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This paper proposes a new multilevel Monte Carlo (MLMC) method for the ergodic 
SDEs which do not satisfy the contractivity condition. By introducing the change 
of measure technique, we simulate the path with contractivity and add the Radon–
Nikodym derivative to the estimator. We can show the strong error of the path 
is uniformly bounded with respect to T . Moreover, the variance of the new level 
estimators increase linearly in T , which is a great reduction compared with the 
exponential increase in standard MLMC. Then the total computational cost is 
reduced to O(ε−2| log ε|2) from O(ε−3| log ε|) of the standard Monte Carlo method. 
Numerical experiments support our analysis.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider an m-dimensional stochastic differential equation (SDE) driven by an 
m-dimensional Brownian motion:

dXt = f(Xt) dt + dWt, (1)

which has a Lipschitz drift f : Rm→Rm satisfying the dissipativity condition: for some α, β > 0,

〈x, f(x)〉 ≤ −α‖x‖2 + β. (2)

Theorem 6.1 in [23] shows that this class of SDEs is ergodic and solutions converge exponentially to some 
invariant measure π. Evaluating the expectation of some function ϕ(x) with respect to that invariant measure 
π is of great interest in mathematical biology, physics and Bayesian inference in statistics:

π(ϕ) :=
∫

ϕ(x) dπ(x) = lim
t→∞

E [ϕ(Xt)] , ϕ ∈ L1(π).
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Different approaches to computing the expectation include numerical solution of the Fokker–Planck equa-
tion, see [27] and the references therein, and estimation of the time average of the ergodic numerical solutions, 
see [13,19,21–23,25,26,29].

One simple way is to use one of the existing numerical methods for finite time SDEs to simulate the SDE 
for a sufficiently long time T , see [7,14,15,18,24] and references therein. The exponential convergence to the 
invariant measure [23] is given by

|E [ϕ(XT ) − π(ϕ)]| ≤ μ∗ e−λ∗T (3)

for some constant μ∗, λ∗ > 0, and bounding this truncation error by ε requires

T ≥ 1
λ∗ log(ε−1) + logμ∗

λ∗ , (4)

which means the computational cost of each path using uniform time step h = O(ε) becomes O(ε−1| log ε|)
for numerical schemes with first order weak convergence. Theorem 1 in [8] shows that under the dissipativity 
condition (2) the p-th moments of the numerical solution are bounded uniformly with respect to T , so 
the variance of the estimator is bounded by a constant V0 which does not depend on T . Therefore, the 
computational cost to achieve ε2 mean square error (MSE) is O(ε−3| log ε|).

The multilevel Monte Carlo (MLMC) method, introduced by Giles [10,11], can be applied to reduce the 
computational cost. If the SDEs further satisfy the contractivity condition: for all x, y ∈ Rm,

〈x− y, f(x) − f(y)〉 ≤ −λ ‖x− y‖2, (5)

for some λ > 0, Theorem 3 in [8] has proved first order strong convergence and that the strong error is 
uniformly bounded with respect to T . Hence, the variance of the multilevel correction V� on each level �
is bounded by Ch2

� with C > 0 not depending on T . The MLMC computational cost to achieve ε2 MSE 
becomes O(ε−2| log ε|), where the additional O(| log ε|) comes from the length of simulation time T . In [8], 
by simulating different time intervals T� across different levels �, we further reduce the computational cost 
to O(ε−2).

However, a larger class of SDEs satisfying the dissipativity condition (2) does not satisfy the contractivity 
condition and instead only satisfies the one-sided Lipschitz condition:

〈x− y, f(x) − f(y)〉 ≤ λ ‖x− y‖2, (6)

for some λ > 0. The major benefit of the contractivity is that two solutions to the SDE starting from 
different initial data but driven by the same Brownian motion, will converge exponentially, which means the 
discretization error from previous time steps will decay exponentially, and then we can prove a uniform bound 
for the strong error. Without the contractivity, the strong error may increase exponentially with respect to T . 
Then multilevel correction variances V� also increase exponentially, which, as shown in Theorem 5, increases 
the total computational cost to O(ε−2− κ

2λ∗ | log ε|), where κ is the Lyapunov exponent of the system. For 
some SDEs with a chaotic property, the Lyapunov exponent κ can be sufficiently large such that κ

2λ∗ ≥ 1
and MLMC loses its advantage over the standard Monte Carlo method.

In this paper, a change of measure technique is employed to deal with SDEs satisfying the one-sided 
Lipschitz condition (6). We provide the numerical analysis only for the case of a globally Lipschitz drift but 
this scheme works well for SDEs with non-globally Lipschitz drift such as the stochastic Lorenz equation 
which is only locally one-sided Lipschitz.

The key feature of this class of SDEs, especially the chaotic SDEs, is that the behaviour of solutions is 
highly sensitive to initial conditions and the difference between the fine path and coarse path will increase 
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exponentially. An intuitive way to avoid this kind of divergence is by adding a “spring” between the fine 
path and coarse path to draw them closer to each other.

Mathematically, instead of simulating the fine path and coarse path of the original SDEs, that is, in their 
separated path spaces with different measures:

Qf : dXf
t = f(Xf

t ) dt + dWQf

t ,

Qc : dXc
t = f(Xc

t ) dt + dWQc

t .

