
Journal of Computational Physics 200 (2004) 769–794

www.elsevier.com/locate/jcp
Adjoint and defect error bounding and correction
for functional estimates

Niles A. Pierce a,*, Michael B. Giles b

a Applied & Computational Mathematics, California Institute of Technology, Mail Code 114-96, Pasadena, CA 91125, USA
b Computing Laboratory, Oxford University, UK

Received 21 July 2003; received in revised form 22 December 2003; accepted 2 May 2004

Available online 7 June 2004
Abstract

We present two error estimation approaches for bounding or correcting the error in functional estimates such as lift

or drag. Adjoint methods quantify the error in a particular output functional that results from residual errors in ap-

proximating the solution to the partial differential equation. Defect methods can be used to bound or reduce the error in

the entire solution, with corresponding improvements to functional estimates. Both approaches rely on smooth solution

reconstructions and may be used separately or in combination to obtain highly accurate solutions with asymptotically

sharp error bounds. The adjoint theory is presented for both smooth and shocked problems; numerical experiments

confirm fourth-order error estimates for a pressure integral of shocked quasi-1D Euler flow. By employing defect and

adjoint methods together and accounting for errors in approximating the geometry, it is possible to obtain functional

estimates that exceed the order of accuracy of the discretization process and the reconstruction approach. Supercon-

vergent drag estimates are obtained for subsonic Euler flow over a lifting airfoil.
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1. Introduction

Integrals of solutions to partial differential equations (PDEs) provide crucial feedback on system be-

havior in many areas of engineering and science. In many settings, integral functional values are the pri-

mary quantitative outputs of numerical simulations of PDE solutions. In the field of computational fluid

dynamics, lift and drag are computed as surface integrals of pressure and shear forces. The desire for ef-

ficient computational algorithms that produce reliable and accurate lift and drag values has motived a great
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deal of research during the last several decades. Integral functionals also arise in examining the electrostatic

free energy of biomolecules in solvent [1] and in the calculation of radar cross-sections based on electro-

magnetic scattering [2].
Modern numerical methods for PDEs make it possible to solve nonlinear systems with discontinuous

solutions in complicated computational domains. Nonetheless, limited computational resources make it

desirable to compute solutions to the minimum allowable accuracy. Supposing that the output of most

interest is an integral functional, we arrive at two related challenges. For reliability, it is desirable to

compute a bound on the remaining error in the functional. For efficiency, it is advantageous to compute the

functional value to a higher order of accuracy than the overall solution on which it is based.

The present work describes two approaches to error bounding and error correction for functional es-

timates. Depending on the priorities of the engineer or scientist, an estimate of the leading term in the
functional error may be used either to provide an asymptotically sharp error bound, or to remove the

leading error term and obtain a superconvergent estimate.

The first approach relies on the adjoint or dual PDE, whose solution describes the sensitivity of the

functional of interest to residual errors in satisfying the original primal PDE [3–6]. Smooth reconstructions

of the primal and dual solutions are employed, so the method is equally applicable to finite difference, finite

volume or finite element discretizations. The treatment of problems containing shocks requires careful

consideration, as addressed in the present work.

A second approach uses the reconstructed primal solution to drive a defect iteration that improves the
accuracy of the underlying base solution [5–11]. The resulting corrected solution can be used to estimate the

leading error term in the original functional estimate. In practice, the implementation of the defect and

adjoint error corrections are very similar. Both are driven by the residual errors which quantify the extent to

which the reconstructed solution does not satisfy the original PDE and its boundary conditions. The ad-

joint correction compensates for the effect of these residual errors on the output functional, whereas the

defect correction corrects the entire flow solution.

The two approaches can also be used in combination to obtain even greater accuracy. It is possible

for the resulting order of accuracy to be greater than the accuracy of the reconstruction process. However,
to achieve this surprising result it is necessary to account for the geometric errors introduced by

reconstruction.

Adjoint sensitivities may also be employed as the basis for optimal adaptive meshing strategies [12–14]

that seek to maximize the accuracy of the functional estimate for a given computational cost. The issues of

error bounding and adaptive error control have received particular attention in the finite element com-

munity [2,15–28], where the use of the adjoint PDE for error analysis was first investigated. The orthog-

onality properties of most finite element methods ensure that functional estimates are naturally

superconvergent. The present approach may be used to enhance the natural finite element superconvergence
[4].

The study of error convergence is particularly challenging if the true solution is unknown. To facilitate

the study of functional accuracy for interesting physical systems and nontrivial computational domains, we

formulate modified PDEs by postulating a solution and evaluating the source term that is required to make

this the solution of the modified equations. If the postulated solution is close to a solution of the original

PDEs, then the source term will be small and the modified problem will exercise the numerical method in a

very similar manner to the true physics. In the present work, we describe modified Euler problems for two-

dimensional flow in a duct and flow over a lifting Joukowski airfoil. These test cases have been invaluable
for debugging error estimation algorithms.

Flows with shocks pose a major challenge to both adjoint calculations and adjoint error estimation. The

correct formulation of the inviscid adjoint equations must account for linearized perturbations to the shock

location. This approach reveals that the adjoint equations corresponding to the steady quasi-1D Euler

equations require an interior boundary condition at the shock location [29]. Numerical results using either
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the ‘‘continuous’’ approach (approximating the analytical adjoint equations using numerical smoothing in

place of the shock boundary condition) or the ‘‘discrete’’ approach (linearising and transposing the discrete

flow equations) yield convergent results [30].
Ulbrich has recently developed the analytical formulation of the adjoint equations for unsteady 1D

equations with scalar fluxes, such as Burgers equation [31,32]. In this case, numerical results [33] indicate

that the ‘‘discrete’’ adjoint approach does not necessarily yield convergent results, unless one uses numerical

dissipation that leads to an increasing smoothing of the shock as the mesh is refined. It seems likely that

there will be similar problems with the convergence of solutions to the unsteady quasi-1D adjoint Euler

equations and to steady adjoint Euler equations in multiple dimensions, although such convergence errors

may be very small for weak shocks.

In addition to these difficulties in calculating adjoint solutions, there is the further problem for adjoint error
estimation that any smooth reconstructed solution must necessarily have an Oð1Þ local error near the shock.
The residual error is therefore likely to increasewithout bound as the grid is refined. This behavior undermines

the whole basis for adjoint methods, which assume small errors, allowing a linearized treatment for error

estimation.Here, we describe a new approach that circumvents these difficulties by approximating the inviscid

shock as the limiting structure of a viscous shock. Adjoint error estimates subsequently account for the error

introduced by the nonzero viscosity and for the numerical error in approximating the viscous shock.

This work greatly expands on our original publication [4] (which introduced adjoint error correction for

bulk functionals of smooth solutions to linear and nonlinear PDEs with homogeneous boundary condi-
tions) by addressing adjoint error bounding, defect error bounding and correction, formulations for in-

homogeneous boundary conditions and boundary functionals, treatment of shocks, and implementation

for two-dimensional Euler flows. We begin by describing error bounding and correction alternatives using

adjoint and defect methods. The approaches are then formulated for linear and nonlinear PDEs with in-

homogeneous boundary conditions and bulk and boundary functionals. Additional theory is developed for

the treatment of shocks and then numerical demonstrations are provided for smooth and shocked quasi-1D

Euler flows, 2D duct flow, and flow over a lifting airfoil.
2. Error bounding and correction

Adjoint and defect methods based on smooth solution reconstructions are employed to bound and

correct errors in estimates of integrals functionals. The basic methods and alternatives are now introduced

in the simplest scenario of a linear differential equation with homogeneous boundary conditions and a bulk

functional.

