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The effect of local preconditioning on boundary conditions is analyzed for the sub-
sonic, one-dimensional Euler equations. Decay rates for the eigenmodes of the initial
boundary value problem are determined for different boundary conditions and dif-
ferent preconditioners whose intent is to accelerate low Mach number computations.
Riemann invariant boundary conditions based on the unpreconditioned Euler equa-
tions are shown to be reflective when used with preconditioning, and asymptotically,
at low Mach numbers, initial disturbances do not decay. Other boundary conditions
are shown to be perfectly nonreflective in conjunction with preconditioning. Two-
dimensional numerical results confirm the trends predicted by the one-dimensional
analysis. c© 2000 Academic Press

1. INTRODUCTION

Local preconditioning has been successfully utilized to accelerate the convergence to
a steady state for Euler and Navier–Stokes simulations [1–9]. Local preconditioning is
introduced into a time-dependent problem as

ut + Pr(u) = 0,

whereu is the state vector of lengthm, r is the residual vector of lengthm, and P is
the m×m preconditioning matrix which may depend onu in nonlinear problems. Since
preconditioning effectively alters the time-dependent properties of the governing partial
differential equation, modifications to the numerical discretization can be required. For
example, upwind methods for inviscid problems must be based on the characteristics of
the preconditioned equations instead of the unpreconditioned equations [2]. Similarly, the
behavior of boundary conditions in conjunction with preconditioning will also be altered.
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While the affect of preconditioning on boundary conditions is known [10–12], to date, no
quantitative analysis has been performed.

The purpose of this paper is to analyze the effect of preconditioning on several different
boundary conditions commonly used in numerical simulations. Specifically, we consider
the one-dimensional, preconditioned Euler equations linearized about a steady, uniform,
subsonic mean state. The work is an extension of the analysis of Giles [13] for the one-
dimensional, unpreconditioned Euler equations by which the exact eigenmodes and eigen-
frequencies of the initial boundary value problem can be analytically determined. From
these, we find the exponential decay rates for initial perturbations under different sets of
boundary conditions. In addition to reviewing Giles’ analysis for the Euler equations, we
analyze the Euler equations preconditioned by the Van Leer–Lee–Roe [2] and Turkel [1]
preconditioners. Turkel has proposed and analyzed a number of different low Mach number
preconditioners; the one considered here is that developed by Weiss and Smith [4] and sub-
sequently used by many other [6, 7, 9]. Finally, we demonstrate the validity of the analysis
through numerical results for a two-dimensional application.

2. THEORY

We start with a review of the analysis of the initial boundary value problem by Giles [13].
The linearized Euler equations are given by ρ̃q̃

p̃


T

+

q̄ ρ̄ 0

0 q̄ ρ̄−1

0 ρ̄c̄2 q̄


 ρ̃q̃

p̃


X

= 0, (1)

where ˜ρ, q̃, p̃ are the perturbations to the density, velocity, and pressure, and ¯ρ, q̄, c̄ are
the undisturbed density, velocity, and speed of sound, which is related to the pressure and
density through̄c2= γ p̄/ρ̄. The subsonic inflow is located atX= 0 and the outflow is at
X= L.

Next, we define the following non-dimensionalizations to simplify the analysis:

ρ ≡ ρ̃

ρ̄
, q ≡ q̃

c̄
, p ≡ p̃

ρ̄c̄2 , x ≡ X

L
, t ≡ T

L/c̄
. (2)

The non-dimensional version of Eq. (1) is

ut + Aux = 0, (3)

where

u =
 ρq

p

, A =
M 1 0

0 M 1
0 1 M

,
andM is the undisturbed Mach numberq̄/c̄.