We add a spring term with spring coefficient S > λ
2 for both fine path and coarse path for all � > 1, and 

simulate the fine path and coarse path in the same probability measure P:

dY f
t = S(Y c

t − Y f
t ) dt + f(Y f

t ) dt + dW P
t ,

dY c
t = S(Y f

t − Y c
t ) dt + f(Y c

t ) dt + dW P
t . (7)

The Girsanov theorem gives

EQf

[Xf
t ] − EQc

[Xc
t ] = EP

[
Y f
t

dQf

dP − Y c
t

dQc

dP

]
, (8)

where dQf

dP and dQc

dP are the corresponding Radon–Nikodym derivatives of the measure Qf on the fine path 
space and measure Qc on the coarse path space with respect to the P measure in which we are simulating 
both paths. In practice, we will derive the Radon–Nikodym derivative exactly for the numerical solution 
instead of numerically approximating the derivatives above. In the new MLMC scheme, essentially, the fine 
path Y f

t and coarse path Y c
t share the same driving Brownian motion Wt in measure P. Correspondingly, 

the Brownian motions for the original SDEs,

dWQf

t = S(Y c
t − Y f

t ) dt + dW P
t ,

dWQc

t = S(Y f
t − Y c

t ) dt + dW P
t ,

are slightly different in measure P, which is different from the standard MLMC. The benefit of this change 
is that the difference between the new simulated SDEs satisfies

d(Y f
t − Y c

t ) = 2S(Y c
t − Y f

t ) dt + (f(Y f
t ) − f(Y c

t )) dt, (9)

and provided S > λ
2 , Ito’s formula and the one-sided Lipschitz condition (6) give:

d ‖Y f
t − Y c

t ‖2 ≤ 2(λ− 2S)‖Y f
t − Y c

t ‖2 dt,

which will recover the contractivity between the fine and coarse paths. Note that the choice of the simple form 
of the spring term is motivated by this intuitive explanation and makes it easy to prove that contractivity 
is recovered. It also works well in practice, but we do not claim it is optimal and further research is required 
to investigate and analyse possible improvements. Due to the contractivity, we can prove that the strong 
difference between the coarse and fine paths is uniformly bounded with respect to T. More importantly, we 
can show that, together with the Radon–Nikodym derivatives, the variance of the new MLMC correction 
estimator increases only linearly in T , which is a great improvement compared with the exponential increase 
without the change of measure. The total computational cost can be reduced to O(ε−2| log ε|2), where the 
order is independent of the convergence rate λ∗ of the original SDE and the Lyapunov exponent κ.
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Change of measure techniques have been used in previous research to reduce the variance of corrections 
in MLMC. Giles proposed to use the same Gaussian samples for the final step of both fine and coarse paths 
with a change of measure for the pricing of the digital option on page 38 in [11]. To cope with the SDEs 
with path-dependent jumps, Xia & Giles [30] used a change of measure so that the acceptance probability 
of the jumps is the same for both fine and coarse paths. Kebaier & Lelong [17] optimize over a class of 
measures to optimally reduce the variance of MLMC corrections. Andersson & Kohatsu-Higa [1] change the 
sampling distribution to make the MLMC correction variance finite for unbiased simulation of SDEs using 
parametrix expansions. Stilger & Poon [28] apply it for MLMC calculation of an interest rate model and 
Gasparotto [9] for deep out-of-money options to reduce the variance.

The change of measure technique together with the Lamperti transform is also the core part in the exact 
simulation of SDEs, see [3] and the references therein. Importance sampling (change of measure technique) 
has also been widely used in rare event simulations, see [5,16] for a good introduction and review and the 
references therein.

Lastly, the construction of good coupling between paths is also useful for theoretical results. Eberle et al.
[6] proposed a new coupling method to estimate the theoretical convergence rate for Langevin dynamics. 
See [4] and its references for further exploration.

The rest of the paper is organised as follows. Section 2 introduces the new MLMC method with the change 
of measure. Section 3 states the main theorems, and the relevant numerical experiments are provided in 
section 4. Numerical results for SDEs with non-globally Lipschitz drift are given in section 5. The proofs of 
the main theorems are deferred to section 6, and finally, section 7 has some conclusions and discusses future 
extensions.

In this paper we consider the infinite time interval [0, ∞) and let (Ω, F , P) be a probability space 
with normal filtration (Ft)t∈[0,∞) corresponding to a m-dimensional standard Brownian motion W P

t =
(W (1), W (2), . . . , W (m))t. We denote the vector norm by ‖v‖ � (|v1|2 + |v2|2 + . . . + |vm|2) 1

2 , the inner 
product of vectors v and w by 〈v, w〉 � v1w1 + v2w2 + . . . + vmwm, for any v, w ∈ Rm and the Frobenius 
matrix norm by ‖A‖ �

√∑
i,j A

2
i,j for any A ∈ Rm×d.

2. New MLMC with change of measure

In this paper, we use the standard Euler–Maruyama method to simulate the original SDE (1) using 
uniform timestep h > 0 under measure P:

tn+1 = tn + h, X̂tn+1 = X̂tn + f(X̂tn)h + ΔW P
n , (10)

where ΔW P
n � W P

tn+1
− W P

tn for n = 0, 1, ..., N − 1 with N = T/h and there is fixed initial data t0 = 0, 
X̂t0 = x0. We use the notation t � max{tn : tn ≤ t}, nt � max{n : tn ≤ t} for the nearest time point 
before time t, and its index. We define the piece-wise constant interpolant process Xt = X̂t and also define 
the standard continuous interpolant [18] as

X̂t = X̂t + f(X̂t)(t− t) + (Wt −Wt).

