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The effect of local preconditioning on boundary conditions is analyzed for the sub-
sonic, one-dimensional Euler equations. Decay rates for the eigenmodes of the initial
boundary value problem are determined for different boundary conditions and dif-
ferent preconditioners whose intent is to accelerate low Mach number computations.
Riemann invariant boundary conditions based on the unpreconditioned Euler equa-
tions are shown to be reflective when used with preconditioning, and asymptotically,
at low Mach numbers, initial disturbances do not decay. Other boundary conditions
are shown to be perfectly nonreflective in conjunction with preconditioning. Two-
dimensional numerical results confirm the trends predicted by the one-dimensional
analysis. (© 2000 Academic Press

1. INTRODUCTION

Local preconditioning has been successfully utilized to accelerate the convergenc
a steady state for Euler and Navier—Stokes simulations [1-9]. Local preconditionin
introduced into a time-dependent problem as

Ui + Pr(u) =0,

whereu is the state vector of lengti, r is the residual vector of lengtin, andP is
the m x m preconditioning matrix which may depend arin nonlinear problems. Since
preconditioning effectively alters the time-dependent properties of the governing pal
differential equation, modifications to the numerical discretization can be required.
example, upwind methods for inviscid problems must be based on the characteristic
the preconditioned equations instead of the unpreconditioned equations [2]. Similarly,
behavior of boundary conditions in conjunction with preconditioning will also be altere
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370 DARMOFAL, MOINIER, AND GILES

While the affect of preconditioning on boundary conditions is known [10-12], to date,
guantitative analysis has been performed.

The purpose of this paper is to analyze the effect of preconditioning on several diffel
boundary conditions commonly used in numerical simulations. Specifically, we consi
the one-dimensional, preconditioned Euler equations linearized about a steady, unif
subsonic mean state. The work is an extension of the analysis of Giles [13] for the ¢
dimensional, unpreconditioned Euler equations by which the exact eigenmodes and ei
frequencies of the initial boundary value problem can be analytically determined. Fr
these, we find the exponential decay rates for initial perturbations under different set
boundary conditions. In addition to reviewing Giles’ analysis for the Euler equations,
analyze the Euler equations preconditioned by the Van Leer—Lee—Roe [2] and Turkel
preconditioners. Turkel has proposed and analyzed a number of different low Mach nunr
preconditioners; the one considered here is that developed by Weiss and Smith [4] and
sequently used by many other [6, 7, 9]. Finally, we demonstrate the validity of the analy
through numerical results for a two-dimensional application.

2. THEORY

We start with a review of the analysis of the initial boundary value problem by Giles [1.
The linearized Euler equations are given by
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wherep; §, p are the perturbations to the density, velocity, and pressurep agdc are
the undisturbed density, velocity, and speed of sound, which is related to the pressure
density througle® = y p/p. The subsonic inflow is located 3= 0 and the outflow is at
X=L.

Next, we define the following non-dimensionalizations to simplify the analysis:

p X T

p G
=—, ==, = —;, X=—, t=—. 2
P=> 9=z p b2 3 ; 2)
The non-dimensional version of Eq. (1) is
ut + Aux = 07 (3)
where
0 M 1 O
u=1,4g |, A=10 M 1],
p 0O 1 M

andM is the undisturbed Mach numbeyc.
The boundary conditions for subsonic flow require two inflow quantities and one outfl
guantity to be specified. The inflow boundary conditions can be expressed as

Cinu(0,t) =0, 4)
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whereCj, is a 2x 3 matrix dependent on the specific choice of inflow conditions. Similarl
the single outflow boundary condition can be expressed as

COUtu(17 t) = Os (5)

whereCgy,t is a 1x 3 matrix dependent on the specific choice of outflow condition.
Equations (3), (4), and (5) represent the initial boundary value problem for the ung
conditioned Euler equations. An eigenmode of the initial boundary value problem is gi

by
u:e*'“’tZaje'”’x/’\irj, (6)
j=1

wherer; andA; are the right eigenvectors and eigenvalues, respectively, of the matrix
ie.,

(A—Aijhr; =0.