The boundary conditions for subsonic flow require two inflow quantities and one outflow
quantity to be specified. The inflow boundary conditions can be expressed as

Cinu(0, t) = 0, (4)
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whereCin is a 2× 3 matrix dependent on the specific choice of inflow conditions. Similarly,
the single outflow boundary condition can be expressed as

Coutu(1, t) = 0, (5)

whereCout is a 1× 3 matrix dependent on the specific choice of outflow condition.
Equations (3), (4), and (5) represent the initial boundary value problem for the unpre-

conditioned Euler equations. An eigenmode of the initial boundary value problem is given
by

u = e−iωt
3∑

j=1

α j e
iωx/λ j r j , (6)

wherer j andλ j are the right eigenvectors and eigenvalues, respectively, of the matrixA,
i.e.,

(A − λ j I) r j = 0.

In the following developments, we assume that the eigenvalues have been ordered such that
the two forward-moving characteristics arej = 1, 2 (i.e.,λ1,2> 0) and the backward-moving
characteristic isj = 3 (i.e.,λ3< 0). The eigenfrequencyω and characteristic strengthsα j

are determined by the boundary conditions. For the inflow boundary, substitution of Eq. (6)
into Eq. (4) leads to

(
b11 b12 b13

b21 b22 b23

)α1

α2

α3

 = 0, (7)

where (
b11 b12 b13

b21 b22 b23

)
= Cin(r1 r2 r3). (8)

A necessary condition for the well-posedness of the initial boundary value problem is that
the incoming characteristics,α1 andα2, can be determined as functions of the outgoing
characteristic,α3. This requires that the 2× 2 matrix(

b11 b12

b21 b22

)
be non-singular. Also, the boundary condition at the inflow will be nonreflecting if the
outgoing characteristic does not cause a perturbation in the incoming characteristics. Thus
the condition to be nonreflecting is thatb13= b23= 0.

For the outflow boundary, substitution of Eq. (6) into Eq. (5) leads to

(b31 b32 b33)

α1

α2

α3

 = 0, (9)
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where

(b31 b32 b33) = Cout
(
eiω/λ1r1 eiω/λ2r2 eiω/λ3r3

)
. (10)

In this case, well-posedness of the initial boundary value problem requires that the incoming
characteristic,α3, can be determined as a function of the outgoing characteristics,α1 andα2.
Thus,b33 must be nonzero. Also, the boundary condition at the outflow will be nonreflecting
if b31= b32= 0.

The inflow and outflow boundary conditions in Eqs. (7) and (9) can be combined as

B(ω)

α1

α2

α3

 = 0. (11)

In order for a nontrivial solution of the initial boundary value problem to exist, a nonzero
vector, (α1, α2, α3)T , must exist which satisfies Eq. (11). This is possible only for values of
ω for which

detB(ω) = 0.

Separating the eigenfrequency into its real and imaginary parts,ω=ωr + iωi , the amplitude
of the eigenmodes grows as exp(ωi t). Thus, for the eigenmodes to decay, we require that
ωi < 0 for all eigenfrequencies. We also note that the steady-state problem is well-posed if,
and only if, detB(0) is nonzero [13].

In a computational simulation, one common measure of the convergence rate is the
factor by which the residual error decreases in each timestep or iteration cycle. Assuming
that the equations above are integrated in time using a method with negligible numerical
dissipation, the decay factor is exp(ωi1t). If the timestep is given by a CFL condition of
the form1t = ν1x/λmax, whereν is a constant dependent on the temporal integration,1x
is the cell size, andλmax is the size of the largest eigenvalue, then the decay factor can be
expressed as

decay factor= exp

(
ωi

λmax
ν1x

)
.

However,ν and1x depend on the numerical scheme. Therefore, for this analytic study we
prefer to use the ratioωi /λmax as a measure of the convergence rate, and will refer to this
as the rate of decay, or decay rate.

The above is the analysis for the unpreconditioned Euler equations. When using precon-
ditioning, the non-dimensional p.d.e. becomes

ut + PAux = 0, (12)

and so the right eigenvectors and associated eigenvalues are defined by

(PA− λ j I)r j = 0.

The rest of the analysis remains unaltered.
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3. ANALYSIS

3.1. No Preconditioning

In the absence of any preconditioning the eigenvalues ofA areλ1,2,3=M , M + 1, M − 1,
and the eigenvectors are

(r1 r2 r3) =
1 1 1

0 1 −1
0 1 1

. (13)

The first eigenmode corresponds to the convection of an entropy variation. The other two
modes correspond to acoustic waves traveling downstream and upstream, respectively. The
maximum eigenvalue isλmax=M + 1 corresponding to the downstream-running acoustic
wave.