Then, the standard Monte Carlo estimator for EP [ϕ(XT )] is the mean of the values ϕ(X̂L
T ), from NL

independent path simulations using h = 2−Lh0 for some suitable constant h0 > 0 and positive integer L.

ϕ̂std := N−1
L

NL∑
n=1

ϕ(X̂L,(n)
T ). (11)

Next, we quickly review the standard MLMC scheme introduced in [10,11]. Instead of directly estimating 

EP
[
ϕ(X̂L

T )
]
, we have the following telescoping sum in the same probability measure P:
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EP
[
ϕ(X̂L

T )
]

= EP
[
ϕ(X̂0

T )
]

+
L∑

�=1

EP
[
ϕ(X̂f,�

T ) − ϕ(X̂c,�−1
T )

]
,

where X̂f,�
T and X̂c,�−1

T share the same driving Brownian motion. Then, the standard MLMC estimator 
becomes

ϕ̂mlmc := N−1
0

N0∑
n=1

ϕ(X̂0,(n)
T ) +

L∑
�=1

N−1
�

N�∑
n=1

(
ϕ(X̂f,�,(n)

T ) − ϕ(X̂c,�−1,(n)
T )

)
. (12)

Now we introduce the new MLMC scheme with change of measure using spring coefficient S > 0.
For level 0, the numerical estimator is the same as the standard MLMC ϕ(X̂0

T ).
For level � > 1, we simulate the SDE with the additional spring terms using timestep h = 2−� h0 for the 

fine path and 2h for the coarse path.

• At t0, we set Ŷ f
t0 = Ŷ c

t0 = x0.
• At odd timesteps t2n+1 = t2n + h for n ≥ 0, we update both paths:

Ŷ c
t2n+1

= Ŷ c
t2n + S(Ŷ f

t2n − Ŷ c
t2n)h + f(Ŷ c

t2n)h + ΔW P
2n,

Ŷ f
t2n+1

= Ŷ f
t2n + S(Ŷ c

t2n − Ŷ f
t2n)h + f(Ŷ f

t2n)h + ΔW P
2n.

• At even timesteps t2n+2 = t2n+1 + h for n ≥ 0, we update the spring term and drift term of the fine 
path, but keep both the same for the coarse path:

Ŷ c
t2n+2

= Ŷ c
t2n+1

+ S(Ŷ f
t2n − Ŷ c

t2n)h + f(Ŷ c
t2n)h + ΔW P

2n+1,

Ŷ f
t2n+2

= Ŷ f
t2n+1

+ S(Ŷ c
t2n+1

− Ŷ f
t2n+1

)h + f(Ŷ f
t2n+1

)h + ΔW P
2n+1.

Note that the coarse path updates can be combined to give

Ŷ c
t2n+2

= Ŷ c
t2n + S(Ŷ f

t2n − Ŷ c
t2n)2h + f(Ŷ c

t2n)2h + ΔW P
2n + ΔW P

2n+1.

Next, we derive the exact Radon–Nikodym derivatives for both fine and coarse paths. To begin with, 
suppose we only apply the change of measure to the nth timestep. Under measure P, we have

Ŷtn+1 = X̂tn + Ŝh + f(X̂tn)h + ΔW P
n ⇒ Ŷtn+1 ∼ NP(X̂tn + f(X̂tn)h + Ŝh, hI),

where I is the identity matrix, NP(μ, Σ) is a Normal distribution under measure P and Ŝ is the spring term. 
Under a new measure Q̂n with ΔW Q̂n

n = Ŝh + ΔW P
n , we get

Ŷtn+1 = Ŷtn + f(Ŷtn)h + ΔW Q̂n
n ⇒ Ŷtn+1 ∼ N Q̂n(Ŷtn + f(Ŷtn)h, hI).

Then the exact Radon–Nikodym derivative for this single step is

dQ̂n

dP =
ρ(Ŷtn+1 |Ŷtn + f(Ŷtn)h, hI)

ρ(Ŷtn+1 |Ŷtn + f(Ŷtn)h + Ŝh, hI)
:= R( Ŷtn+1 , Ŷtn , Ŝ, h),

where ρ(x|μ, Σ) is the probability density function of N(μ, Σ) and
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R( Ŷtn+1 , Ŷtn , Ŝ, h) = exp
(
−

〈
Ŷtn+1 − Ŷtn − f(Ŷtn)h, Ŝ

〉
+ ‖Ŝ‖2h/2

)
= exp

(
−

〈
ΔW P

n , Ŝ
〉
− ‖Ŝ‖2h/2

)
.

Now, suppose that we introduce such changes on each timestep of the whole path, so under a new measure 
Q̂, we have ΔW Q̂

n = Ŝh + ΔW P
n , for n = 0, 1, ..., N − 1. Since ΔW P

n and ΔW Q̂
n , n = 0, 1, ..., N − 1, are 

sets of independent Brownian increments under measure P and Q̂ respectively, the exact Radon–Nikodym 
derivative becomes

dQ̂
dP :=

N−1∏
n=0

R( Ŷtn+1 , Ŷtn , Ŝ, h).