2.1. Adjoint methods

Consider the linear differential equation

Lu ¼ f

subject to homogeneous boundary conditions on the domain X. Suppose we are interested in evaluating the

linear functional ðg; uÞ, where ð:; :Þ denotes an integral inner product on X. This functional may equivalently

be evaluated in the dual form ðv; f Þ, where v is the solution to the dual or adjoint PDE

L�v ¼ g;

subject to homogeneous adjoint boundary conditions. The equivalence of the primal and dual functional

representations follows from the definition of the adjoint operator:

ðv; f Þ ¼ ðv; LuÞ � ðL�v; uÞ ¼ ðg; uÞ:



772 N.A. Pierce, M.B. Giles / Journal of Computational Physics 200 (2004) 769–794
The dual form of the functional indicates that the adjoint solution v represents the sensitivity of the

functional to the primal source term f .
Discrete approximate primal and dual solutions, Uh and Vh, are computed on a mesh of average interval

h. Smooth reconstructions are then obtained

uh � RhUh; vh � RhVh;

where Rh is a sufficiently smooth reconstruction operator (e.g. C2 cubic spline interpolation for PDEs of

order at most two). The degree to which these functions do not satisfy the original PDEs can then be

quantified by the primal and dual residual errors defined by

Luh � f ¼ Lðuh � uÞ; L�vh � g ¼ L�ðvh � vÞ:

Assuming that the underlying physical solution is sufficiently smooth, the anticipated order of convergence

for the functional estimate depends on: n, the order of the operator L; p, the order of the discrete solution; r,
the order of the reconstruction. Intuitively, the solution and residual errors are expected to satisfy

kuh � uk; kvh � vk ¼ O hminðp;rÞ� �
;

kLuh � f k; kL�vh � gk ¼ O hminðp;r�nÞ� �
;

ð1Þ

where the n differentiations required to evaluate the residual errors account for their reduced accuracy. In

practice, these results may only hold in certain norms.

The error in the functional value based on the reconstructed primal solution may be expressed as

ðg; uhÞ � ðg; uÞ ¼ ðg; uh � uÞ ¼ ðL�v; uh � uÞ ¼ ðv; Lðuh � uÞÞ ¼ ðv; Luh � f Þ:

Introducing the reconstructed adjoint solution vh gives

ðg; uhÞ � ðg; uÞ ¼ ðvh; Luh � f Þ � ðvh � v; Luh � f Þ:

The first term on the right hand side can be evaluated, since f , uh and vh are all known. The second term

cannot be evaluated because v is unknown. However, the discretization and reconstruction schemes can be

chosen to ensure that the second term is Oðhminðp;rÞÞ smaller than the first. Therefore, the first term may be

used as an error bound,

jðg; uhÞ � ðg; uÞj6 jðvh; Luh � f Þj þ jðvh � v; Luh � f Þj ð2Þ
that is sharp asymptotically as h decreases, but may be violated for finite h. Multiplying the error bound by

any constant greater than unity will ensure that it is a valid bound for sufficiently small h, but it is not

possible in general to say how small h must be.

Alternatively, the first term can be moved to the left hand side to obtain a more accurate functional
estimate

fðg; uhÞ � ðvh; Luh � f Þg � ðg; uÞ ¼ �ðvh � v; Luh � f Þ: ð3Þ

As a concrete example, consider a one-dimensional Poisson problem

L ¼ L� ¼ d2

dx2
; f ¼ x3ð1� xÞ3; g ¼ sinpx

with homogeneous boundary conditions on x 2 ½0; 1�. The problem is discretized using second-order finite
differences and the solution is reconstructed using cubic spline interpolation (n ¼ 2, p ¼ 2, r ¼ 4). Integrals

are evaluated using 3-point Gauss quadrature.
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From estimates (1), the reconstructed primal and dual solutions are Oðh2Þ. Also, the functional estimate

ðg; uhÞ has the same order of accuracy as the primal solution on which it is based. The remainder term in (2)

and (3) is of order

jðvh � v; Luh � f Þj ¼ O hminð2;4Þþminð2;4�2Þ� �
¼ Oðh4Þ:

Using adjoint error bounding, we expect a second-order functional estimate with an asymptotically sharp

error bound that itself contains a fourth-order error. Alternatively, using adjoint error correction, we expect

a fourth-order functional estimate. These two alternatives are illustrated by the numerical results in

Fig. 1(a). Lines of slope �2 and �4 are drawn through the error values on the finest mesh to assist in

determining the convergence rates. Note that the error bound is indistinguishable from the remaining error,

as it is roughly 102 times more accurate than the functional estimate on the coarsest mesh, increasing to
roughly 105 times more accurate on the finest mesh. Using adjoint error correction, rigorous a priori

analysis of the errors in the primal and dual numerical solutions as well as the errors associated with the
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Fig. 1. Functional estimates for a 1D Poisson problem: (a) adjoint error bounding and correction, (b) defect error bounding and

correction, (c) defect error correction followed by adjoint error bounding or correction. The superimposed lines have slope �2,�4 or

�6 as suggested by the rate descriptions in the legends.
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spline reconstruction confirms that the functional accuracy should in fact double from second- to fourth-order

[34].

Depending on the reconstruction method, it is possible that the inner product ðvh � v; Luh � f Þ or
equivalently ðL�vh � g; uh � uÞ will exhibit a convergence rate that is faster than the product of the con-

vergence rates of its components. This results from cancellation effects that have been observed and ana-

lyzed in the nonlinear case of smooth quasi-1D Euler flow [34].

2.2. Defect methods

As an alternative to adjoint methods, solution reconstruction may be used to drive a defect correction

process [7–10]. If the original numerical solution is obtained by solving the discrete problem

LhUh ¼ Thf ;

where Th is an operator that transfers the continuous source term f to discrete source terms associated with

each of the unknowns in Uh, then the defect correction iteration may be written as

LhDUh ¼ Thðf � LuhÞ;
udh ¼ uh þ RhDUh;

ð4Þ

where Rh is the linear reconstruction operator [5,11]. Note that this defect correction procedure differs from

familiar defect correction approaches [35–41] that evaluate Luh using a higher order discrete operator L0
h

applied to the low order solution Uh (instead of the differential operator L applied to the reconstructed

solution uh). If the defect iteration is convergent, the final accuracy of the defect corrected approximate

solution udh is determined not by the low order discrete operator Lh used to obtain the solution, but instead

by the interpolation accuracy of the reconstruction method used to form uh and udh. See [42] for an overview

of defect correction methods and related analysis concerning accuracy, stability and convergence of defect

iterations.

Using the reconstructed defect solution udh, the error in the original functional estimate may be

represented

ðg; uhÞ � ðg; uÞ ¼ ðg; uh � udhÞ þ ðg; udh � uÞ;

where the first term on the right-hand side may be evaluated to provide an asymptotically sharp error

bound

jðg; uhÞ � ðg; uÞj6 jðg; uh � udhÞj þ jðg; udh � uÞj;

or subtracted to give a more accurate functional estimate

ðg; uhÞf � ðg; uh � udhÞg � ðg; uÞ ¼ ðg; udh � uÞ: ð5Þ

For the previously considered 1D Poisson problem, defect correction of the primal solution using cubic

spline reconstruction yields fourth-order solution errors and consequently a fourth-order functional esti-
mate. The behavior for error bounding and correction is illustrated in Fig. 1(b).