3.1.1. Riemann boundary conditions.We first consider the specification of Riemann
invariants at both boundaries. In their original nonlinear dimensional form, these are

X = 0,

{
p′/p′γ = p̄/ρ̄γ ,

q′ + 2
γ−1c′ = q̄ + 2

γ−1 c̄,

X = L , q′ − 2

γ − 1
c′ = q̄ − 2

γ − 1
c̄,

where the primed quantities are the sum of the undisturbed state and the corresponding
perturbation, e.g.,p′ = p̄+ p̃. Linearization and non-dimensionalization of the boundary
conditions gives

Cin =
(−1 0 1
−1 γ − 1 γ

)
, Cout = (1 γ − 1 −γ ),

from which we obtain the matrixB,

B =

 −1 0 0
−1 2(γ − 1) 0

eiω/λ1 0 −2(γ − 1)eiω/λ3

.
b13andb23are both equal to zero, so the inflow boundary condition is perfectly nonreflecting.
On the other hand,b31 is nonzero so the outflow boundary condition is partially reflecting.
Consequently, all initial perturbations will disappear entirely in the finite time it takes for
the entropy characteristic to convect from the inflow to the outflow, plus the time it takes
for the reflected upstream-propagating acoustic wave to reach the inflow.

This complete decay of initial perturbations in a finite time is mirrored in the fact that
the determinant ofB is

detB = 4(γ − 1)2eiω/λ3,

and setting this equal to zero would require thatωi =−∞, giving an infinite rate of expo-
nential decay.
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3.1.2. Entropy, stagnation enthalpy at inflow; pressure at outflow.Another common
set of boundary conditions for subsonic, internal flows is the specification of entropy and
stagnation enthalpy at the inflow and pressure at the outflow. For these boundary conditions,
we obtain

Cin =
(−1 0 1
−1 (γ − 1)M γ

)
, Cout = (0 0 1),

and hence

B =

−1 0 0
−1 (γ − 1)(1+ M) (γ − 1)(1− M)

0 eiω/λ2 eiω/λ3

.
The eigenfrequencies are determined by

detB = (γ − 1)
[
(1− M)eiω/λ2 − (1+ M)eiω/λ3

] = 0,

which gives

ω = 1− M2

2

[
−i log

(
1+ M

1− M

)
+ 2nπ

]
, for integern.

Thus there is an infinite set of discrete eigenfrequencies, all with the negative growth rate

ωi = −1− M2

2
log

(
1+ M

1− M

)
⇒ ωi /λmax= −1− M

2
log

(
1+ M

1− M

)
,

proving that all initial disturbances will decay exponentially to zero. Note, however, that
asM→ 0 the rate of decay also tends toward zero, implying that the convergence rate for
numerical computations will become poor at low Mach numbers.

3.1.3. Velocity, temperature at inflow; pressure at outflow.The final set of boundary
conditions we consider is setting the velocity and temperature at the inflow and the pressure
at the outflow. For these boundary conditions, which are fairly common in low speed viscous
flow applications, we get

Cin =
(

0 1 0
−1 0 γ

)
, Cout = (0 0 1),

and

B =

 0 1 −1
−1 0 (γ − 1)M

0 eiω/λ2 eiω/λ3

.
Equating the determinant to zero gives

ω = (1− M2)
(
n+ 1

2

)
π, for integern.
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The purely real nature ofω means that initial disturbances do not decay as time proceeds.
In practice, initial disturbances in a numerical computation would probably die out due to
the action of numerical smoothing, but the convergence would be exceedingly slow, and
would get very much worse as the grid is refined.

