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The equation rV2u =f,(u) +g,(u) is studied by means of a compact finite difference 
scheme and numerical solutions are compared to the anaiytic inviscid (II= 0) solutions. The 
correct internal and external boundary layer behaviour is observed, due to an inherent feature 
of the scheme which automatically produces upwind differencing in inviscid regions and the 
correct viscous behaviours in viscous regions. ‘G 1984 Academic Press, Inc. 

INTRODUCTION 

Consider a domain D with boundary r in the x2; plane, in which u(v) is the 
solution of the time-independent convection-diffusion equation 

f,(u) + g,(u) = vv*u 
for u = U on r. Certain features of this problem can provide useful insights into the 
Navier-Stokes equations and their inviscid limit, the Euler equations. (We employ 
terminology suggested by these applications in the following discussion.) In fiuid 
dynamics it is common to obtain the time-independent solutions to these problems by 
solving the time-dependent problem for large times. In this paper we instead study 
(1.1) by a time-independent finite difference equation to which rather standard 
iterative methods will be shown to apply. 

A large variety of finite difference methods can be employed to solve this problem 
in the sense that if U(V, h) indicates the solution of a finite difference scheme in which 
h is a typical mesh length, then U(V, /z-t U(V) as h + 0 in, say, an L, norm. In 
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particular, integrating (1.1) over a subdomain D’ with boundary r’ produces the 
conservative integral formulation 

sl,, (.fi, + gn,) ds = +r, vvu . n ds, (1.2) 

where n = (ylX, nyjT is the unit normal vector. Conservative linite difference schemes 
aproximate this equation in each cell. Nonconservative schemes instead approximate 
the equivalent differential equation 

au, + bu, = vV2u, (1.3) 

where a = ;-iflau and b = ag/8u in each cell. Since u(v) is smooth both approaches 
produce the correct solution in the limit h + 0. 

The situation is more complicated for the “inviscid” weak solution u” which 
satisfies 

P (fiz, + gn,,) ds = 0, r, (1.4) 

for all closed curves r’. This is equivalent to the hyperbolic equation 

au: + bu; = 0, (1.5) 

provided 11’ is differentiable. However, in the inviscid case boundary data may only 
be prescribed on part of r, say To. Furthermore there may be nonunique solutions 
with discontinuities (shocks) or closed characteristic curves (recirculating flows) if 
a2 + b2 = 0 at points in D. 

Many of the essential facts concerning the relationship of the solution u(v) of (1.1) 
with the “physically relevant” solution u” of (1.4) are suggested by formal singular 
perturbation arguments (Kevorkian and Cole [3], Howes [l, 21). Specifically, in the 
limit r--r 0, we expect that the solution u(v) of (1.1) converges to the “physical” weak 
solution U* of (1.4) and boundary layers arise on the complement of To in r, i.e., that 
part of r on which no boundary data is specified for the inviscid problem for u’. 

The use of finite difference schemes to calculate the solution u(v) in the limit v+ 0 
introduces a second limiting process h + 0 (Osher [4]). It is natural to consider the 
different limiting paths by which u(v, h) -+ u” as suggested by Fig. 1. The solid arrows 
indicate limiting processes which are known to be convergent, assuming a consistent 
stable finite difference scheme. The dotted arrows denote limiting processes which in 
general may not be convergent, or may converge to a solution different from u”. 

This paper is concerned with investigating a finite difference scheme which offers 
useful insights into this problem. The scheme has its origin in a compact exponential 
scheme described by Philips and Rose [5] for time-dependent problems; an 
application of this scheme to the Navier-Stokes equations was also described by 
Rose [7]. An effective time-independent solution method is provided by employing 
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FIG. 1. Typical limiting processes considered in this paper. 

the flux-elimination technique described in Phillips and Rose [6]. The first few 
sections describe the application of these developments to equation (1.1). The 
relationship of the solution u(v, h) to u ’ is then explored by several numericai 
experiments and simple heuristic analyses. 

2. A COMPACT SCHEME 

Consider (1.1) in system form 

In a square cell TC~,~, with sides of length 2h, ui*l;z,j, Ui,j*t,z~ vi-tli2,j, wiji 
represent the average values of the analytic variables on the corresponding sides 
TC,,~ (see Fig. 2). 