Numerically we obtain two new measures Q̂f and Q̂c with ΔW Q̂f

n = Ŝf
nh +ΔW P

n and ΔW Q̂c

n = Ŝc
nh +ΔW P

n

respectively for all steps on fine and coarse paths, where Ŝf
n and Ŝc

n are the spring terms on nth step for fine 
and coarse paths. Then we can calculate the exact Radon–Nikodym derivatives step by step at the same 
time as updating the paths.

• At t0, we set Rf
t0 = Rc

t0 = 1.
• At odd timesteps t2n+1 = t2n + h for n ≥ 0, we only update Rf :

Rf
t2n+1

= Rf
t2n R

(
Ŷ f
t2n+1

, Ŷ f
t2n , S(Ŷ c

t2n − Ŷ f
t2n), h

)
.

• At even timesteps t2n+2 = t2n+1 + h for n ≥ 0, we update both Rf and Rc:

Rf
t2n+2

= Rf
t2n+1

R
(
Ŷ f
t2n+2

, Ŷ f
t2n+1

, S(Ŷ c
t2n+1

− Ŷ f
t2n+1

), h
)
,

Rc
t2n+2

= Rc
t2n R

(
Ŷ c
t2n+2

, Ŷ c
t2n , S(Ŷ f

t2n − Ŷ c
t2n), 2h

)
.

Then, after N steps, we obtain the exact Radon–Nikodym derivatives for the whole path:

dQ̂f

dP = Rf
T =

N−1∏
n=0

R
(
Ŷ f
tn+1

, Ŷ f
tn , S(Ŷ c

tn − Ŷ f
tn), h

)
,

dQ̂c

dP = Rc
T =

N/2−1∏
n=0

R
(
Ŷ c
t2n+2

, Ŷ c
t2n , S(Ŷ f

t2n − Ŷ c
t2n), 2h

)
. (13)

Finally, the multilevel correction estimator becomes

ϕ(Ŷ f
T ) Rf

T − ϕ(Ŷ c
T ) Rc

T , (14)

and the identity we use in the new MLMC is

EP
[
ϕ(X̂L

T )
]

= EP
[
ϕ(X̂0

T )
]

+
L∑

�=1

EP
[
ϕ(Ŷ f,�

T )Rf,�
T − ϕ(Ŷ c,�−1

T Rc,�
T )

]

where Rf,�
T and Rc,�

T are the exact Radon–Nikodym derivatives for the fine and coarse paths on level �. The 
new MLMC estimator becomes
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ϕ̂new := N−1
0

N0∑
n=1

ϕ(X̂0,(n)
T ) (15)

+
L∑

�=1

N−1
�

N�∑
n=1

(
ϕ(X̂f,�,(n)

T )Rf,�,(n)
T − ϕ(X̂c,�−1,(n)

T )Rc,�,(n)
T

)
.

In the following sections, we only work under measure P, so we use Wt to denote W P
t for simplicity.

3. Theoretical results

In this section, we state the key results on the stability and strong error of the path after the change of 
measure, and then the variance of the estimator (14) and the resulting MLMC complexity.

Assumption 1 (Lipschitz and dissipativity). Assume f is globally Lipschitz so that there is a constant K > 0
such that

‖f(x) − f(y)‖ ≤ K ‖x− y‖, (16)

for all x, y ∈ Rm. Furthermore, there exist constants α̃, β̃ > 0 such that for all x ∈ Rm, f satisfies the 
dissipativity condition:

〈x, f(x)〉 ≤ −α̃‖x‖2 + β̃. (17)

Note that a consequence of the Lipschitz condition is that

‖f(x)‖ ≤ ‖f(0)‖ + K‖x‖ ⇒ ‖f(x)‖2 ≤ 2
(
‖f(0)‖2 + K2‖x‖2) .

This assumption ensures the existence and uniqueness of the strong solution to the SDEs [20] and the 
convergence to the invariant distribution [21]. Note that the Lipschitz assumption is needed for simplicity 
of the proof but numerical experiments in section 5 show that the change of measure technique also works 
well for SDEs with non-globally Lipschitz drift. The following theorem, based on this assumption, shows 
that our numerical scheme with sufficiently small h is stable and the moments of the numerical solution is 
uniformly bounded with respect to T .

Theorem 1 (Stability). If the original SDE satisfies Assumption 1, then using the new change-of-measure 
algorithm with S > 0, there exist constants C(1), C(2) > 0 such that for any T > 0 and p ≥ 1, and for all 
0 < h < C(1)

sup
0≤n≤N

E

[
‖Ŷ f

tn‖
p
]1/p

≤ C(2) p
1/2, sup

0≤n≤N
E

[
‖Ŷ c

tn‖
p
]1/p

≤ C(2) p
1/2.

Proof. The proof is deferred to section 6.1. �
It is important to note that the constants C(1), C(2) depend on the specifics of the original SDE and the 

value of S, but not on T, h or the moment power p. This result is expected since the spring term is only a 
linear function of the numerical solution and the magnitude is small which does not destroy the dissipativity 
condition and allow us to obtain the uniform bounds. For the first-order strong convergence, we need the 
following assumption.
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Assumption 2 (One-sided Lipschitz properties). There exists a constant λ > 0 such that for all x, y ∈ R, 
f satisfies the one-sided Lipschitz condition:

〈x− y, f(x) − f(y)〉 ≤ λ ‖x− y‖2, (18)

and f is differentiable and ∇f(x) satisfies the Lipschitz condition ‖∇f(x) −∇f(y)‖ ≤ K‖x − y‖.