3.2. Van Leer–Lee–Roe Preconditioner

With the one-dimensional version of the Van Leer–Lee–Roe preconditioner [2, 14], the
resultantPA matrix is

PA =
M 0 −2M

0 M 2
0 0 −M

.
The specific form ofP is described in the Appendix. The eigenvalues ofPA areλ1,2,3=
M,M,−M , and the eigenvectors are

(r1 r2 r3) =
1 0 M

0 1 −1
0 0 M

. (14)

3.2.1. Riemann boundary conditions.The boundary condition matricesCin andCout

are unaffected by the preconditioning, but the change to the eigenvectors means thatB is
now

B =

 −1 0 0
−1 γ − 1 (γ − 1)(M − 1)

eiω/M (γ − 1)eiω/M −(γ − 1)(M + 1)e−iω/M

.
In contrast to the unpreconditioned Euler equations,b23 andb32 are now both nonzero, and
so the Riemann boundary conditions are reflective for the preconditioned Euler equations.
The determinant ofB is

detB = −(γ − 1)2
[
(M − 1)eiω/M + (M + 1)e−iω/M

]
,

and the eigenfrequencies which result in a zero determinant are

ωr = Mnπ, for integern,

ωi = −M

2
log

(
1+ M

1− M

)
.

Sinceλmax=M for this preconditioned system,

ωi /λmax= −1

2
log

(
1+ M

1− M

)
.

In particular, we note that asM→ 0, ωi /λmax→ 0. Thus, at low Mach numbers, distur-
bances will not decay rapidly, indicating that the use of Riemann boundary conditions
based on the Euler equations is likely to impede convergence to a steady state.
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3.2.2. Entropy, stagnation enthalpy at inflow; pressure at outflow.For these boundary
conditions, we obtain

B =
−1 0 0
−1 (γ − 1)M 0
0 0 Me−iω/M

.
We note thatb13= b23= b31= b32= 0. Thus, outgoing waves do not generate any reflections
at either the inflow or outflow boundaries. Disturbances are eliminated in the time it takes
for all of the characteristics to propagate from one end to the other. This is verified by setting
the determinant ofB equal to zero,

detB = −(γ − 1)M2e−iω/M = 0,

which requires thatωi =−∞. This is in contrast to the results for the unpreconditioned
Euler equations for which the boundary conditions are reflective, and the exponential decay
rate is finite.

This surprising result can be understood by considering the preconditioned equations
rewritten with entropy (s), stagnation enthalpy (H ), and pressure (p) as the dependent
states. These equations (with appropriate non-dimensionalization) are s

H
p


t

+
M 0 0

0 M 0
0 0 −M

 s
H
p


x

= 0. (15)

Thus, the preconditioned Euler equations are a set of decoupled advection equations for
entropy, stagnation enthalpy, and pressure in which entropy and stagnation enthalpy propa-
gate downstream and the pressure propagates upstream. Hence, these boundary conditions
are actually characteristic boundary conditions and nonreflective.

3.2.3. Velocity, temperature at inflow; pressure at outflow.For these boundary condi-
tions, we find that

B =

 0 1 −1
−1 0 (γ − 1)M

0 0 Me−iω/M

.
Comparing this to the matrixB without preconditioning, the significant difference is that
b32 is zero, in addition tob31, and so the outflow boundary condition is now perfectly non-
reflecting (i.e.,ωi =−∞). This is because the upstream propagating characteristic wave is
a pressure perturbation (see Eq. (15)), and so the imposition of the exit pressure fixes the
value of the upstream propagating characteristic.

The nonreflecting outflow boundary condition results as usual in the elimination of initial
transients within a finite time, in marked contrast to the unpreconditioned behavior in which
the initial transients persist indefinitely. The fact that the inflow boundary condition is
reflecting means that the finite convergence time is equal to the sum of the times taken for
characteristics to travel up and down the domain, which is precisely double that required
when specifying the entropy and stagnation enthalpy instead at the inflow boundary.
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3.3. Turkel Preconditioner

For the one-dimensional form of the Turkel preconditioner [1] employed by Weiss and
Smith [4], the resultantPA matrix is

PA =
M ε M(ε − 1)

0 M 1
0 ε Mε

.
The specific form ofP is again described in the Appendix. The eigenvalues ofPA are