?,j- 112 
FIG. 2. Location of finite difference variables ir, a cell x,,~. 
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Because solutions of (2.1) are smooth, if h is sufficiently small any solution of 
(2.1) can be approximated locally by 

VV ‘u = au, + bu, , 

where a, b indicate average values off,, g, in the cell. This equation has elementary 
solutions u = exp(ux + py), where a(a - va) + ,l?(b - v/3) = 0. Any linear combination 
of four such solutions can be used to obtain a solution having the prescribed average 
va1ues Uif l/Z,jv Ui,jf l/2 on the sides of r~~,~; the corresponding average values L’i* 1/2,j, 
‘$‘i,j* l/- , are then related by four algebraic equations. The following algebraic system 
arises when a solution of the form 

u=cl+c2exp (F) +c,exp (P) +c,exp (““~“‘) 

is considered: 

where 
‘x” = (Ui+l12,j-Ui--1/2.j)/2h, 

PUrU = C”i+l/2,j + ui-1/2,j)/2? 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

etc., and if p = h/v, S, = up, 0, = bp, then 

p(e)=cothe-e-1, P, = P(@x), Py = P(%l (2.3) 

q(e) = e - we), qx = de,), qy = de,). (2.4) 

The simple behaviour ofp(O), q(B) is shown in Fig. 3. 
The dimensionless parameters t!?, , S,, are the cell Reynolds numbers which provide 

a measure of the relative importance of diffusion versus transport effects in a cell. An 
important feature of this scheme is the manner in which upwind differencing arises 
when ) 81+ co. From (2.3), (2.4), 

P(e) - sgn(@ 
- e/3 

de) - w1 

- l/3 

I 01 large, 

1 el small; 

181 law, 

1 e 1 small. 

(2.5) 
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FIG. 3. Graph of p(B). q(6), 

In G=) Cu, - bA.J L’ represents a weighted average of the values uikljzj on the 
two cell sides. For ]13]+ co the weights tend to 0 or 1, thereby selecting one or 
another of the values depending on the sign of 19. For (61 -+ 0 the weights tend to 4 
giving a simple central average p,v. 

An important point to note is that Eq. (2.2a) can be interpreted as a finite 
difference form of the conservative integral Eq. (1.2). Summation over all the cells in 
domain D yields 

(2.6) 

so the scheme is globally conservative. This is important in ensuring the correct 
calculation of nonlinear shocks, as will be shown later. 

The scheme (2.2) is called compact because it involves only the values of M, ~7, iv 
associated with an individual cell. Any relationships between values in other cells 
arise from imposing the further condition that values are continuous across cell boun- 
daries. When a and b are constant in all cells an energy estimate similar to that in 
[5], [6] can be obtained from (2.2); the result is that the solution u(v. h) converges as 
h -+ 0 to a smooth solution u(v) of (2.1) with O(h*) accuracy. 
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3. FLUX ELIMINATION 

Let 

Y = Qp, A, l?, py w, A,wy, 

U= CUxu,A,wUy~Oy~jT, 

where A = h6. Equations (2.2) may be solved for V to obtain 

(3.1) 

v= R(U), (3.2) 

where 
ad,u +P,[CU, -mu,> ~4 +~qy(Axf+ A, g)l 

Cu, -P,J * + /w#xf+ A, g> 
aA,u+p,[Cu,,--~)u+pq,(A,f+A,g)l 

Cu, -fix> 21 + ,&Ad- + A, g> 1 (3.3) 

in which o=q,+q,. 
Following the method outlined in Phillips and Rose [2] consider two neighboring 

cells rtij and 7ti+ r,j having the common values Uj+ 1lz.j and [Ii+ r:z,j associated with 
their common side. Clearly 

so that 

(1 1 0 ojz3i.j(u)=(1 -1 0 O)Ri+l,j(U). 

Similarly considering the value M!~,~+ 1,- !, common to cells x,,~ and 7~~,~+ I we also 
have 

(O 0 1 l)Ri,j(U)=(O 0 1 -l)Ri,j+l(U). 