In the following developments, we assume that the eigenvalues have been ordered suc
the two forward-moving characteristics gre- 1, 2 (i.e. A1 2 > 0) and the backward-moving
characteristic ig =3 (i.e.,A3 <0). The eigenfrequenay and characteristic strengths
are determined by the boundary conditions. For the inflow boundary, substitution of Eq.
into Eq. (4) leads to

bin bz biz) [
o =0, 7
<b21 b2 bzs) ? @

where

b1 b bis
bo1 by bos

>=Cin(r1 ra ra). 8)

A necessary condition for the well-posedness of the initial boundary value problem is
the incoming characteristicay anda,, can be determined as functions of the outgoin
characteristicgs. This requires that the 2 2 matrix

(bll blZ)
b1 oo
be non-singular. Also, the boundary condition at the inflow will be nonreflecting if tt
outgoing characteristic does not cause a perturbation in the incoming characteristics.

the condition to be nonreflecting is tHat = b3 =0.
For the outflow boundary, substitution of Eq. (6) into Eq. (5) leads to

ai
(b31 bz ba3)| a2 | =0, (©)]
a3
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where
(bs1 D3> bgg) = Cou(€/¥ry €9/2ry, &@/%ry). (10)

In this case, well-posedness of the initial boundary value problem requires that the incor
characteristiays, can be determined as a function of the outgoing characterigtiesdos.
Thus,bzz must be nonzero. Also, the boundary condition at the outflow will be nonreflecti
if ba;1=h3,=0.

The inflow and outflow boundary conditions in Egs. (7) and (9) can be combined as

o1
Bw)| a2 | =0. (11)
a3

In order for a nontrivial solution of the initial boundary value problem to exist, a nonze
vector, (1, a2, a3)", must exist which satisfies Eq. (11). This is possible only for values
o for which

detB(w) = 0.

Separating the eigenfrequency into its real and imaginary pagtsy, + i w;, the amplitude
of the eigenmodes grows as é€xpt). Thus, for the eigenmodes to decay, we require th:
wj < 0 for all eigenfrequencies. We also note that the steady-state problem is well-pose
and only if, detB(0) is nonzero [13].

In a computational simulation, one common measure of the convergence rate is
factor by which the residual error decreases in each timestep or iteration cycle. Assur
that the equations above are integrated in time using a method with negligible numel
dissipation, the decay factor is @xpAt). If the timestep is given by a CFL condition of
the formAt = vAX/Amax, Wherev is a constant dependent on the temporal integration,
is the cell size, and .« is the size of the largest eigenvalue, then the decay factor can
expressed as

wi
decay factoe= exp( vAx) .

max

However,y and Ax depend on the numerical scheme. Therefore, for this analytic study
prefer to use the rati@; /Amax @S @ measure of the convergence rate, and will refer to tf
as the rate of decay, or decay rate.

The above is the analysis for the unpreconditioned Euler equations. When using pre
ditioning, the non-dimensional p.d.e. becomes

U + PAuy =0, (12)
and so the right eigenvectors and associated eigenvalues are defined by
(PA—xjhr; =0.

The rest of the analysis remains unaltered.
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3. ANALYSIS

3.1. No Preconditioning

In the absence of any preconditioning the eigenvaludsarer ,3=M, M +1,M — 1,
and the eigenvectors are

11 1
(rp rp r3)y =0 1 -1]. (13)
01 1

The first eigenmode corresponds to the convection of an entropy variation. The other
modes correspond to acoustic waves traveling downstream and upstream, respectivel
maximum eigenvalue i5max= M + 1 corresponding to the downstream-running acoust
wave.

3.1.1. Riemann boundary conditiond\e first consider the specification of Riemann
invariants at both boundaries. In their original nonlinear dimensional form, these are

p'/p”" = p/p”,
X =0, 5 _
9+;50=a+

2
X=Ll, q - c=q-
14 Y

where the primed quantities are the sum of the undisturbed state and the correspol
perturbation, e.g.p’ = p+ . Linearization and non-dimensionalization of the boundar
conditions gives

-1 0 1
Cin:(_l y—1 y)v Couu=@1 y—-1 —yp),

from which we obtain the matrils,

-1 0 0
ge/h 0 —2(y — e/’

b;3andb,s are both equal to zero, so the inflow boundary condition is perfectly nonreflectil
On the other handy; is nonzero so the outflow boundary condition is partially reflecting
Consequently, all initial perturbations will disappear entirely in the finite time it takes f
the entropy characteristic to convect from the inflow to the outflow, plus the time it tal
for the reflected upstream-propagating acoustic wave to reach the inflow.