λ1 = M, λ2 = 1
2(M(1+ ε)+ τ), λ3 = 1

2(M(1+ ε)− τ),

with τ =
√
(1− ε)2M2+ 4ε, and the eigenvectors are

(r1 r2 r3) =

1 1 1

0 M(1− ε)+ τ
2ε

M(1− ε)− τ
2ε

0 1 1

.
To make the three eigenvalues of the same order of magnitude at low Mach numbers, it is
usual to defineε to be

ε = min{1, ηM2}, (16)

whereη is a constant typically taken from 1≤ η≤ 4. Note that whenε= 1,P reduces to the
identity matrix. Therefore, the definition ofε ensures that the preconditioning is switched
off in a continuous manner when the Mach number reaches 1/

√
η.

3.3.1. Riemann boundary conditions.The matrixB is

B =


−1 0 0

−1 (γ − 1)
[M(1− ε)+ τ

2ε + 1
]

(γ − 1)
[M(1− ε)− τ

2ε + 1
]

eiω/λ1 (γ − 1)
[M(1− ε)+ τ

2ε − 1
]
eiω/λ2 (γ − 1)

[M(1− ε)− τ
2ε − 1

]
eiω/λ3

,
and hence the eigenfrequencies which make its determinant equal to zero are

ωr = λ2λ3

λ3− λ2
2nπ, for integern,

ωi = − λ2λ3

λ3− λ2
log

(
ε + 1+ τ
ε + 1− τ

)
.

Thus, since the largest eigenvalue isλmax= λ2,

ωi /λmax= − λ3

λ3− λ2
log

(
ε + 1+ τ
ε + 1− τ

)
.

Sinceλ2λ3/(λ3− λ2) is positive, this means there is a finite rate of exponential decay of
initial transients, due to the reflective nature of the boundary conditions in conjunction with
the Turkel preconditioner. Even worse, asM→ 0, ε+1+τ

ε+1−τ → 1 and so the rate of decay tends
to zero at low Mach numbers indicating very poor convergence to the steady state. Note
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that

λ3

λ3− λ2
= 1

2

[
1− M

τ
(1+ ε)

]
,

and asM→ 0, λ3/(λ3− λ2)→ 1
2(1− 1/

√
1+ 4η), which remains finite.

3.3.2. Entropy, stagnation enthalpy at inflow; pressure at outflow.The matrixB is

B =


−1 0 0

−1 (γ − 1)
[M2(1− ε)+Mτ

2ε + 1
]

(γ − 1)
[M2(1− ε)−Mτ

2ε + 1
]

0 eiω/λ2 eiω/λ3

,
and hence the eigenfrequencies are

ωr = λ2λ3

λ3− λ2
2nπ, for integern,

ωi = − λ2λ3

λ3− λ2
log

[
M2(1− ε)+ 2ε + Mτ

M2(1− ε)+ 2ε − Mτ

]
,

ωi /λmax= − λ3

λ3− λ2
log

[
M2(1− ε)+ 2ε + Mτ

M2(1− ε)+ 2ε − Mτ

]
.

These boundary conditions give a finite rate of exponential decay when used with the Turkel
preconditioner. In addition, asM→ 0,

M2(1− ε)+ 2ε + Mτ

M2(1− ε)+ 2ε − Mτ
→ 1+ 2η +√1+ 4η

1+ 2η −√1+ 4η

and so the the rate of decay remains finite. However, this is still not quite as good as the
finite time convergence achieved with the same boundary conditions in conjunction with
the Van Leer–Lee–Roe preconditioner.

3.3.3. Velocity, temperature at inflow; pressure at outflow.The matrixB is

B =


−1 γ − 1 γ − 1

0 M(1− ε)+ τ
2ε

M(1− ε)− τ
2ε

0 eiω/λ2 eiω/λ3

 ,
and so the eigenfrequencies are

ωr = λ2λ3

λ3− λ2
(2n+ 1)π, for integern,

ωi = − λ2λ3

λ3− λ2
log

[
τ + M(1− ε)
τ − M(1− ε)

]
,

ωi /λmax= − λ3

λ3− λ2
log

[
τ + M(1− ε)
τ − M(1− ε)

]
.