Note that the Lipschitz condition (16) implies this one-sided Lipschitz condition (18). However, the 
one-sided Lipschitz condition can give a sharper bound for the positive side, which means that K can be much 
larger than λ. The spring term in our algorithm is only needed when the inner product 〈x − y, f(x) − f(y)〉
is positive, to prevent the exponential divergence of the fine and coarse paths. See the adaptive spring for 
double-well potential energy SDE in section 5 where we choose S to be a function of the current state 
to minimize the spring term and thereby reduce the size of the Radon–Nikodym derivative. The other 
consideration is that possibly we can extend this scheme to SDEs with locally one-sided Lipschitz drift, for 
example the stochastic Lorenz equation. Therefore, this condition helps us to obtain an accurate choice of 
spring term S as shown in the following theorem.

Theorem 2 (Difference between fine and coarse paths). If the original SDE satisfies Assumptions 1 and 2, 
then using the new change-of-measure algorithm with S > λ/2, there exist constants C(1), C(2) > 0 such 
that for any T > 0 and p ≥ 1, and for all 0 < h < C(1),

sup
0≤n≤N

E

[
‖Ŷ f

tn − Ŷ c
tn‖

p
]1/p

≤ C(2) min
(
p1/2 h1/2, p h

)
.

Proof. The proof is deferred to section 6.2. �
The Lp norm of the difference between the fine and coarse paths, as we expected, is uniformly bounded 

since we add enough spring term to recover the contractivity used in [8]. With this result, we can bound 
the pth-moment of the Radon–Nikodym derivatives and then the MLMC estimator (14).

Theorem 3 (Radon–Nikodym moments). If the original SDE satisfies Assumptions 1 and 2, then using the 
new change-of-measure algorithm with S > λ/2, there exist constants C(1), C(2) > 0 such that, for any T > 0
and p ≥ 1, and for all 0 < h < min(C(1), C(2)/(Tp2)),

E

[∣∣∣∣∣dQ̂c

dP

∣∣∣∣∣
p]

≤ 2, E

[∣∣∣∣∣dQ̂f

dP

∣∣∣∣∣
p]

≤ 2.

Proof. The proof is deferred to section 6.3. �
Theorem 4 (MLMC moments). If the original SDE satisfies Assumptions 1 and 2, and ϕ : Rm → R is 
globally Lipschitz, then using the new change-of-measure algorithm with S > λ/2, for any T > 0 and p ≥ 1
there exist constants C(1), C(2), C(3) > 0 such that for all 0 < h < min(C(1), C(2)/(Tp2),

E

[∣∣∣∣∣ϕ(Ŷ f
T ) dQ̂f

dP − ϕ(Ŷ c
T ) dQ̂c

dP

∣∣∣∣∣
p]1/p

≤ C(3) p
2
√
T h.

Proof. The proof is deferred to section 6.4. �
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Note that this theorem implies that the variance of the estimator (14) is bounded by C2Th
2 which 

increases linearly in T .
We now have everything we require to determine the MLMC complexity.

Theorem 5 (MLMC for invariant measure). If ϕ satisfies the Lipschitz condition and the SDE satisfies 
Assumption 1 and 2 with convergence rate λ∗ and constant μ∗ in (3), and Lyapunov exponent κ, then by 
choosing suitable values for L, S, h0 and N� for each level �, there exist constants c1, c2, c3 > 0 such that 
the estimator ϕ̂ has a mean square error (MSE) with bound

E
[
(ϕ̂− π(ϕ))2

]
≤ ε2,

with 0 < ε < 1 and an expected computational cost Cstd for the standard Monte Carlo estimator ϕ̂std (11)
with bound

Cstd ≤ c1 ε−3| log ε|,

and an expected computational cost Cmlmc for the standard MLMC estimator ϕ̂mlmc (12) with bound

Cmlmc ≤ c2 ε−2− κ
2λ∗ | log ε|,

provided κ/λ∗ < 2, and Ccom for the new MLMC estimator with change of measure ϕ̂new (15) with bound

Ccom ≤ c3 ε−2| log ε|2.

Proof. By Jensen’s inequality, the MSE can be decomposed into three parts:

E
[
(ϕ̂− π(ϕ))2

]
= V [ϕ̂] + |E [ϕ̂] − π(ϕ)|2

≤ V [ϕ̂] + 2 |E [ϕ̂] − E [ϕ(XT )]|2 + 2 |E [ϕ(XT )] − π(ϕ)|2 ,

which enables us to achieve the MSE bound by bounding each part by ε2/3. Similar to (4), we bound the 
third part by setting

T = 1
λ∗ log(ε−1) + log

√
6μ∗

λ∗ , (19)

to bound the truncation error. The first order weak convergence requires hL = O(ε) and L ≥⌈
γ log2(ε−1) + ζ

⌉
for some γ, ζ > 0.