Using (3.3) there results 

rllx{~-‘[iU,--~)~+pq,(A,f+A,g)l} 
--d,{A,u+~,~-‘[~,-~~)u+~q,(A,f+A,g)l~=O 

~,{a-‘KP, -P,) u +mGJ-+ A, g)ll 

- A,(A,,u +p,c’[Cu,, -P,> 1’ +~q,(A,f+ A, g)l t = 0. 

(3.4a) 

(3.4b) 

The values of u related by each of these equations are indicated in Fig. 4. We refer 
to (3.4) as the flux-eliminated form of (2.2). From its solution L’ and w may be 
calculated from (3.2). 

When only u is prescribed on the boundary then (3.4) applies as indicated at all 
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(4 (b) 

FIG. 4. Stencils for (3.4a), (3.49. 

interior points. When, more generally, t’ or w is prescribed at boundary points 
additional equations expressing these prescribed values are obtained from (3.2) 
Finally we call attention to the fact that the parameters h and r occur in (3.4) only in 
the combination p = h/v. 

4. LIMITING FORMS OF FLUX-ELIMINATED EQUATIONS 

As stated in the introduction we shall be interested in studying the solution u(r, h) 
of (3.4) as h + 0, v(k)+ 0. Depending on the function r(h), as h + 0, p = hjp 
approaches 0, a constant, or co. In this section we shall describe some results of 
formally applying the limits p --t 0, co in (3.4) using the asymptotic values for p: q 
given in (2.5). For our purpose it will be sufficient to examine only (3.4a). 

Case 1. p + co. When 8 N_ 0 then p e 0, q ‘v 1/3 and (3.4a) reduces to 

C”i- L:?,j + louf+ li2,j + ui-+3i.Z,j) 

- 3tui.j-1,f2 + ui.j+ l/Z + Ui+ I,j-l,‘Z + ‘i+ l.jt 1,‘2) z O. 

Case 2. p+ co. When 101 $ 1 then p -sgn(Q q - 16jp’ and so in this case 
different limiting forms arise depending on sgn(a), sgn(b) where Q = f, t b = g,, . We 
write 

a--aij, a, =ai+1.jr 

be-bij , ’ b+ = bi, 1.J. 

(i) a, > 0, b, > 0. Equation (3.4a) reduces to 

(b- -~)~i-l/z,j+ (b- + a-) ~i+l/z,j- 2b-.Ui,j-l;? ~0. 

The relevant stencil is shown below with arrows indicating the direction of the 
inviscid characteristics. Note that the reduced equation uses only “upwind” infor- 
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FIG. 5. Case (ij. 

mation to calculate ui+l,z,j. In particular, if these two cells are the entire 
computatinal domain then the prescribed boundary values on the upwind side of 
ui+ilzj solely determine its values. This corresponds to the analytic situation in 
which the inviscid weak solution requires boundary data only on the inflow part of 
the boundary at which characteristics enter the domain (see Fig. 5). 

(ii) a, < 0. a- > 0, b, > 0 (Jbl >> la\). Equation (3.4a) reduces to 

a- ui-li2,j + Ca- -a+)Ui+,,,,j--a+Ui,,iz,j 

-2a-Ui,j-l,f? +2a+Ui+l,j-lizzO. 

Again ui+ 1/2-j is influenced only by upwind points as shown in Fig. 6. 

(iii) a,. > O? a- < 0, b+ > 0 (lb/ + lal). Here (see Fig. 7) 

Ui+ 1/2,.i - {(Uij-112 + ui+lj-l12) N O* 

In interpreting these observations it must be remembered that corresponding 
equations arise from (3.4b). These examples provide useful insights into 
understanding the test problems considered in the next section. In these problems p 
varies from 0.3 to 40 with corresponding values of 8 ranging from 0 to 40, so the 
actual finite difference equations can be very close to the different limiting forms in 
different parts of the domain. 

FIG. 6. Case (ii). 
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FIG. 7. Case (iii). 

5. NUMERICAL EXAMPLES 

We have indicated earlier that we may expect that the compact scheme (2.2) yields 
a solution U(V, h) which converges to the solution U(V) of (2.1) with an Lz error of 
order h’ (cf. Example 1). In this section we are primarily interested in studying the Lz 
error E between U(V, h) and the inviscid solution no as h 4 0, v -+ 0, by means of 
numerical experiments. 