WhenM→ 0, τ +M(1− ε)
τ −M(1− ε)→

√
1+ 4η+ 1√
1+ 4η− 1

and so the rate of decay remains finite and any initial
disturbance will decay exponentially.
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4. NUMERICAL RESULTS

To illustrate the effect of different boundary conditions on numerical convergence as well
as check the accuracy of the analysis, we simulate the two-dimensional flow in a duct with
a straight upper wall and a bump on the lower wall between 0≤ x≤ 1 described byy=
0.042 sin2(πx). The domain is 5 unit lengths long and 2 lengths high. The grid is structured
with clustering toward the wall boundary.

We use the numerical algorithm described by Darmofal and Siu [9] which employs the
semi-coarsening technique of Mulder [15, 16] in conjunction with a multi-stage, block
Jacobi relaxation [17, 18]. The discretization is a second-order upwind scheme with a Roe
approximate Riemann solver [19]. The calculations are performed on a grid of 32× 16 cells.
A three-level, V-cycle is utilized with 2 pre- and postsmoothing iterations at each level. All
calculations are initialized to uniform flow. The grid and a typical distribution of pressure
coefficient are shown in Fig. 1.

The Turkel preconditioner analyzed in Section 3.3 is used in the simulations. As opposed
to the ε definition given in Eq. (16), Darmofal and Siu [9] have found slightly better
convergence is obtained for a block Jacobi iterative scheme whenε is given by

εcut =
{

M2
/(

1− α2
cutM

2
)

for M < Mcut,

1 for M ≥ Mcut,
(17)

FIG. 1. Sample duct grid and pressure coefficient data.
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FIG. 2. Boundary condition effect on analytic decay rates and multigrid convergence for Turkel preconditioner.
Riemann: Euler Riemann invariant boundary conditions (Section 3.1.1). SHP: entropy, enthalpy, pressure boundary
conditions (Section 3.1.2). QTP: velocity, temperature, pressure boundary conditions (Section 3.1.3).

whereα2
cut= (1− M2

cut)/M2
cut andMcut is the user-defined Mach number above which no

preconditioning is used. For the results in this paper, we useMcut= 0.5. For this definition of
ε, the value ofωi /λmaxis plotted versus Mach number in Fig. 2a for the three sets of boundary
conditions. For the Euler Riemann boundary conditions, the decay rate clearly approaches
zero asM→ 0; however, asM→ 0.5, preconditioning is turned off and the Riemann
boundary conditions are non-reflective (thus,ωi /λmax→−∞). The entropy, enthalpy, and
pressure boundary conditions (SHP) have a finite rate of decay and forM < 0.3 have the



PRECONDITIONED EULER EQUATIONS 381

TABLE I

Number of Cycles Required to Drop Residual Six Orders of Magnitude

for Different Mach Numbers and Boundary Conditions

Mach Riemann SHP QTP

0.001 UNS 8 13
0.01 UNS 8 13
0.1 UNS 8 13
0.2 20 8 14
0.3 14 8 15
0.4 11 8 18
0.5 9 10 20

Note. Riemann: Euler Riemann invariant boundary conditions from Section 3.1.1.
SHP: entropy, enthalpy, pressure boundary conditions from Section 3.1.2. QTP: veloc-
ity, temperature, pressure boundary conditions from Section 3.1.3. UNS: algorithm was
unstable and aborted with infinite residual.

fastest decay rate of the three sets of boundary conditions. Above this Mach number, the
Riemann boundary conditions are the fastest decaying. Finally, the velocity, temperature,
and pressure (QTP) boundary conditions have a finite rate of decay for low Mach numbers
but asM→ 0.5,ωi → 0. ForM > 0.2, the QTP boundary conditions have the slowest rate
of decay of the three boundary conditions.