2.3. Combined adjoint and defect methods

Combined approaches yield even sharper error estimates. The remaining error in (5) may be expressed in

the dual form

ðg; udhÞ � ðg; uÞ ¼ ðg; udh � uÞ ¼ ðL�v; udh � uÞ ¼ ðv; Lðudh � uÞÞ ¼ ðv; Ludh � f Þ:
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We introduce the reconstructed dual solution vh,

ðg; udhÞ � ðg; uÞ ¼ ðvh; Ludh � f Þ � ðvh � v; Ludh � f Þ;

and evaluate the first term on the right-hand side to obtain either the asymptotically sharp error bound

jðg; udhÞ � ðg; uÞj6 jðvh; Ludh � f Þj þ jðvh � v; Ludh � f Þj

or the more accurate functional estimate

fðg; udhÞ � ðvh; Ludh � f Þg � ðg; uÞ ¼ �ðvh � v; Ludh � f Þ ¼ �ðL�vh � g; udh � uÞ: ð6Þ

For the 1D Poisson problem, the order of the remainder term may be estimated as

jðL�vh � g; udh � uÞj ¼ O hminð2;4�2Þþminð4;4Þ� �
¼ Oðh6Þ:

Note that an estimate based on the alternative dual representation of the remainder in (6) would appear to

be only Oðh4Þ. Integration by parts to obtain the primal form shows that this estimate is overly pessimistic.
Hence, in the numerical results of Fig. 1(c), we observe either a fourth-order functional estimate with a

sharp error bound that itself contains a sixth-order error, or else a sixth-order functional estimate without a

computable bound.
3. Linear formulation

3.1. Adjoint error estimates

We now extend the adjoint error estimation approach to problems with inhomogeneous boundary

conditions and output functionals that contain boundary integrals [3,5].

Let u be the solution of the linear differential equation

Lu ¼ f ;

in the domain X, subject to the linear boundary conditions

Bu ¼ e;

on the boundary oX. In general, the number of boundary conditions described by the operator B may be
different on different parts of the boundary (e.g. inflow and outflow sections for hyperbolic problems).

The output functional of interest contains both bulk and boundary contributions

J ¼ ðg; uÞ þ ðh;CuÞoX;

where ð:; :ÞoX represents an integral inner product over the boundary oX. The boundary operator C may be

algebraic (e.g. Cu � u) or differential (e.g. Cu � ou=on). As with the boundary condition operator B, the
boundary functional operator C may have different numbers of components on different parts of
the boundary. The corresponding components of hmay be set to zero on those parts of the boundary where

the functional does not have a boundary integral contribution.

The corresponding linear adjoint problem is

L�v ¼ g;

in X, subject to the boundary conditions

B�v ¼ h;
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on the boundary oX. The fundamental identity defining L�, B� and the boundary operator C� is

ðv; LuÞ þ ðC�v;BuÞoX ¼ ðL�v; uÞ þ ðB�v;CuÞoX
for all u; v. This identity is obtained using integration by parts and it implies that the primal functional

operator C and the adjoint boundary condition operator B� contain an equal number of components at any

location on the boundary. The construction of the appropriate adjoint operators for the linearized Euler

and Navier–Stokes equations is described elsewhere [43–45].

Using the adjoint identity, the equivalent dual form of the functional is

J ¼ ðv; f Þ þ ðC�v; eÞoX:
Given approximate reconstructed solutions uh and vh, the error in the functional may be expressed

ðg; uhÞ þ ðh;CuhÞoX � ðg; uÞ � ðh;CuÞoX
¼ ðL�vh; uh � uÞ þ ðB�vh;Cðuh � uÞÞoX � ðL�vh � g; uh � uÞ � ðB�vh � h;Cðuh � uÞÞoX
¼ ðvh; Lðuh � uÞÞ þ ðC�vh;Bðuh � uÞÞoX � ðL�ðvh � vÞ; uh � uÞ � ðB�ðvh � vÞ;Cðuh � uÞÞoX
¼ ðvh; Luh � f Þ þ ðC�vh;Buh � eÞoX � ðvh � v; Lðuh � uÞÞ � ðC�ðvh � vÞ;Bðuh � uÞÞoX:

In the final result, the first two terms represent computable adjoint error estimates that describe the in-

fluence of the bulk and boundary residuals on the functional of interest. These terms may either be used to

obtain a more accurate solution or to provide an asymptotically sharp bound on the error in the original

functional estimate. The last two terms describe the higher order remaining error.

3.2. Defect error estimates

In general, both bulk and boundary defect corrections are required

LhDUh ¼ Thðf � LuhÞ;
BhDUh ¼ T oX

h ðe� BuhÞ;
driven by the bulk and boundary residuals evaluated based on the reconstructed solution uh. Here, T oX

h is a

boundary transfer operator that averages the reconstructed boundary residual to form a source term for the

discrete boundary conditions. Note that in the previous 1D example, the Dirichlet boundary conditions

were satisfied exactly at the end points of the domain so no boundary defect iteration was needed.

4. Nonlinear formulation

This section describes the extension of the linear theory to nonlinear operators and functionals with

inhomogeneous boundary conditions and functionals [3,5]. It begins with some definitions and observations

regarding the linearization of functions and operators.

4.1. Preliminaries

If u is a scalar variable and f ðuÞ is a nonlinear scalar function, then a standard Taylor series expansion

gives

f ðu2Þ ¼ f ðu1Þ þ f 0ðu1Þðu2 � u1Þ þOððu2 � u1Þ2Þ:
Alternatively, an exact expression without remainder terms is obtained by starting from

d

dh
f ðu1 þ hðu2 � u1ÞÞ ¼ f 0ðu1 þ hðu2 � u1ÞÞðu2 � u1Þ;
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and then integrating from h ¼ 0 to h ¼ 1 to give

f ðu2Þ � f ðu1Þ ¼ f 0
ðu1;u2Þðu2 � u1Þ;

where

f 0
ðu1;u2Þ �

Z 1

0

f 0ðu1 þ hðu2 � u1ÞÞdh:

For the nonlinear operator NðuÞ, the corresponding linearized operator Lu is defined formally by the

Fr�echet derivative

Lu~u � lim
�!0

Nðuþ �~uÞ � NðuÞ
�

:

The subscript u denotes that Lu depends on the value of u around which NðuÞ is linearized. For example, if

NðuÞ ¼ o

ox
1

2
u2

� �
� m

o2u
ox2

then

Lu~u ¼ o

ox
ðu~uÞ � m

o2~u
ox2

:

Starting from

d

dh
Nðu1 þ hðu2 � u1ÞÞ ¼ Lu1þhðu2�u1Þðu2 � u1Þ

and integrating over h we obtain

Nðu2Þ � Nðu1Þ ¼ Lðu1;u2Þðu2 � u1Þ;

where

Lðu1;u2Þ ¼
Z 1

0

Lju1þhðu2�u1Þdh:

Thus Lðu1;u2Þ is the average linear operator over the ‘‘path’’ from u1 to u2.