This complete decay of initial perturbations in a finite time is mirrored in the fact th
the determinant oB is

detB = 4(y — 1)%€“/*,

and setting this equal to zero would require that —oo, giving an infinite rate of expo-
nential decay.



374 DARMOFAL, MOINIER, AND GILES

3.1.2. Entropy, stagnation enthalpy at inflow; pressure at outflddnother common
set of boundary conditions for subsonic, internal flows is the specification of entropy ¢
stagnation enthalpy at the inflow and pressure at the outflow. For these boundary condit
we obtain

-1 0 1
Cin - <_1 (J/ _ 1)|V| y)a Cout= (0 0 1)»
and hence
-1 0 0
B=|-1 (#-DA+M) (y-DHA-M)
0 eiw/kz eiw/)\.3

The eigenfrequencies are determined by
detB = (y — ) [(1 — M)E*2 — (14 M)d“/*#] =0

which gives

_1-m ilog( 1T M +2n for integern
v=" N1=wm Tl gem.

Thus there is an infinite set of discrete eigenfrequencies, all with the negative growth r

o 1—|\/|2IO 1+ M A 1—MIO 1+ M
wj = 2 g 1-M ;i [ Amax = 2 g 1-M /)

proving that all initial disturbances will decay exponentially to zero. Note, however, tt
asM — 0 the rate of decay also tends toward zero, implying that the convergence rate
numerical computations will become poor at low Mach numbers.

3.1.3. Velocity, temperature at inflow; pressure at outflowhe final set of boundary
conditions we consider is setting the velocity and temperature at the inflow and the pres
atthe outflow. For these boundary conditions, which are fairly common in low speed visc
flow applications, we get

0O 1 0
Cin:< )a Cout:(o 0 1)»

-1 0 vy
and
0 1 -1
B=|-1 0 (y —DHM

0 eia)/)uz eia)/)\.3
Equating the determinant to zero gives

w=(1-M»(n+3)w, forintegern.
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The purely real nature @b means that initial disturbances do not decay as time procee
In practice, initial disturbances in a numerical computation would probably die out due
the action of numerical smoothing, but the convergence would be exceedingly slow,
would get very much worse as the grid is refined.

3.2. Van Leer—Lee—Roe Preconditioner

With the one-dimensional version of the Van Leer—Lee—Roe preconditioner [2, 14],
resultantPA matrix is

M 0 -2M
PA=(0 M 2
0 0 -—M

The specific form oP is described in the Appendix. The eigenvaluedsfarei 3=
M, M, —M, and the eigenvectors are

1 0 M
(ry rp rz)=10 1 -1]. (14)
0 0 M

3.2.1. Riemann boundary conditionsThe boundary condition matric&s, and Cqy;
are unaffected by the preconditioning, but the change to the eigenvectors medsstha
now

-1 0 0
B=| -1 y -1 (y —DH(M - 1)
do/M (y —DeM  —(y — (M + De /M

In contrast to the unpreconditioned Euler equatidasandbs, are now both nonzero, and
so the Riemann boundary conditions are reflective for the preconditioned Euler equati
The determinant oB is

detB = —(y — D?[(M — DE'M + (M + De /M|,
and the eigenfrequencies which result in a zero determinant are
o = Mnm, for integern,

M (1M
@=—500\ 1"/

SinceAmax= M for this preconditioned system,
1 1+M
i [Amax = 5 |09(m> .

In particular, we note that a§l — 0, wj /Amax— 0. Thus, at low Mach numbers, distur-
bances will not decay rapidly, indicating that the use of Riemann boundary conditi
based on the Euler equations is likely to impede convergence to a steady state.
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3.2.2. Entropy, stagnation enthalpy at inflow; pressure at outfldvar these boundary
conditions, we obtain

-1 0 0
B=|-1 (y—1M 0
0 0 Me=i@/M

We note thab, 3= b3 = b3; = b3, = 0. Thus, outgoing waves do not generate any reflectior
at either the inflow or outflow boundaries. Disturbances are eliminated in the time it ta
for all of the characteristics to propagate from one end to the other. This is verified by set
the determinant oB equal to zero,

detB = —(y — hM2e'/M =,

which requires thai; = —oo. This is in contrast to the results for the unpreconditione
Euler equations for which the boundary conditions are reflective, and the exponential dt
rate is finite.