For the standard Monte Carlo method using hL, the computational cost for each path is O(ε−1| log ε|)
and the bound on variance requires O(ε−2) samples, which gives a total computational cost

Cstd ≤ c1 ε−3| log ε|,

for some constant c1 > 0.
The analysis for the two MLMC schemes is similar to the MLMC theorem in [11] and shows the optimal 

computational cost is bounded by

3ε−2

(
L∑

�=0

√
V� C�

)2

+
L∑

�=0

C� ,

where C� and V� are the cost and variance for each level.
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For standard MLMC, we have first order weak convergence but the variance of V� for � ≥ 1 increases 
exponentially in T , which gives

V� ≤ η1 (h0 2−�)2 eκT , (20)

for some constant η1 > 0. A good MLMC coupling requires C0V0 > C1V1, and given this condition and 
β = 2, γ = 1, the optimal cost is O(ε−2C0). The condition C0V0 > C1V1 requires

h0 = ϑ1 e−κT/2 ⇒ C0 = ϑ2 ε
− κ

2λ∗ | log ε|, (21)

for some ϑ1, ϑ2 > 0. The condition κ/λ∗ < 2 ensures that h0 is greater than the timestep required by 
the standard Monte Carlo method so additional MLMC levels are required to achieve the desired weak 
convergence. Therefore, there exists a constant c2 such that

Cmlmc ≤ c2 ε−2− κ
2λ∗ | log ε|.

For the new MLMC with the change of measure, Theorem 4 gives

V� ≤ η2 (h0 2−�)2 T, (22)

for some η2 > 0. The condition C0V0 > C1V1 requires

h0 = ϑ3 T
−1/2, (23)

for some ϑ3 > 0, but the bound in Theorem 4 requires the tighter condition

h0 = ϑ4 T
−1 ⇒ C0 = ϑ5 | log ε|2,

for some ϑ4, ϑ5 > 0. Therefore, there exists a constant c3 such that

Ccom ≤ c3 ε
−2| log ε|2. �

4. Numerical results

In this section, we present the numerical results for a Lipschitz version of the stochastic Lorenz equation 
with additive noise:

f

(
x1
x2
x3

)
=

⎛⎝ 10(B(x2) − x1)
(28 − x3)B(x1) − x2

B(x1)x2 − 8
3x3

⎞⎠ ,

where B(x) = 65x/ max(65, |x|). When |x1| > 65 and |x2| > 65, we have

f

(
x1
x2
x3

)
=

⎛⎝ 650 sgn(x2) − 10x1
65 sgn(x1)(28 − x3) − x2

65 sgn(x1)x2 − 8
3x3

⎞⎠ .

Therefore, f satisfy the Lipschitz condition (16) and the dissipativity condition (17). In the region of 
|x1| ≤ 65 and |x2| ≤ 65, which contains the chaotic attractors, this function will retain the chaotic property 
of the original Lorenz equation. Our interest is to compute π(ϕ), where ϕ(x) = ‖x‖ satisfying the Lipschitz 
condition. We run 10000 sample paths from T = 0 to 20 to get the following results.
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Fig. 1. Variance for each level without change of measure. (For interpretation of the colours in the figure(s), the reader is referred 
to the web version of this article.)

Fig. 2. Variance on level 8 with/without change of measure.

Fig. 1 is a semi-log plot of the variance on each level as a function of T without the change of measure. 
The blue to red lines correspond to the variance on each level � = 1 to 8 with h� = 2−�h0 and h0 = 2−9:

V

[
ϕ(X̂c

T ) − ϕ(X̂f
T )

]
∼ η1 h

2
� eκT ,

for some η1 > 0, which increases exponentially with respect to T and stops increasing when it reaches 
the decoupling upper bound V 

[
ϕ(X̂c

t )
]

+ V 
[
ϕ(X̂f

t )
]

shown in yellow to green lines. In addition, as level 
increases, the variance decreases at rate 2. For T > 10, we can see that the standard MLMC on level � = 8, 
using h = 2−17, still can not achieve a good coupling. In order to see this exponential increase, we plot 
the log variance on level 8 using h = 2−17 with respect to T and the fitted linear function on time interval 
[5, 10], see Fig. 2(a). The κ we fit is 1.36.

Similarly, for the new MLMC with spring term S = 10, Fig. 3 is the semi-log plot of the variance on each 
level as a function of T with change of measure using same h�:

V

[
ϕ(Ŷ f

T )Rf
T − ϕ(Ŷ c

T )Rc
T

]
∼ η2 h

2
� T,

for some η2 > 0. As the level increases, the variance decreases at a rate 2. In order to see the linear increase 
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Fig. 3. Variance for each level with change of measure.

Fig. 4. The required h0 to achieve a good coupling.

in T , we plot the variance on level � = 8 with respect to T and the fitted linear function on time interval 
[5, 20], see Fig. 2(b).

We have investigated and illustrated the dependence of V� on T for both schemes. Next, we investigate 
the impact of this increase on MLMC schemes, that is the requirement of h0 to achieve a good coupling, 
that is V0 > 2V1. We plot log h0 with respect to T in Fig. 4. The blue line confirms the exponential decrease 
of h0 with respect to T in (21). The coefficient of the log function fit is 0.49 which confirms the relationship 
(23).

Lastly, we estimate the convergence rate λ∗ to the invariant measure. Fig. 5(a) plots the function value 
ϕ(Xt) with respect to time t and its moving upper bound and lower bound. We plot the error bound (the 
difference between moving upper bound and moving lower bound) in Fig. 5(b) and the exponential fit. The 
fitted λ∗ is 0.1741. Therefore, in this case with λ∗ = 0.1741 and κ = 1.3601, the standard MLMC fails to 
achieve any computational savings by Theorem 5.