4.2. Adjoint error estimates

Let u be the solution of the nonlinear differential equation

NðuÞ ¼ 0

in the domain X, subject to the nonlinear boundary conditions

DðuÞ ¼ 0

on the boundary oX.
The linear differential operators Lu and Bu are defined by the Fr�echet derivatives of N and D, respectively,

Lu~u � lim
�!0

Nðuþ �~uÞ � NðuÞ
; Bu~u � lim

�!0

Dðuþ �~uÞ � DðuÞ
:

� �
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It is assumed that the nonlinear functional of interest with bulk term JðuÞ and boundary term KðuÞ has

Fr�echet derivatives of the form

lim
�!0

Jðuþ �~uÞ � JðuÞ
�

¼ ðgðuÞ; ~uÞ; lim
�!0

Kðuþ �~uÞ � KðuÞ
�

¼ ðh;Cu~uÞoX;

where the operator Cu may be algebraic or differential.

The corresponding linear adjoint problem is

L�
uv ¼ gðuÞ

in X, subject to the boundary conditions

B�
uv ¼ h

on the boundary oX. The adjoint identity defining L�
u, B

�
u and the boundary operator C�

u is

ðv; Lu~uÞ þ ðC�
uv;Bu~uÞoX ¼ ðL�

uv; ~uÞ þ ðB�
uv;Cu~uÞoX ð7Þ

for all ~u; v. This expression implies that B�
u has the same number of components as Cu at any point on the

boundary.

We now consider approximate reconstructed primal and dual solutions uh and vh. The error analysis that
follows makes use of the quantities L�

uh
vh, B�

uh
vh, and C�

uh
vh, which are computable since the linear operators

are defined based on uh rather than u. The analysis also requires averaged Fr�echet derivatives defined by

Lðu;uhÞ ¼
Z 1

0

Ljuþhðuh�uÞdh; Bðu;uhÞ ¼
Z 1

0

Bjuþhðuh�uÞdh;

Cðu;uhÞ ¼
Z 1

0

Cjuþhðuh�uÞdh; gðu; uhÞ ¼
Z 1

0

gðuþ hðuh � uÞÞdh;

so that

NðuhÞ � NðuÞ ¼ Lðu;uhÞðuh � uÞ; DðuhÞ � DðuÞ ¼ Bðu;uhÞðuh � uÞ;
JðuhÞ � JðuÞ ¼ ðgðu; uhÞ; uh � uÞ; KðuhÞ � KðuÞ ¼ ðh;Cðu;uhÞðuh � uÞÞoX:

Adjoint error estimates may then be expressed

JðuhÞ þ KðuhÞ � JðuÞ � KðuÞ ¼ ðgðu; uhÞ; uh � uÞ þ ðh;Cðu;uhÞðuh � uÞÞoX
¼ ðL�

uh
vh; uh � uÞ þ ðB�

uh
vh;Cuhðuh � uÞÞoX � ðL�

uh
vh � gðu; uhÞ; uh � uÞ

� ðh; ðCuh � Cðu;uhÞÞðuh � uÞÞoX � ðB�
uh
vh � h;Cuhðuh � uÞÞoX

¼ ðvh; Luhðuh � uÞÞ þ ðC�
uh
vh;Buhðuh � uÞÞoX � ðL�

uh
vh � gðu; uhÞ; uh � uÞ

� ðh; ðCuh � Cðu;uhÞÞðuh � uÞÞoX � ðB�
uh
vh � h;Cuhðuh � uÞÞoX

¼ ðvh; Lðu;uhÞðuh � uÞÞ þ ðC�
uh
vh;Bðu;uhÞðuh � uÞÞoX

� ðL�
uh
vh � gðu; uhÞ; uh � uÞ � ðh; ðCuh � Cðu;uhÞÞðuh � uÞÞoX

� ðB�
uh
vh � h;Cuhðuh � uÞÞoX þ ðvh; ðLuh � Lðu;uhÞÞðuh � uÞÞ

þ ðC�
uh
vh; ðBuh � Bðu;uhÞÞðuh � uÞÞoX

¼ ðvh;NðuhÞÞ þ ðC�
uh
vh;DðuhÞÞoX � ðL�

uh
vh � gðu; uhÞ; uh � uÞ

� ðh; ðCuh � Cðu;uhÞÞðuh � uÞÞoX � ðB�
uh
vh � h;Cuhðuh � uÞÞoX

þ ðv ; ðL � L Þðu � uÞÞ þ ðC� v ; ðB � B Þðu � uÞÞ :
h uh ðu;uhÞ h uh h uh ðu;uhÞ h oX
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In the final result, the first two terms represent adjoint error estimates describing the influence of the re-

sidual errors in satisfying the PDE and the boundary conditions. These terms may be used either to provide

an asymptotically sharp bound on the error in the functional estimate or to correct the error to leading
order. The other terms are the remaining errors, which include the effects of the residual errors in ap-

proximating the adjoint problem and the consequences of nonlinearity on L, B, C and g.
If the solution errors for the nonlinear primal problem and the linear adjoint problem are of the same

order, and they are both sufficiently smooth that the corresponding residual errors are also of the same

order, then the order of accuracy of the functional approximation after making the adjoint correction is

twice the order of the primal and adjoint solutions. However, rigorous a priori and a posteriori analysis of

the remaining errors is much harder than in the linear case [34].

4.3. Defect error estimates

Suppose the original nonlinear PDE has the discretization

NhðUhÞ ¼ 0;

and the boundary conditions have the discretization

DhðUhÞ ¼ 0:

The defect calculation has the appearance of an approximate Newton iteration

oNh

oUh
DUh ¼ �ThNðuhÞ;

oDh

oUh
DUh ¼ �T oX

h DðuhÞ:
ð8Þ

Note that the right-hand sides are based on the residual errors for the bulk and boundary operators N and

D acting on the reconstructed solution uh. In the same way that Th is a transfer operator that averages the

differential residual NðuhÞ to provide a source term for the discrete equations, the operator T oX
h is a

boundary transfer operator that averages the differential boundary residual DðuhÞ to form a source term for

the discrete boundary conditions.
If a linearized discretization has not been previously implemented, it may be more convenient to base the

defect iteration on the nonlinear discretization, replacing (8) by

NhðUh þ DUhÞ � NhðUhÞ ¼ �ThNðuhÞ;
DhðUh þ DUhÞ � DhðUhÞ ¼ �T oX

h DðuhÞ:

This defect iteration can be applied more than once, but for the first iteration the above equations simplify

to

NhðUh þ DUhÞ ¼ �ThNðuhÞ;
DhðUh þ DUhÞ ¼ �T oX

h DðuhÞ:

4.4. Adjoint methods for shocked flows

Non-oscillatory shock-capturing schemes have revolutionized the calculation of transonic flows, pro-

viding one-point shock structures. Unfortunately, sharp shocks introduce fundamental difficulties when



780 N.A. Pierce, M.B. Giles / Journal of Computational Physics 200 (2004) 769–794
attempting to use linearization approaches to evaluate the sensitivities of functionals to solution errors. In

fact, a convergent nonlinear discretization may have linear sensitivities that do not converge [33].