The first question which arises concerns the possibility of solving (3.4) for Q(V, hj 
when p -+ 00. Although several iterative methods were studied with, generally, 
successful results our report will concentrate on the use of the Gauss-Seidel method. 
One reason for our doing so stems from favorable results, as yet unpublished, by our 
colleague T. N. Phillips concerning the treatment of systems closely related to (3.4j 
by multigrid methods using Gauss-Seidel as the underlying iterative scheme. 

A central question motivating this study is how effectively internal and external 
boundary layers arising from aproximating u” by U(V, h) can be localized. A related 
question concerns the relative influence of the viscosity v compared to inaccuracies 
arising from the fact that the scheme has truncation errors of order h’. In order to 
help discuss this we introduce a parameter r = h2/v which together with p = h/r, will 
be used to study the solution as h --f 0, v(h) + 0. 

Another issue concerns insights into upwind difference schemes. As discussed 
earlier [6’( 4 1 leads to a diffusion-type limit of (3.4) while /8/ 9 I leads to an inviscid 
upwind-type treatment. Both can occur if p % 1 and a (or bj passes through zero in 
some region. The functions p, 4 in (3.4) automatically handle this transition with a 
“viscous” treatment near a w 0 and an “almost-inviscid” treatment elsewhere. 

The final matter concerns the question: under what limiting processes do noncon- 
servative finite difference schemes yield the correct asymptotic inviscid result when 
h -+ 0, v(h) -+ O? 

The examples which follow address these questions. The first two examples 
graphically illustrate the behaviour of U(V, h) in cases in which the inviscid limit MO is 
either linear or nonlinear. In the next five examples the L, error E between the 
solution U(V, h) and the inviscid, analytic solution u” is computed for different values 
of V, h, and the results are compared using simple heuristic analyses. The final 
example calculates the L, error for a problem using a nonconservative form of (3.4:. 
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EXAMPLE 1. f and g are linear and are defined by 

f=au, 1 
U=X-3, 

g = bu: b = 1 - y. 

Note that f, + g,, = au, + bu, since a, + b, = 0. Hence the inviscid solution no is 
constant along characteristics defined parametrically by 

dx dy ds=a, z=b, i.e., (I - y)($ - x) = const. 

The domain considered is 0 < x ,< 1, 0 < y < 1 and so the only inflow boundary on 
which boundary data needs to be specified is on y = 0. The boundary values are 
chosen to be 

u”(x3 0) = sin n(t -x), 

so that the solution in the interior is 

uO(x,~f) = sin[n(l -y)(f -x)1. 

The boundary conditions for the finite difference problem are chosen to be 

u(x, 1) = u”(x. I), u(0, y) = -1, U&J,) = 1, 

so that boundary layers arise at x = 0, 1. 
Figure 8 shows contour plots of U(V, h) for several different values of v and h. 

Figures 8a-c illustrate ordinary convergence arising from a sequence in which 1’ is 
kept fixed and h is reduced by factor of 2 each time; little visual difference appears. 
Figures 8a-e are a sequence in which p = h/v is kept fixed and h is reduced by factor 
of 2 each time; observe that the width of the boundary layers decreases. Finally, 
8a, f, g illustrate a sequence in which h is kept fixed and v is decreased by a factor of 
4 each time. Note that the boundary layers at x = 0, 1 become smaller until they are 
confined to one interior cell. 

EXAMPLE 2. This nonlinear example was suggested by our colleague E. Tadmor 
to test the ability of the scheme to converge to the correct “physical” inviscid 
solution for a problem with an infinite range of formal inviscid solutions. We 
consider 

f=u2, g=u3. 
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'I = l/5, N = 10 

0) 

" = l/5, N = 20 

v = l/10, N = 20 Y = 1120. N = 40 

(f) 

u = 1120, N = 10 

(8) 

v = l/SO, W = 10 

523 

FIG. 8. Contour plots for Example 1; (a)-(c) ilustrate ordinary convergence (h ---) 0, v = const.); in 
(a), (d), (e) p = const., h -+ 0; in (a), (f), (g), h = const., v -+ 0. (In (f), (g) the boundary layer thickness is 
confined to one cell.). 



524 GILES AND ROSE 

The test case has an expansion fan attached to a shock 

i 

0.8, 
x-o.3 1 

Y <1.2’ 

1 uO(X, yj = \, 2Y x-o.3 1 
1 -0.2, 3(x -0.3)' A<-- A<-. . x - Y Y 0.3 %I?? 