This surprising result can be understood by considering the preconditioned equat
rewritten with entropy g), stagnation enthalpyH), and pressurep) as the dependent
states. These equations (with appropriate non-dimensionalization) are

S M O 0 S
H]+[0 M 0 H =0. (15)
P/, 0O 0 —M P/,

Thus, the preconditioned Euler equations are a set of decoupled advection equation
entropy, stagnation enthalpy, and pressure in which entropy and stagnation enthalpy p!
gate downstream and the pressure propagates upstream. Hence, these boundary con
are actually characteristic boundary conditions and nonreflective.

3.2.3. Velocity, temperature at inflow; pressure at outfloior these boundary condi-
tions, we find that

0 1 -1
B=|-1 0 (y-—1)M
0 0 Meio/M

Comparing this to the matriB without preconditioning, the significant difference is that
bs; is zero, in addition tdpz;, and so the outflow boundary condition is now perfectly non
reflecting (i.e.w; = —o0). This is because the upstream propagating characteristic wavi
a pressure perturbation (see Eq. (15)), and so the imposition of the exit pressure fixe
value of the upstream propagating characteristic.

The nonreflecting outflow boundary condition results as usual in the elimination of init
transients within a finite time, in marked contrast to the unpreconditioned behavior in wh
the initial transients persist indefinitely. The fact that the inflow boundary condition
reflecting means that the finite convergence time is equal to the sum of the times take
characteristics to travel up and down the domain, which is precisely double that requ
when specifying the entropy and stagnation enthalpy instead at the inflow boundary.
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3.3. Turkel Preconditioner

For the one-dimensional form of the Turkel preconditioner [1] employed by Weiss &
Smith [4], the resultanPA matrix is

M € ME-1
PA=10 M 1
0 « Me

The specific form oP is again described in the Appendix. The eigenvalud®/oére

M=M,  d=iMA+e+1), Az=3M1+e) —1),

with T = /(1 — €)2M2 + 4¢, and the eigenvectors are

1 1 1
(rl ry r3)= 0 M(l;:)+r M(lfz:)fr
0 1 1

To make the three eigenvalues of the same order of magnitude at low Mach numbers
usual to define to be

€ = min{1, nM?}, (16)

wheren is a constant typically taken from<d.n < 4. Note that wher = 1, P reduces to the
identity matrix. Therefore, the definition efensures that the preconditioning is switchec
off in a continuous manner when the Mach number reachgs;1

3.3.1. Riemann boundary conditionsThe matrixB is

-1 0 0
B=| -1 g-DSEey gongeee) |

gl (y — 1)[%?“ — 1]eiw/kz (y — 1)[%:)*7 — 1} go/rs

and hence the eigenfrequencies which make its determinant equal to zero are

AoA .
wr = 273 2nm, for integern,
Az — A2

A2A3 o €e+1+r7
A3 — A2 e+1—-1/)

W = —

Thus, since the largest eigenvalué.jgx = A2,

A3 e+1+1
i/ Amax = — lo .
@i /*max Az — Ao g<€+1—f)

Sinceiors/ (A3 — A2) is positive, this means there is a finite rate of exponential decay
initial transients, due to the reflective nature of the boundary conditions in conjunction v
the Turkel preconditioner. Even worse,Ms— 0, zﬁf; — 1 and so the rate of decay tends
to zero at low Mach numbers indicating very poor convergence to the steady state. |
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that

A3 1 M
=Z]1-=q@a ,
)\.3_)\.2 2|: T( +€):|

and asM — 0, A3/(A3 — A2) — 3(1 — 1//I+47), which remains finite.

3.3.2. Entropy, stagnation enthalpy at inflow; pressure at outflolhe matrixB is

-1 0 0
B= | -1 (y_l)[“ﬁl%?r""f_’_l] (7,_1)['“2(1*2—?*'\/“_,_1] ’
0 eia)/)»z eiw/Ag

and hence the eigenfrequencies are

Ao .
o = 273 2nm, for integern,
A3 — A2
o = — AoA3 M2(1—6)+2€+MT
YT A=A M2(1—¢€) +2¢ — Mt |’
O fhmax = — A3 M2(1—¢€) + 2¢ + Mt
R W M2(1—€) +2c — Mt |’

These boundary conditions give a finite rate of exponential decay when used with the Tu
preconditioner. In addition, d¢l — 0,

M2(1—¢€) +2¢ + Mt R 1+2n+J/1I+4y
M2(1—¢€) +2¢ — Mt 1+2n—J/1+4y

and so the the rate of decay remains finite. However, this is still not quite as good as
finite time convergence achieved with the same boundary conditions in conjunction v
the Van Leer—Lee—Roe preconditioner.