One solution to this problem is to approach it from the perspective of well-resolved viscous shocks. Let
ue � ðq; qx; pÞT be the solution of the ‘‘viscous’’ quasi-1D Euler equations

o

ox

Aqqx
Aqq2x
AqqxH

0
@

1
Aþ A

o

ox

0

p
0

0
@

1
A ¼ Ae

o2

ox2

q
qx
p

0
@

1
A;

where AðxÞ is the duct area, q is the density, qx is the velocity, p is the pressure and H is the stagnation

enthalpy. This may be written symbolically as

NðueÞ ¼ e SðueÞ: ð9Þ
In the limit e ! 0, ue will converge to the discontinuous inviscid solution u at every point except at the

shock point. If ue;h is an approximation to ue, then the error in the computed value of the functional JðuÞ
may be split into two parts

JðuÞ � Jðue;hÞ ¼ JðuÞð � JðueÞÞ þ JðueÞð � Jðue;hÞÞ: ð10Þ
The first part is the error due to the viscosity. A matched inner and outer asymptotic analysis [46,47] reveals

that for functionals such as the integrated pressure,

JðueÞ ¼ JðuÞ þ aeþOðe2Þ;
for some constant a. Accordingly,

JðuÞ � JðueÞ ¼ �e
d

de
JðueÞ þOðe2Þ;

where the quantity

d

de
JðueÞ ¼ gðueÞ;

due
de

� �

may be evaluated by the adjoint approach since by definition, the gradient with respect to e is based on

infinitesimal perturbations to the viscous solution. Differentiating (9) with respect to e gives

Lue

due
de

¼ SðueÞ;

where Lue is the Fr�echet derivative of the nonlinear operator N � e S. Hence,

gðueÞ;
due
de

� �
¼ ðve; SðueÞÞ;

assuming that the viscous adjoint solution ve exactly satisfies the inviscid boundary conditions. If ve;h is an
approximation to the viscous adjoint ve, then eðve;h; Sðue;hÞÞ is an approximation to the functional error due
to the viscosity.

The second part of the error in (10) is due to the approximation of the solution to the viscous equation.

With a well-resolved shock, it is possible to ensure that ue � ue;h is small, so that the resulting functional

error may be approximated by the usual adjoint estimate ðve;h;Nðue;hÞ � e Sðue;hÞÞ. Adding the two cor-

rection terms gives the combined adjoint error estimate

ðv ;Nðu Þ � e Sðu ÞÞ þ eðv ; Sðu ÞÞ ¼ ðv ;Nðu ÞÞ:
e;h e;h e;h e;h e;h e;h e;h
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It is quite striking that the final result simplifies to the standard adjoint error approximation using the

inviscid operator N but the ‘‘viscous’’ approximate solutions ue;h and ve;h. Since the viscous operator is not
applied to the reconstructed solutions, the treatment of shocked flows imposes no additional accuracy
requirements on the reconstruction scheme.

We conjecture that a similar treatment may be used for contact discontinuities. In that setting, the

smoothing introduced by viscosity e leads to a functional error which is Oð
ffiffi
e

p
Þ to leading order. Hence, the

final form of the adjoint correction will not have quite such a pleasingly simple form.
5. One-dimensional results

5.1. Subsonic quasi-1D flow

We first consider subsonic quasi-1D Euler flow in a converging–diverging nozzle

AðxÞ ¼
2; �16 x6 � 1

2
;

2� sin4½pðxþ 1
2
Þ�; � 1

2
< x < 1

2
;

2; 1
2
6 x6 1;

8<
: ð11Þ

with a functional that is the integral of pressure. The flow is fully determined by specifying stagnation

enthalpy (H ¼ 4) and stagnation pressure (p0 ¼ 2) at the inlet and pressure (p ¼ 1:9) at the exit. The nu-

merical solution of Fig. 2(a) is computed using a second-order finite volume scheme and reconstructed

using cubic spline interpolation. Integrals are evaluated using 3-point Gauss quadrature so that the nu-

merical integration errors are Oðh6Þ [48]. The exact geometry is employed when evaluating the flow residual.
The performance of adjoint error bounding and correction is illustrated in Fig. 2(b). The bound is sharp,

containing an Oðh4Þ error compared to the Oðh2Þ accuracy of the functional estimate. By subtracting the

leading error term, we obtain an Oðh4Þ functional estimate. Note that the temporary excursion of the base

error from the overall trend is caused by a change in the sign of the error.

The combined use of defect and adjoint error correction is illustrated in Fig. 2(c). The second-order base

error is bounded by the defect error estimate, or alternatively, it is corrected to obtain fourth-order ac-

curacy. Adjoint methods are then used to obtain a sharp bound on the fourth-order functional estimate, or

alternatively, to obtain a seventh-order functional estimate. The primal solution is Oðh4Þ and the adjoint
residual is Oðh2Þ so we expect Oðh6Þ accuracy. The higher observed rate of convergence may be related to

the choice of geometry or it may result from a cancellation effect. The seventh-order accuracy is also ob-

served for a related asymmetrical geometry.
5.2. Shocked quasi-1D flow

We now consider the integral of pressure for shocked flow in an expanding duct. The geometry is defined

by the quintic polynomial AðxÞ that yields A0ðxÞ ¼ A00ðxÞ ¼ 0 at x ¼ 0; 1 with Að0Þ ¼ 0:95 and Að1Þ ¼ 1:05.
Uniform inlet and outlet sections of length 0.1 are appended to this smooth expansion. The flow and

adjoint solutions are both obtained using second-order finite volume schemes. Hence, the errors in the

functional resulting from viscosity and from the discretization error are both second-order.

Adjoint error correction is implemented using two adaptive meshing approaches: grid redistribution and

grid refinement. Using grid redistribution, grid points are moved to better resolve regions with high gra-

dients and/or second derivatives. Using grid refinement, extra grid points are added by sub-dividing cells to

better resolve the gradients in the shock region. In this implementation, both methods use a smoothed

indicator function based on the pressure gradient and the local cell size. Care was taken to ensure that the
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Fig. 2. Subsonic quasi-1D flow: (a) Mach number profile, (b) adjoint error bounding and correction, (c) defect error bounding and

correction supplemented by adjoint error bounding and correction. The superimposed lines have slope �2, �4 or �7 as suggested by

the rate descriptions in the legends.
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additional numerical smoothing in the discretization of the inviscid flux terms remains second-order ac-

curate even when there are jumps in the grid spacing. The viscous coefficient is defined by e ¼ N�2, where N
is the number of grid points. The effect of the grid adaptation is to smear the shock across an increasing

number of grid points as N increases.

Evaluating the combined adjoint error estimates for viscous modeling error and numerical residual

error, we obtain either a sharp bound on the second-order base error or a fourth-order functional estimate

as seen in Fig. 3.
6. Two-dimensional implementation

6.1. Euler discretization

Steady solutions to the modified two-dimensional Euler equations satisfy the nonlinear system of PDEs
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NðuÞ � oF ðuÞ
ox

þ oGðuÞ
oy

� f ðx; yÞ ¼ 0; ð12Þ

where F ðuÞ and GðuÞ are flux vectors [49], and the construction of the source term f ðx; yÞ is described in

Appendix A. These equations are discretized using a cell-centered finite volume scheme with dummy cells to

enforce boundary conditions. The solution is marched to a steady state using multigrid with Runge–Kutta

smoothing [50,51]. Numerical dissipation scaled by the spectral radius of the flux Jacobian is based on

fourth differences of the vector of conserved variables u ¼ ðq; qqx; qqy ;qEÞT. The truncation error of this

scheme is Oðh2Þ in the interior of the domain.