The boundary conditions for the finite difference solution are U(V, h) = u” on all 
four sides so that the only sharp gradients occur at the shock. 

Figure 9 shows contour plots of u(r, h) for fixed p and decreasing h. In 9a the 
shock is indistinguishable from the expansion fan but in 9c the difference is obvious, 
and it is also clear that the numerical solution is converging to the “physical” 
inviscid solution. 

EXAMPLE 3. This linear example uses the same definition of f and g as 
Example 1, and has the same inviscid solution u’. However, this time the finite 
difference scheme has boundary conditions u = u” on all four sides of the square 
domain. Three cases were run, one with a 20 X 20 grid, and two with 80 X 80 grids 
keeping p = h/v fixed in one case, and r = h’/r fixed in the other. Table I shows (i) 
the number of Gauss-Seidel iterations (starting from initial conditions u = Oj; (ii) the 
L, error E; (iii) E divided by the error E* for the 20 x 20 grid, and (iv) the predicted 
ratio E/E *’ based on the following simple analysis. 

Let Lo be the inviscid differential operator and L(v, h) the viscous finite difference 
operator. Then 

LouO=O and L(v, h)u(v,h) = 0, 

(b) Cc) 

FIG. 9. Example 2, f = u’, g = u3; p = con%, h + 0. 
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TABLE I 

Results for Example 3 

N=20 

p= 10 
r = 0.5 

it’=80 

p= 10 p=40 
i = 0.125 7 = 0.5 

No. of iterations 1s 55 25 
E ,334 (-2) ,821 (-3)) .216 (-3) 
E/E* 1 0.245 0.0647 
Predicted ratio 1 0.25 0.0625 

SO 

L(v, h)(u” - u(v, h)) = (L(v, h) - to) u” - h* - function i:j 

and 11’ - U(V, h) = 0 on the boundary; thus 

II u” - 44 NIL2 - h*W as h-+0, 

where e(r) is some function of r, the relative influence of truncation and viscosity. 

EXAMPLE 4. This example has linear f, g 

f = 0.5u, g=u 

with discontinuous boundary data for which the inviscid solution no is 

uo = 
1 

0.8, x < 0.3 + 0.54’, 

-0.4, x > 0.3 + 0.54’. 

The analysis for this case is not easy but leads to the result 

E - h ‘/‘e(r), 

where e is a function with asymptotic behaviour, 

Thus when r is small the error E is due not to the second-order truncation but rather 
to the viscous smearing of the contact discontinuity (see Table II). 

EXAMPLE 5. This example is a two-dimensional version of Burgers’ equation with 
a shock: 

f = o.5u2, g = 0.411 
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TABLE II 

Results for Example 4 

N=20 N=SO 

p=o p= 10 p=40 
r = 0.5 r=O.125 r=o.5 

No. of iterations 10 15 15 
E .144 .0969 .0901 
E/E* 1 0.673 0.625 
Predicted ratio 1 0.707 0.5 

and the inviscid solution u” is 

uo = I 0.8, x < 0.3 + 0.5& 
-0.4, x > 0.3 + 0.5y. 

In the finite difference solution the shock becomes an internal boundary layer with 
width of order v. If p = h/v is kept fixed as h + 0 this shock layer is spread over the 
same number of cells and hence 

E - h”‘e@). 

As p-$0, e-p-‘/2aE-v1’2 and so when p is small the error is due solely to a 
physically well-resolved shock (see Table III). 

EXAMPLE 6. This example is exactly the same as Example 1 except for different 
values of h and v. The analysis cannot be expressed in one simple equation. If p --t 0 
and h --t 0 then E - vl” since the boundary layer has thickness of order v and so it is 
well resolved. If p is kept fixed the boundary layer spans a fixed number of cells and 
soE-h . 1’2 If r is kept fixed it has an O(h) effect on just the interior points adjacent 
to the boundary and so E - h3’2 (see Table IV). 