3.3.3. \Velocity, temperature at inflow; pressure at outflofhe matrixB is

-1 y—1 y—1
Md—e)+ MA—e) —

B= 0 2: - 2: . ’
0 eiw/kz eia)/)»g

and so the eigenfrequencies are

o = hohs 2n+ D, for integern,
3— A2
_ AoA3 T+ M(l—e)
wi__)ng—)uz |:‘L'—M(1—6)]’
A3 T+ M(1—-¢)
a)i/)»max=—)L3_)L2 L—M(l—e)]'

WhenM — 0, tMd=-o _, J1+4+1an4 50 the rate of decay remains finite and any initiz
T—M@0—¢) 1+4n-1

disturbance will decay exponentially.
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4. NUMERICAL RESULTS

To illustrate the effect of different boundary conditions on numerical convergence as v
as check the accuracy of the analysis, we simulate the two-dimensional flow in a duct
a straight upper wall and a bump on the lower wall betweenxG< 1 described by =
0.042 sirf(rx). The domain is 5 unit lengths long and 2 lengths high. The grid is structur
with clustering toward the wall boundary.

We use the numerical algorithm described by Darmofal and Siu [9] which employs
semi-coarsening technique of Mulder [15, 16] in conjunction with a multi-stage, blo
Jacobi relaxation [17, 18]. The discretization is a second-order upwind scheme with a
approximate Riemann solver [19]. The calculations are performed on a gridot82ells.

A three-level, V-cycle is utilized with 2 pre- and postsmoothing iterations at each level..
calculations are initialized to uniform flow. The grid and a typical distribution of presst
coefficient are shown in Fig. 1.

The Turkel preconditioner analyzed in Section 3.3 is used in the simulations. As oppc
to the ¢ definition given in Eq. (16), Darmofal and Siu [9] have found slightly bette
convergence is obtained for a block Jacobi iterative scheme wisegiven by

7

€cut =

M2/(1 - a2, M?) for M < Meus,
for M > Mcyt,

upper wall

inflow outflow

lower wall with bump

(a) 32 x 16 grid

{(b) C, contours, M =0.1.

FIG.1. Sample duct grid and pressure coefficient data.
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FIG.2. Boundary condition effect on analytic decay rates and multigrid convergence for Turkel preconditiol
Riemann: Euler Riemann invariant boundary conditions (Section 3.1.1). SHP: entropy, enthalpy, pressure bou
conditions (Section 3.1.2). QTP: velocity, temperature, pressure boundary conditions (Section 3.1.3).

wherea? = (1 — M3,)/M2, and M is the user-defined Mach number above which n
preconditioning is used. For the results in this paper, weMige= 0.5. For this definition of

€, the value ofv; / Amaxis plotted versus Mach number in Fig. 2a for the three sets of bounde
conditions. For the Euler Riemann boundary conditions, the decay rate clearly approa
zero asM — 0; however, aavl — 0.5, preconditioning is turned off and the Riemanr
boundary conditions are non-reflective (this,Amax— —00). The entropy, enthalpy, and
pressure boundary conditions (SHP) have a finite rate of decay am {00.3 have the
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TABLE |
Number of Cycles Required to Drop Residual Six Orders of Magnitude
for Different Mach Numbers and Boundary Conditions

Mach Riemann SHP QTP
0.001 UNS 8 13
0.01 UNS 8 13
0.1 UNS 8 13
0.2 20 8 14
0.3 14 8 15
0.4 11 8 18
0.5 9 10 20

Note. Riemann: Euler Riemann invariant boundary conditions from Section 3.1.1.
SHP: entropy, enthalpy, pressure boundary conditions from Section 3.1.2. QTP: veloc-
ity, temperature, pressure boundary conditions from Section 3.1.3. UNS: algorithm was
unstable and aborted with infinite residual.

fastest decay rate of the three sets of boundary conditions. Above this Mach numbel
Riemann boundary conditions are the fastest decaying. Finally, the velocity, tempera
and pressure (QTP) boundary conditions have a finite rate of decay for low Mach num
but asM — 0.5, w; — 0. ForM > 0.2, the QTP boundary conditions have the slowest ra
of decay of the three boundary conditions.