Correct implementation of the boundary conditions is important to the order of accuracy of the func-
tional estimates. In the description that follows, we adopt the convention that boundary normals point out

of the computational domain. For the Euler equations, there is one incoming characteristic at the wall and

the corresponding physical boundary condition is

qn � qxnx þ qyny ¼ 0:
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All conserved variables are linearly extrapolated to the dummy cells inside the wall so as to enforce zero

normal velocity with second-order accuracy. For the duct and airfoil flows described below, reconstructed

solutions based on this discretization exhibit Oðh2Þ accuracy in the L1 norm.
At an inflow boundary, three physical boundary conditions and one numerical boundary condition must

be specified. This is accomplished by using a Newton iteration to enforce

R ¼ Rin

Rout

� �
�

H1 � �H
s1 � �s
qfft � �qt

Dp þ �q�cDqn

0
BB@

1
CCA ¼ 0

at the inflow boundary, where a bar denotes an average at the boundary of the values in the adjacent

interior cell and exterior dummy cell, and D denotes a difference across the boundary of the values in the

same two cells. The first three equations represent specification of the stagnation enthalpy, entropy and

tangential velocity. For modified Euler problems, qfft is obtained from the known analytical solution. For

the duct, the equation for entropy is replaced by stagnation pressure. The fourth equation is a characteristic

boundary condition on the outgoing characteristic.

At an outlet boundary, a Newton iteration is used to enforce one physical boundary condition and three
numerical boundary conditions

R ¼ Rin

Rout

� �
�

pff � �p
�c2Dq� Dp

Dqt
Dp þ �q�cDqn

0
BB@

1
CCA ¼ 0:

The first equation sets the exit pressure based on a far field model (e.g. the analytical solution to the

modified equations) and the last three equations represent characteristic boundary conditions on the three

outgoing characteristics.

6.2. Adjoint Euler equations and boundary conditions

The linearized Euler operator based on (12) is

Lu~u � o

ox
oF
ou

~u
� �

þ o

oy
oG
ou

~u
� �

:

Integrating by parts to obtain the linear adjoint operator

L�
uv � � oF

ou

� �T
ov
ox

� oG
ou

� �T
ov
oy

;

the adjoint identity (7) is satisfied if B;C;B�;C� are defined on oX to satisfy

vTAn~u ¼ ðB�vÞTðC~uÞ � ðC�vÞTðB~uÞ ð13Þ

for any v; ~u. Here, the operators B;C;B�;C� are algebraic and may be intepreted as rectangular matrices,

while An is the normal flux Jacobian

An ¼
oF
ou

nx þ
oG
ou

ny :

For the adjoint equations, the propagation of information along characteristics is reversed, relative to the

flow equations. At the wall, there is one outgoing flow characteristic and hence one adjoint boundary
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condition is required to determine the value of the incoming adjoint characteristic. Consider the typical case

of a lift or drag functional where the linearized form of the nonlinear functional is ðh; op
ou ~uÞoX, corresponding

to a weighted integral of the surface pressure distribution. It has been previously shown that the adjoint
identity (13) requires the adjoint boundary condition [43]

B�v � v2nx þ v3ny ¼ h;

and the adjoint functional operator [44]

C�v � �ðq qqx qqy qHÞv:

For the inlet and outlet boundary conditions, it is convenient to express (13) in the equivalent characteristic

form

wTK/ ¼ wT �C�
w

B�
w

� �T
B/

C/

� �
/: ð14Þ

Here, the characteristic adjoint and linearized flow variables are

w ¼ T Tv; / ¼ T�1~u;

K is the diagonal matrix of eigenvalues of An, and T is the matrix of right eigenvectors of An.

Partitioning / into incoming and outgoing flow components, the linearized far-field boundary condi-

tions are

B// � Bin/in þ Bout/out ¼ 0;

where the partitioned boundary operator is

ðBinjBoutÞ ¼
oRin

ou
T :

There is no boundary functional contribution at the far field boundary so h ¼ 0 and the choice C// � /out

yields the simple form

B/

C/

� �
¼ Bin Bout

0 Iout

� �
;

where Iout is an identity matrix with dimension equal to the number of outgoing characteristics. Satisfaction

of the identity (14) for any w;/ then requires

�C�
w

B�
w

� �T

¼ K
Bin Bout

0 Iout

� ��1

¼ K
B�1
in �B�1

in Bout

0 Iout

� �
;

yielding the adjoint characteristic boundary conditions

B�
ww � Koutwin � BT

out B�1
in

� �T
Kinwout ¼ 0;

and the adjoint functional operator

C�
ww � �ðB�1

in Þ
TKinwout:

Identical characteristic adjoint boundary conditions are obtained [6] by adopting the alternative viewpoint

of removing the dependence of the augmented linearized functional on perturbations to the flow variables
[43].
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The discretization of the adjoint equations and the implementation of the boundary conditions are

performed following similar approaches as for the flow equations. Again the truncation error is second-

order accurate in the interior of the domain and the boundary conditions are enforced with second-order
accuracy. For the duct and airfoil cases considered later, the exact adjoint solutions are not known, so it is

not possible to confirm directly that the computed adjoint solutions are Oðh2Þ. Here, we use the ‘‘contin-

uous’’ adjoint approach [43,52] by discretizing the analytical adjoint system and boundary conditions; the

‘‘discrete’’ adjoint approach [53,54] of obtaining the adjoint discretization from the primal discretization

would be equally valid. In either case, the approximate adjoint solution is reconstructed before performing

error correction or bounding.

6.3. Reconstruction

For the two-dimensional Euler equations, the discrete solution is computed at the cell centers of a

structured quadrilateral mesh. The solution is averaged to the grid nodes prior to reconstruction so that the

mesh and the solution are defined at the same locations. The approximate solutions uh and vh are then

formed using bi-cubic spline interpolation for each component. Not-a-knot boundary conditions are em-

ployed except in cases where one of the computational coordinates is periodic [55]. The coordinate data are

also splined, so that the solutions and coordinates, uh; vh; xh; yh, are all defined parametrically as functions of

the two spline coordinates n; g. Derivatives of each component of uh can then be evaluated by solving

ouh
on
ouh
og

 !
¼

oxh
on

oyh
on

oxh
og

oyh
og

 !
ouh
ox
ouh
oy

 !
:

The adjoint and defect formulations implicitly assume that all integrals are evaluated over the correct

solution domain X and its boundary oX. However, in practice, a reconstruction scheme of order r creates a
reconstructed domain Xh that does not coincide with X. Using either adjoint or defect methods, it is
possible to obtain functional error estimates of OðhrÞ by evaluating all terms on Xh and ignoring the

geometric errors [6]. By combining adjoint and defect approaches, it is theoretically possible to obtain error

estimates that exceed the order of accuracy of the reconstruction scheme. However, it then becomes nec-

essary to correct for the influence of the geometry errors.

