would usually be only one
timestep, and so here it is not simulated at all; one simply uses equation (11) to
evaluate the payoff. This essentially eliminates the cost of the level 0 calcula-
tion, which is where the QMC method is usually most effective. Consequently,
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the cost of the combined multilevel QMC method remains approximately pro-
portional to ε−2, and is only slightly lower than the results obtained previously
for the multilevel method on its own [5]. However, we still get a factor 5-10
computational savings compared to the standard QMC on its own.

7 Conclusions and future work

In this paper we have demonstrated the benefits of combining rank-1 lattice
rule quasi-Monte Carlo integration with multilevel Monte Carlo path simula-
tion. Together, the computational cost is lower than using either one on its
own.

There are two major directions for future research. The first is the ex-
tension of the algorithms to multi-dimensional SDEs, for which the Milstein
discretisation usually requires the simulation of Lévy areas [8, 10]. Current
investigations indicate that this can be avoided for European options with a
Lipschitz payoff through the use of antithetic variables. However, the exten-
sion to more difficult payoffs, such as the Asian, lookback, barrier and digital
options considered in this paper, looks more challenging and the direct simu-
lation of the Lévy areas may be necessary.

The second direction for future research is the extension to the compu-
tation of Greeks, the sensitivity of the expected payoff to changes in various
input parameters. In principle, there is no difficulty in combining the multi-
level quasi-Monte Carlo method with the pathwise sensitivity approach [8] and
its efficient adjoint implementation [7]. The “vibrato” Monte Carlo method
proposed in a recent paper [6] would extend this to make it possible to obtain
Greeks for discontinuous payoffs.
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