We have implemented the boundary conditions described above by constructing a bo
ary face state vector and calculating the boundary flux directly from this state vector.
example, at an inflow for the SHP boundary conditions, entropy, enthalpy, and the
gential velocity are prescribed from the exterior and the pressure is extrapolated fromn
interior. At an outflow, we reverse the procedure and specify pressure from the exterior
extrapolate entropy, enthalpy, and tangential velocity from the interior. Note that regard
of the specific boundary conditions, we always use the tangential velocity as the additi
variable for the two-dimensional boundary implementation.

The number of cycles required to converge the solution six orders of magnitude from
initial residual are given in Table I. Also, the convergence behavior is plotted in Fig.
Specifically, we plot the variation 6f1/cycles which would be proportional to the analytic
decay rate in Fig. 2a if the analysis was a reasonable model of the computation. As ce
clearly seen, the analytical and computational results behave quite similarly. At low M:
numbers, the Riemann boundary conditions are unstable while the SHP boundary c«
tions perform best. Low Mach number calculations using the velocity, temperature, C
conditions are about 75% more expensive than those using the SHP conditions. Atthe h
Mach numbers, the Riemann boundary condition cases begin to converge and the nu
of cycles decreases with increasing Mach number. In particular, the Riemann boun
conditions converge faster than the QTP and SHP boundary conditions for approxime
M > 0.3 and 0.45, respectively.

5. FINAL REMARKS

The present analysis of the Euler equations with two forms of low Mach number p
conditioning shows the quite significant effect of the preconditioning on the effectiven
of boundary conditions in eliminating initial transients.
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Boundary conditions based on the Riemann invariants of the Euler equations are fc
to be reflective in conjunction with preconditioning, whereas they are nonreflecting
the inflow without it; the problem is most detrimental at low Mach numbers where t
perturbation decay rate approaches zero.

Boundary conditions which specify entropy and stagnation enthalpy at an inflow ¢
pressure at an outflow are found to be nonreflective with the Van Leer-Lee—Roe precc
tioning, and weakly nonreflective in the other two cases. Numerical results confirm that
is the best of the three boundary conditions considered over a wide range of Mach num

The specification of velocity and density at the inflow and pressure at the outflow is fol
to be nonreflecting for the Van Leer—Lee—Roe preconditioning and weakly reflective for
Turkel preconditioning. However, for the unpreconditioned Euler equations they prov
no damping of initial transients in the absence of numerical smoothing.

There are many other boundary conditions which could have been considered. One
sibility, which is particularly appropriate for airfoil applications in which the entire far-fiel
flow state is known, would be to use linear characteristic boundary conditions. By des
these are perfectly nonreflecting, but their construction is based upon the characte
eigenvectors; changing the preconditioning therefore requires a change to the formulz
of the boundary conditions. Pursuing this approach, in multiple dimensions the 1D cha
teristic boundary conditions will only be perfectly nonreflecting when the outgoing wav
have wavecrests which are aligned with the boundary. To minimize the reflection when
wave incidence is not normal it would be possible to employ higher-order methods wt
have been successfully developed for the Euler equations [20-22].

Finally, for cases in which the particular choice of boundary conditions is determined
other factors, an interesting possibility would be to incorporate boundary condition con:
erations into the design of the preconditioner, so that the combination of the preconditic
and the boundary conditions is nonreflective.

APPENDIX

The one-dimensional Van Leer—Lee—Roe and Turkel preconditioners [1, 14] are usu
derived using the symmetrizing variables which in dimensional formiated, §, p — c25).
Using Eq. (2), the non-dimensional symmetrizing variables are

v=(p.q,p—p)'

and are related to the= (p, g, p)" variables through the transformations Su, where

0O 01
S=|10 1 0].
-1 0 1

The preconditioned Euler equations in termy @ifre

Vi + PUAUVX = 0,

whereP, = SPS? and

A, =SAS ! =

or
o<
< oo
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The one-dimensional Van Leer—Lee—Roe preconditioner is given by

Po=|-F 1+ 0],
0 0o 1

which results in

B? B2
P=S'PS=[0 1+4 —% |.
2
0 —%

wheref?=1— M2,
The one-dimensional form of the Turkel preconditioner [1] employed by Weiss a
Smith [4] is given by

e 0 O

P,=10 1 0],

0 0 1

which results in

1 0 -1
P=S'P,S=(0 1 0
0 0 €
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