Let xðnÞ be a parametric representation of the boundary oX, and let xhðnÞ be the corresponding rep-

resentation of the reconstructed boundary oXh. If DxðnÞ � xhðnÞ � xðnÞ ¼ OðhrÞ, then for an arbitrary

function wðxÞ,

wðxðnÞÞ ¼ wðxhðnÞÞ � ðxhðnÞ � xðnÞÞ � rwþOðh2rÞ;

and henceZ
oX

wðxÞds ¼
Z

ðwðxhðnÞÞ � DxðnÞ � rwÞ dx

dn

����
���� dnþOðh2rÞ:

Boundary integrals may therefore be evaluated to twice the order of accuracy of the reconstruction scheme

by linearly extrapolating the reconstructed solution from oXh to oX and integrating over oX.
For the boundary functionals examined in this paper, the base functional estimate KðuhÞ, the adjoint

boundary term ðC�
uh
vh;DðuhÞÞoX and the defect boundary source term T oX

h DðuhÞ are all evaluated on the exact

geometry using 3-point Gauss quadrature and linearly extrapolated values of uh and vh. The transfer op-

erator T oX
h is defined to be the average over the portion of oX approximated by one cell face. It is interesting

to note that for a zero flux boundary condition at a solid wall, the boundary defect iteration enforces

nonzero fluxes at the mesh points in order to increase the order of accuracy in satisfying zero flux on the

exact geometry.
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For problems with boundary functionals, it is not necessary to evaluate the bulk adjoint term ðvh;NðuhÞÞ
and the bulk defect source term ThNðuhÞ on the exact geometry in order to obtain error estimates with

accuracy greater than the reconstruction scheme. The reason is that the only errors introduced by using the
reconstructed geometry correspond to the slivers neglected between X and Xh. However, the total area of

these slivers is OðhrÞ and the quantities being integrated are both Oðhminðp;r�nÞÞ, so the error introduced by

neglecting the slivers is Oðhrþminðp;r�nÞÞ. This is the same order of accuracy that we expect to achieve by

combining defect and adjoint methods, so no special treatment is required. We therefore evaluate these bulk

terms on the reconstructed domain in ðn; gÞ coordinates using 3� 3 Gauss quadrature on each cell. The

defect transfer operator Th that defines the source term at each cell center is based on the average value of

the source term over the computational cell.

For problems with bulk functionals, it would be necessary to correct for the errors introduced by
evaluating bulk integrals on the reconstructed geometry [34]. Otherwise, the base functional estimate would

contain an error of OðhrÞ corresponding to the area of the neglected slivers. The adjoint and defect methods

would be unable to correct for this term since it results from the geometry representation.

Note that the residuals that drive the defect iteration are based on a discrete solution defined at the grid

nodes. The process of averaging from the cell centers to the grid nodesmay be interpreted as part of the overall

second-order accurate discretizationprocedure. The defect iteration produces a solution at the cell centers that

becomes fourth-order accurate only after the discretization process is completed by again averaging to the grid

nodes. This interesting property simplifies the issue of moving solution data to the nodes.
7. Two-dimensional results

7.1. Subsonic flow in a duct

We now consider adjoint and defect methods for subsonic Euler flow in a smooth 2D duct. In per-

forming computational experiments to study error convergence, it is very helpful to work on test cases

where both the functional value and the solution are known. In Appendix A, we describe a modified Euler

problem for 2D duct geometries that has a known analytical solution. Briefly, qx is defined to be the quasi-

1D value in each section, qy varies linearly in each section so as to satisfy flow tangency at the walls, and q
and p are defined by constant entropy and stagnation enthalpy conditions. For the present studies, we
consider the drag functional on the geometry used for the quasi-1D test case (11) rescaled to be twice as

long. The same inlet and outlet conditions are used, with the additional restriction that the flow is uniform

at the inlet ðqy ¼ 0Þ. Starting from a structured mesh with 1024� 512 cells, a sequence of coarser test

meshes is obtained by removing alternate mesh points in both coordinate directions. Fig. 4(a) depicts a

sample computational mesh, computed pressure and entropy contours, and residual contours obtained by

substituting the reconstructed solution into the first component of the modified Euler equations.

The baseline drag estimate is Oðh3Þ for this problem, as illustrated in Fig. 4(b). Adjoint methods provide

either a sharp bound that is in error by Oðh5:5Þ, or else an Oðh5:5Þ functional estimate. The numerical dis-
cretization provides Oðh2Þ primal and dual solutions and cubic spline reconstruction provides a residual with

the same order of accuracy. Hence we expect at least second order functional accuracy before correction and

fourth-order accuracy after correction. In the present setting, we observe additional accuracy in each case.

A combination of defect and adjoint methods are presented for this 2D duct flow in Fig. 4(c). Defect

methods provide an error estimate that is used either to provide a sharp bound on the Oðh3Þ baseline error
or subtracted to obtain an Oðh5:5Þ functional estimate. Adjoint methods then provide a bound on the

Oðh5:5Þ defect estimate or else produce an Oðh7:5Þ functional estimate. In theory, the primal solution after

defect correction should be fourth-order and the adjoint residual should be second-order so we expect sixth-
order functional accuracy using the combined approach. Again, we observe additional accuracy.
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Fig. 4. Subsonic 2D flow in a duct: (a) computational mesh, computed pressure and entropy, and reconstructed mass equation re-

sidual, (b) Adjoint error bounding and correction, (c) defect error bounding and correction supplemented by adjoint error bounding

and correction. The superimposed lines have slope �3, �5:5 or �7:5 as suggested by the rate descriptions in the legends.
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The computational cost of adjoint error correction or bounding is approximately twice that of the

original functional estimate owing to the need to solve the corresponding linear adjoint problem in addition
to solving the nonlinear primal problem. Likewise, using a single primal defect iteratiaon, the cost of error

correction or bounding is approximately twice that of the original functional estimate. The joint use of

adjoint and defect methods leads to an algorithm that is approximately three times as expensive as the

original primal calculation. In each case, the cost of reconstruction is negligible compared to the cost of

solving the PDEs.

7.2. Subsonic lifting flow over an airfoil

Our final test case examines the drag for lifting flow over a Joukowski airfoil with free stream Mach

number M1 ¼ 0:5 and angle of attack a ¼ 3�. For this geometry, we construct a modified Euler problem

with a known analytical solution. Constant entropy and stagnation enthalpy conditions are combined with

a velocity field derived from the potential flow solution for the same geometry. The exact drag is non-zero

for the modified solution owing to the effects of the small forcing terms in the modified equation. The

computational domain is truncated at approximately 27 chords, where the far field boundary conditions are
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Fig. 5. Subsonic flow over a lifting airfoil: (a) computational mesh, computed pressure and entropy, (b) adjoint error bounding and

correction, (c) defect error bounding and correction supplemented by adjoint error bounding and correction. The superimposed lines

have slope �2:5, �3:3, �4:2 or �4:5 as suggested by the rate descriptions in the legends.
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based on the exact solution to the modified Euler problem. A sequence of test meshes is obtained by

isotropic coarsening of a structured 1024� 768 mesh. A sample computational mesh and corresponding

pressure and entropy contours are depicted in Fig. 5(a). This problem is more challenging than the smooth

2D duct, since it contains a geometric singularity at the cusped trailing edge. This singularity leads to a loss
of smoothness in the reconstructed residuals near the trailing edge, invalidating error estimates of the type

(1) that underlie our expectation for the order of superconvergence of the scheme.