TABLE III 

Results for Example 5 

N=20 

p= 10 
r=0.5 

N=SO 

p= 10 p=40 
z=O.125 r = 0.5 

No. of iterations 35 85 85 
E .I02 .050 .048 
E/E* 1 .49 .47 
Predicted ratio 1 .5 .5 
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TABLE IV 

Results for Example 6 

N=20 N=80 

p= 10 p= 10 p = 40 
r = 0.5 ? = 0.125 7 = 0.5 

No. of iterations 15 55 25 
E ,448 (-1) ,254 (-1) .5 1 (-2) 
E,/E" 1 0.567 0.114 

Predicted ratio 1 0.5 0.125 

EXAMPLE 7. This example is the same of Example 3 except that the boundary 
condition at 3’ = 1 is u(x, 1) = 1 which produces a boundary layer at y = 1. This 
boundary layer is different from the ones in Example 6. In Example 6 the boundaries 
were outflow boundaries, i.e., the inviscid characteristics were pointing outwards 
across the boundary. In this example the characteristics are tangential to the 
boundary at 4’ = 1, similar to a stagnation point flow in fluid dynamics. 

The physical boundary has thickness of order vl” so if r is kept fixed as h - 0 it 
spans a fixed number of cells and E - h I”‘. Hence 

E - h “‘e(r) 

and as s+O. e-r -“’ + E - vi;’ (see Table V). 

Table VI summarizes the results of Examples 3.7. 

EXAMPLE 8. This example studies a nonconservative form of the compact 
equations obtained by replacing the term S,f+ 6, g in (2.2aj by &,u + t%IJ,tl where 
5. b are average values off, and g, in the cell. The test case is 

j-= u4, g = 0.4u 

TABLE V 

Results for Example 7 

N=20 N=80 

p= 10 p= 10 p = 40 
r = 0.5 5= 0.125 r = 0.5 

No. of iterations 20 60 25 
E ,149 ,107 ,014 

E,'E* 1 0.718 0.498 
Predicted ratio 1 0.707 0.5 
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TABLE VI 

Summary of Asymptotic Behaviour of E 

E 11 = const p = const. r = const. 

Smooth U’ 
Linear, discontinuous U’ 
Nonlinear, discontinuous u0 
Smooth u’, “wrong” outflow 

boundary conditions 
Smooth K’, “wrong” tangent 

boundary conditions 

with an inviscid solution 

{O.& 
u” = i-0.4, 

x < 0.3 + 0.5y, 
x > 0.3 + 0.5y. 

The error analysis shows that E has two components, E, due to shock smearing, 
and E, due to an incorrect shock angle. 

E, - (shock width)“’ 

-V l/2 = h l/2/) ~- l/2 

E, - (conservation loss per unit shock length) 1’2 

- [ (# cells across shock) X (# cells along shock) 

X (truncation error per cell)] I” 

The two error components have the same order of magnitude when p - h “‘. If 
p < h”‘, E, dominates and, if p Z+ hli2, Ez dominates. Hence, 

E - v”‘, p e h112, 

-p1/2, p 9 h lj2, 

and at each fixed h, E is minimized by choosing p - h 1/2, and Emin - h “‘. 
The top of Table VII shows results from several experiments and the bottom 

portion has the corresponding values of Emi,/h114 and pmin/h li2 which, according to 
the analysis, should be constants. 
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TABLE VII 

E ,v 
P 20 80 

0.31 ,267 .I62 
0.62 .220 ,121 
1.25 .168 .I33 
2.5 .228 .266 
5 ,376 ,393 

E jh”? Illi” ,355 ,362 

pmin lh L. ’ .15 .!8 

6. CONCLUDING REMARKS 

The experiments reported in the previous section suggest that the compact scheme 
(2.2) provides an effective means of approximating both U(V) and u” and that the 
relationship between these solutions which is suggested by singular perturbation 
arguments is maintained, as indicated by Fig. 1, by the finite difference scheme as 
well. A fact of potential practical importance is that boundary layers can be confined 
to a single computational cell. This feature is a relevant factor as well in selecting the 
conservative form of (2.2) instead of the nonconservative form. 

Finally, the fact that the flux-eliminated equations (3.4) can be treated by a 
Gauss-Seidel iterative method indicates that a wide variety of more rapid iterative 
methods can also be employed. In contrast, the use of time-stepping methods to 
obtain U(V) or u” can be seen to result in a more slowly convergent Jacobi-type 
iteration scheme. 
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