5. Extension to non-Lipschitz SDEs

In this section, we extend this change of measure technique to ergodic SDEs with non-Lipschitz drift using 
the adaptive timestepping method proposed in [8]. Without any proof, we show some numerical experiments 
results for the SDE with a double-well potential energy and the stochastic Lorenz equation.
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Fig. 5. Estimation of the convergence rate to invariant distribution.

Fig. 6. Probability density function of invariant distribution.

5.1. Double-well potential energy

We consider

dXt = (2Xt −
1
2X

3
t ) dt + dWt. (24)

The probability density function of its invariant distribution is

exp(2x2 − 1
4x

4)∫∞
−∞ exp(2x2 − 1

4x
4)dx

,

and it has two different wells at x = ±2, see Fig. 6. This SDE satisfies the dissipativity condition (17)
and one-sided Lipschitz condition (18) with λ = 2 but the drift is non-globally Lipschitz. For the standard 
MLMC scheme, the issue is that the fine and coarse paths may diverge to different wells, which can result 
in a large variance and high kurtosis. Using the change of measure technique can reduce the divergence and 
then improve the efficiency.

We simulate the SDE with initial value x0 = 0 to time T = 5, and use the adaptive function:

hδ(x) = max(1, |x|)
1 3 δ,
8 max(1, |2x− 2x |)
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Fig. 7. MLMC convergence test for double-well potential energy.

with δ = 2−� for each level �. We compare three different schemes:

• standard MLMC with adaptive timestep.
• MLMC with adaptive timestep and change of measure with constant spring coefficient S = 1.
• MLMC with adaptive timestep and change of measure with adaptive spring coefficient

S = max(0, 2 − 1.5x2).

The second scheme uses S = 1 following the suggestion of Theorem 4. The third scheme improves on the 
second by choosing adaptive S and avoiding unnecessary spring term, reducing the variance without losing 
the control on divergence. By doing first order Taylor expansion on (9), we choose S = max(0, f ′(x)) to 
deal with the divergence locally.

We run 10000 samples for each level � for the three schemes. The numerical results are shown in Fig. 7.
The top left figure plots the divergence probability with respect to the level �, where the divergence 

probability is defined as

E

[
1‖X̂f

T−X̂c
T ‖>1

]
= P

[
‖X̂f

T − X̂c
T ‖ > 1

]
.

The probability decreases as � increases since the timestep h� is smaller and the difference between fine and 
coarse path decreases. The decrease rate we fit is

P

[
‖X̂f

T − X̂c
T ‖ > 1

]
∼ O(h1.28

� ).

The two schemes with change of measure have zero divergence on all levels.
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The top right figure plots the variance of corrections V� with respect to level �. The V� of the two schemes 
with change of measure decrease at the similar rate 2 while the standard MLMC has a slower rate of 
approximately 1.28 since the divergence of the fine and coarse paths dominated the variance. The scheme 
with the adaptive spring coefficient has lower V� than the scheme with constant spring coefficient since the 
unnecessary spring will increase the variance of the Radon–Nikodym derivative.

The bottom left figure shows the log kurtosis with respect to level �. The kurtosis of standard MLMC will 
increase exponentially while the kurtosis of the schemes with change of measure will stay constant. Similar 
intuitive explanation applies here. The divergence samples again dominate the 4th moment and then the 
kurtosis on each level

K� ∼
E

[
‖X̂f

T − X̂c
T ‖4

]
E

[
‖X̂f

T − X̂c
T ‖2

]2 ∼ h−1.28
� .

The rate of increase in the figure is 1.06 which is quite close to the rate of decrease of the divergence 
probability.

The bottom right figure plots the costs of the three schemes together with the standard Monte Carlo 
method with respect to ε. The costs of all the MLMC schemes are O(ε−2) while the standard MC is O(ε−3)
and the scheme with adaptive spring has the lowest cost.

Overall, the new MLMC schemes with change of measure perform better especially the one with adaptive 
spring. They can not only keep the kurtosis constant but also reduce the variance and hence the total 
computational cost.

5.2. Stochastic Lorenz equation

This is a three-dimensional system modelling convection rolls in the atmosphere

f

(
x1
x2
x3

)
=

⎛⎝ 10(x2 − x1)
x1(28 − x3) − x2

x1x2 − 8
3x3

⎞⎠ . (25)

This SDE does not satisfy the dissipativity condition (17) and one-sided Lipschitz condition (18), and is 
more chaotic compared with the truncated Lipschitz version in previous section.

We simulate the SDE with initial value x0 = [0, 0, 0] to time T = 10, and use the adaptive function:

hδ(x) = max(100, ‖x‖2)
211 max(100, ‖f(x)‖2)δ,

with δ = 2−� for each level �. We compare two different schemes:

• standard MLMC with adaptive timestep.
• MLMC with adaptive timestep and change of measure with constant spring coefficient S = 10.

A possible third scheme is the scheme with adaptive spring which requires us to calculate the largest positive 
eigenvalue of the Jacobian matrix ∂f∂x .

We run 10000 samples for each level � for two schemes. The numerical results are shown in Fig. 8.
Similarly, the top left figures shows that the change of measure technique can greatly reduce the ratio 

of divergence E 
[
1‖X̂f

T−X̂c
T ‖>10

]
and actually no divergence occurs in this numerical experiment for all the 

levels. The rate of decrease for standard MLMC is 0.82.
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Fig. 8. MLMC convergence test for Lorenz equation.