In Fig. 5(b), we observe a base error in the drag that is Oðh2:5Þ. The adjoint error estimate provides either

an asymptotically sharp bound or a corrected functional estimate with Oðh4:2Þ accuracy. Alternatively, in

Fig. 5(c), defect methods yield a sharp bound or a functional estimate of Oðh3:3Þ. Applying adjoint methods

to the defect corrected solution, the convergence rate is somewhat uneven, corresponding to a sharp bound

that is in error by roughly Oðh4:5Þ, or else to a functional estimate of Oðh4:5Þ.
8. Conclusions

We have described adjoint and defect methods for obtaining sharp estimates of the error in integral

functionals of PDE solutions. These estimates can be used either to provide reliable error bounds, or to

correct the computed values to achieve a higher order of accuracy.
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The methods were demonstrated for subsonic quasi-1D flow in a duct, achieving fourth-order accuracy

with either adjoint or defect correction alone, and sixth-order accuracy using both methods together.

Adjoint error methods have also been extended to treat shocked flows, using a two step correction process
to account for modeling and discretization errors. Fourth order accuracy is achieved for an integral of the

pressure using grid adaptation for transonic quasi-1D Euler flow.

The methods have also been applied in two dimensions to subsonic Euler flow in a duct and flow over a

lifting airfoil. A modified form of the Euler equations is employed to provide systems with known analytical

solutions. The best accuracy is achieved using defect and adjoint methods in combination, after accounting

for geometric errors introduced by the reconstruction process. Cubic splining of the coordinate data

produces a reconstructed domain and boundary that differ from the true domain and boundary. For

the boundary functionals examined in the present work, this difficulty may be overcome by evaluating the
boundary integrals on the true boundary, using solution values extrapolated from the cubic spline

boundary.

For the 2D test cases, the analytical solution to the modified problems has been used to provide an exact

far field model. The issue of far field model accuracy is conceptually distinct from the sources of error

treated in this paper. It may be interesting in the future to consider adjoint approaches for computing the

sensitivities of functional estimates to errors in the far field model. The difficulty is that some means of

assessing the error in the far field model would be required to obtain a bound or perform a correction.

The present bounding and correction methods can be extended to unstructured computational meshes
by changing to an unstructured reconstruction scheme (e.g. [25]), requiring significant further research

effort. Application to Reynolds-Averaged Navier–Stokes flows requires additional effort in implementing

the primal and dual viscous terms and boundary conditions [45], including primal and dual treatments for

the turbulence model [54]. A discrete version of the present adjoint error estimation approach has been

employed successfully on unstructured meshes to drive adaptive meshing algorithms for Euler [12] and

Reynolds-averaged Navier–Stokes calculations [13,14]. The use of individual cell or element error contri-

butions to drive adaptive error control methods is often based on a ‘‘localization’’ of the error contribution

via the triangle inequality [28]. Localization introduces a safety margin by reducing the sharpness of the
bound to the degree that it eliminates cancellation effects between elements with errors of opposite sign.

It is desirable to perform a priori analysis to complement the a posteriori error estimation techniques

presented here. Rigorous a priori results have been obtained for adjoint error correction in the case of a

simple one-dimensional Poisson problem [34]. Further work is required to analyze multi-dimensional linear

and nonlinear problems with curved boundaries. The extension of superconvergent adjoint methods to

problems with multi-dimensional shocks is also an attractive area of inquiry.
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Appendix A. Modified Euler equations

A.1. Source term

The modified 2D Euler equations are

NðuÞ � oF ðuÞ
ox

þ oGðuÞ
oy

� f ðx; yÞ ¼ 0;
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where F ðuÞ and GðuÞ are the usual Euler flux vectors [49]. The source term f ðx; yÞ is defined by requiring

NðuexactÞ ¼ 0 for an analytically constructed flow solution uexact. Thus, uexact is the exact solution of the

modified flow equations, providing a reference solution against which to compare the numerical solution.
The next two sections give the construction of uexact for two test cases, a 2D duct and a subsonic lifting

airfoil.

A.2. 2D duct

The horizontal velocity is defined to equal the velocity in a quasi-1D flow solution [49] with duct area

AðxÞ. The vertical velocity component is defined to vary linearly from the upper to lower walls so as to

satisfy flow tangency

qy ¼ qx
da
dx

y
a
:

Here, aðxÞ ¼ 1
2
AðxÞ is the half-height of the duct and y ¼ 0 is an axis of symmetry.

The pressure and density are obtained by specifying uniform stagnation enthalpy and entropy

throughout the flow field. Derivatives of the flow quantities may be obtained using standard differential

relations between the flow quantities and the duct variation [49].

A.3. Subsonic lifting airfoil

The velocity field is specified to correspond to incompressible flow, and is obtained by constructing a

complex potential using conformal mapping [56]. Starting from the unit cylinder jwj ¼ 1 in the w ¼ uþ iv
plane, we first map to a shifted scaled cylinder in the z ¼ xþ iy plane centered at

c ¼ ex � iey ; ex; ey > 0;

with radius R ¼ j1þ cj. The mapping from w to z is

z ¼ �cþ Reiaw;

and the inverse mapping is

w ¼ R�1e�iaðzþ cÞ;

where a is the angle of attack. The cylinder in the z plane is then mapped to a Joukowski airfoil in the

c ¼ aþ ib plane using

c ¼ 1

2
ðzþ z�1Þ

with inverse mapping

z ¼ cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
:

The geometry mapping derivatives are given by
dz
dw

¼ Reia;
dw
dz

¼ R�1e�ia;
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and

dc
dz

¼ 1

2
ð1� z�2Þ; dz

dc
¼ 1þ cffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 1
p :

Care must be taken to define the branch cut for the square root to lie inside the airfoil geometry.

The trailing edge of the airfoil is at c ¼ 1, which corresponds to z ¼ 1 and

w ¼ e�iðaþbÞ; tan b � ey
1þ ex

:

The complex potential in the w-plane is

U ¼ q0ðwþ w�1Þ þ iC logw;

with q0 being real. The Cartesian velocity components, qa and qb, in the c-plane are then

qa � iqb ¼
dU
dc

¼ dU
dw

dw
dz

dz
dc

: ðA:1Þ

Asymptotically, as c ! 1, qa � iqb ! 2R�1e�iaq0; so a freestream speed q1 at angle of attack a requires

q0 ¼
1

2
Rq1:

There is a critical point in the Joukowski mapping at the cusped trailing edge, where dc=dz ¼ 0 at c ¼ 1.

Examining the expression for complex velocity (A.1), the Kutta condition requires that dU=dw ¼ 0 at the
cusp. This corresponds to placing a stagnation point in the w plane at w ¼ e�iðaþbÞ. The corresponding

vortex strength leading to smooth flow at the trailing edge is

C ¼ 2q0 sinðaþ bÞ:

The velocity expression (A.1) is indeterminate at the cusped trailing edge, but the velocity at this point can

be found using L’Hospital’s rule

qa � iqb ¼ 2q0w�3
�

� iCw�2
� dw

dz

� �2

with w ¼ e�iðaþbÞ.

The flow derivatives are obtained from

d2U
dc2

¼ d2U
dw2

dw
dz

dz
dc

� �2

þ dU
dw

dw
dz

d2z
dc2

with

oqa
oa

¼ � oqb
ob

¼ R
d2U
dc2

� �
;

oqb
oa

¼ oqa
ob

¼ �I
d2U
dc2

� �
:

The pressure and density are again obtained by specifying uniform stagnation enthalpy and entropy
throughout the flow field, with values chosen to correspond to a desired free stream Mach number.
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