We have implemented the boundary conditions described above by constructing a bound-
ary face state vector and calculating the boundary flux directly from this state vector. For
example, at an inflow for the SHP boundary conditions, entropy, enthalpy, and the tan-
gential velocity are prescribed from the exterior and the pressure is extrapolated from the
interior. At an outflow, we reverse the procedure and specify pressure from the exterior and
extrapolate entropy, enthalpy, and tangential velocity from the interior. Note that regardless
of the specific boundary conditions, we always use the tangential velocity as the additional
variable for the two-dimensional boundary implementation.

The number of cycles required to converge the solution six orders of magnitude from the
initial residual are given in Table I. Also, the convergence behavior is plotted in Fig. 2b.
Specifically, we plot the variation of−1/cycles which would be proportional to the analytic
decay rate in Fig. 2a if the analysis was a reasonable model of the computation. As can be
clearly seen, the analytical and computational results behave quite similarly. At low Mach
numbers, the Riemann boundary conditions are unstable while the SHP boundary condi-
tions perform best. Low Mach number calculations using the velocity, temperature, QTP
conditions are about 75% more expensive than those using the SHP conditions. At the higher
Mach numbers, the Riemann boundary condition cases begin to converge and the number
of cycles decreases with increasing Mach number. In particular, the Riemann boundary
conditions converge faster than the QTP and SHP boundary conditions for approximately
M > 0.3 and 0.45, respectively.

5. FINAL REMARKS

The present analysis of the Euler equations with two forms of low Mach number pre-
conditioning shows the quite significant effect of the preconditioning on the effectiveness
of boundary conditions in eliminating initial transients.
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Boundary conditions based on the Riemann invariants of the Euler equations are found
to be reflective in conjunction with preconditioning, whereas they are nonreflecting at
the inflow without it; the problem is most detrimental at low Mach numbers where the
perturbation decay rate approaches zero.

Boundary conditions which specify entropy and stagnation enthalpy at an inflow and
pressure at an outflow are found to be nonreflective with the Van Leer–Lee–Roe precondi-
tioning, and weakly nonreflective in the other two cases. Numerical results confirm that this
is the best of the three boundary conditions considered over a wide range of Mach numbers.

The specification of velocity and density at the inflow and pressure at the outflow is found
to be nonreflecting for the Van Leer–Lee–Roe preconditioning and weakly reflective for the
Turkel preconditioning. However, for the unpreconditioned Euler equations they provide
no damping of initial transients in the absence of numerical smoothing.

There are many other boundary conditions which could have been considered. One pos-
sibility, which is particularly appropriate for airfoil applications in which the entire far-field
flow state is known, would be to use linear characteristic boundary conditions. By design
these are perfectly nonreflecting, but their construction is based upon the characteristic
eigenvectors; changing the preconditioning therefore requires a change to the formulation
of the boundary conditions. Pursuing this approach, in multiple dimensions the 1D charac-
teristic boundary conditions will only be perfectly nonreflecting when the outgoing waves
have wavecrests which are aligned with the boundary. To minimize the reflection when the
wave incidence is not normal it would be possible to employ higher-order methods which
have been successfully developed for the Euler equations [20–22].

Finally, for cases in which the particular choice of boundary conditions is determined by
other factors, an interesting possibility would be to incorporate boundary condition consid-
erations into the design of the preconditioner, so that the combination of the preconditioner
and the boundary conditions is nonreflective.

APPENDIX

The one-dimensional Van Leer–Lee–Roe and Turkel preconditioners [1, 14] are usually
derived using the symmetrizing variables which in dimensional form are (p̃/ρ̄c̄, q̃, p̃− c̄2ρ̃).
Using Eq. (2), the non-dimensional symmetrizing variables are

v = (p,q, p− ρ)T

and are related to theu= (ρ,q, p)T variables through the transformation,v=Su, where

S=
 0 0 1

0 1 0
−1 0 1

.
The preconditioned Euler equations in terms ofv are

vt + PvAvvx = 0,

wherePv =SPS−1 and

Av = SAS−1 =
M 1 0

1 M 0
0 0 M

.
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The one-dimensional Van Leer–Lee–Roe preconditioner is given by

Pv =


M2

β2 − M
β2 0

− M
β2 1+ 1

β2 0

0 0 1

,
which results in

P= S−1PvS=


1 − M

β2
M2

β2 − 1

0 1+ 1
β2 − M

β2

0 − M
β2

M2

β2

,
whereβ2= 1− M2.

The one-dimensional form of the Turkel preconditioner [1] employed by Weiss and
Smith [4] is given by

Pv =
ε 0 0

0 1 0
0 0 1

,
which results in

P= S−1PvS=
1 0 ε − 1

0 1 0
0 0 ε

.
REFERENCES

1. E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations,
J. Comput. Phys.72, 277 (1987).

2. B. Van Leer, W. T. Lee, and P. L. Roe, Characteristic time-stepping or local preconditioning of the Euler
equations, AIAA Paper 91-1552, 1991.

3. Y. H. Choi and C. L. Merkle, The application of preconditioning in viscous flows,J. Comput. Phys.105, 203
(1993).

4. J. M. Weiss and W. A. Smith, Preconditioning applied to variable and constant density flows,AIAA J.33,
2050 (1995).

5. E. Turkel, V. N. Vatsa, and R. Radespiel, Preconditioning methods for low-speed flows, AIAA Paper 96-2460,
1996.

6. D. Jespersen, T. Pulliam, and P. Buning, Recent enhancements to OVERFLOW, AIAA Paper 97-0644, 1997.

7. D. Mavriplis, Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes, AIAA Paper
97-1952, 1997.

8. D. L. Darmofal and B. Van Leer, Local preconditioning: Manipulating Mother Nature to fool Father Time, in
Computing the Future II: Advances and Prospects in Computational Aerodynamics, edited by M. Hafez and
D. A. Caughey (Wiley, New York, 1998).

9. D. L. Darmofal and K. Siu, A robust multigrid algorithm for the Euler equations with local preconditioning
and semi-coarsening,J. Comput. Phys.151, 728 (1999).

10. W. T. Lee,Local Preconditioning of the Euler Equations, Ph.D. thesis, University of Michigan, 1991.

11. A. C. Godfrey, Steps toward a robust preconditioning, AIAA Paper 94-0520, 1994.



384 DARMOFAL, MOINIER, AND GILES

12. E. Turkel, R. Radespiel, and N. Kroll, Assessment of two preconditioning methods for aerodynamic problems,
Comput. & Fluids26, 613 (1997).

13. M. B. Giles,Eigenmode Analysis of Unsteady One-Dimensional Euler Equations, ICASE Report No. 83-47,
1983.

14. D. Lee,Local Preconditioning of the Euler and Navier–Stokes Equations, Ph.D. thesis, University of
Michigan, 1996.

15. W. A. Mulder, A new approach to convection problems,J. Comput. Phys.83, 303 (1989).

16. W. A. Mulder, A high resolution Euler solver based on multigrid, semi-coarsening, and defect correction,
J. Comput. Phys.100, 91 (1992).

17. J. F. Lynn and B. Van Leer, Multi-stage schemes for the Euler and Navier–Stokes equations with optimal
smoothing, AIAA Paper 93-3355, 1993.

18. S. R. Allmaras, Analysis of a local matrix preconditioner for the 2-D Navier–Stokes equations, AIAA Paper
93-3330, 1993.

19. P. L. Roe, Approximate Riemann solvers, parametric vectors, and difference schemes,J. Comput. Phys.43,
357 (1981).

20. B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves,Math.
Comput.31, 629 (1977).

21. M. B. Giles, Non-reflecting boundary conditions for Euler equations calculations,AIAA J.28, 2050 (1990).

22. M. B. Giles, Non-reflecting boundary conditions for unsteady airfoil calculations, inProceedings of Third
International Conference on Hyperbolic Problems(Chartwell–Bratt, 1990).


	1. INTRODUCTION
	2. THEORY
	3. ANALYSIS
	4. NUMERICAL RESULTS
	FIG. 1.
	FIG. 2.
	TABLE I

	5. FINAL REMARKS
	APPENDIX
	REFERENCES