The top right figure illustrates the variance reduction of the change of measure technique, and the rate 
of decrease of the variance for level corrections V� is approximately 2 for change of measure and 0.83 for 
standard MLMC which is similar to the rate of decrease of divergence probability.

The bottom left plot shows that the kurtosis of standard MLMC increases exponentially as level �
increases while the kurtosis of change of measure remains constant. The increase rate is 0.96 which is close 
to the decrease rate of divergence rate.

The last bottom right plot implies that the total computational cost is O(ε−2) for the MLMC with change 
of measure and O(ε−3) for the standard Monte Carlo method. The O(ε−3) computational cost for standard 
MLMC is worse than the theoretical results due to the high kurtosis and large variance V� and it is already 
quite hard to get the result for ε = 0.01 in a reasonable computational time.

6. Proofs

For simplicity of the proof, we introduce the notation a(h) � b(h) which means there exists a constant 
h̃0 > 0 such that a(h) ≤ b(h), ∀ 0 < h < h̃0, where h̃0 is allowed to depend on constants such as S, K, α̃, 
β̃, f(0) but not on stochastic samples ω or Brownian paths.

Note that for all δ > 0, we have 1/(1 − Sh) � 1/(1 − 2Sh) � 1 + 2Sh + δh � 2.

6.1. Theorem 1

Proof. The proof is given for p ≥ 4; the result for 1 ≤ p < 4 follows from Hölder’s inequality. We start our 
proof by analyzing the numerical paths step by step. When t = t0 = 0, the two numerical paths are both 
at initial point x0, i.e. Ŷ f

t = Ŷ c
t = x0.
0 0
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For the odd time point t2n+1 for n ≥ 0,

Ŷ c
t2n+1

= Ŷ c
t2n + S(Ŷ f

t2n − Ŷ c
t2n)h + f(Ŷ c

t2n)h + ΔW2n,

Ŷ f
t2n+1

= Ŷ f
t2n + S(Ŷ c

t2n − Ŷ f
t2n)h + f(Ŷ f

t2n)h + ΔW2n.

Squaring both sides gives

‖Ŷ c
t2n+1

‖2 =

∥∥∥∥∥Sh Ŷ f
t2n + (1 − Sh)

(
Ŷ c
t2n +

f(Ŷ c
t2n)h + ΔW2n

1 − Sh

)∥∥∥∥∥
2

.

Due to the convexity of x2 that, for any 0 ≤ ξ ≤ 1,

‖ξA + (1 − ξ)B‖2 ≤ ξ‖A‖2 + (1 − ξ)‖B‖2,

provided h < 1/S, we can choose ξ = Sh to get

‖Ŷ c
t2n+1

‖2 � Sh‖Ŷ f
t2n‖

2 + (1 − Sh)‖Ŷ c
t2n‖

2 + 4 ‖ΔW2n‖2 + 2 〈Ŷ c
t2n , f(Ŷ c

t2n)〉h

+ 4 ‖f(Ŷ c
t2n)‖2h2 + 2 〈Ŷ c

t2n ,ΔW2n〉.

Due to the Lipschitz condition (16),

‖f(Ŷ c
t2n)‖2h2 � γ h(‖Ŷ c

t2n‖
2 + 1)

for any γ > 0. Combining this with dissipativity condition (17), we obtain, for some fixed α ∈ (0, α̃) and 
β ∈ (β̃, ∞),

‖Ŷ c
t2n+1

‖2 � Sh‖Ŷ f
t2n‖

2 + (1 − Sh− 2αh)‖Ŷ c
t2n‖

2 + 4 ‖ΔW2n‖2 + 2βh

+ 2 〈Ŷ c
t2n ,ΔW2n〉. (26)

Similarly, we have

‖Ŷ f
t2n+1

‖2 � Sh‖Ŷ c
t2n‖

2 + (1 − Sh− 2αh)‖Ŷ f
t2n‖

2 + 4 ‖ΔW2n‖2 + 2βh

+ 2 〈Ŷ f
t2n ,ΔW2n〉. (27)

For the even point t2n+2 for n ≥ 0,

Ŷ c
t2n+2

= Ŷ c
t2n + S(Ŷ f

t2n − Ŷ c
t2n)2h + f(Ŷ c

t2n)2h + ΔW2n + ΔW2n+1,

Ŷ f
t2n+2

= Ŷ f
t2n+1

+ S(Ŷ c
t2n+1

− Ŷ f
t2n+1

)h + f(Ŷ f
t2n+1

)h + ΔW2n+1.

Using the same approach and choosing ξ = 2Sh provided 2Sh < 1, we get

‖Ŷ c
t2n+2

‖2 � 2Sh‖Ŷ f
t2n‖

2 + (1 − 2Sh− 4αh)‖Ŷ c
t2n‖

2 + 4‖ΔW2n + ΔW2n+1‖2

+ 4βh + 2 〈Ŷ c
t2n ,ΔW2n + ΔW2n+1〉,

and
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‖Ŷ f
t2n+2

‖2 � Sh‖Ŷ c
t2n+1

‖2 + (1 − Sh− 2αh)‖Ŷ f
t2n+1

‖2 + 4 ‖ΔW2n+1‖2 + 2βh

+ 2 〈Ŷ f
t2n+1

,ΔW2n+1〉.

Therefore, for any fixed γ ∈ (0, α), we have

‖Ŷ c
t2n+2

‖2 + ‖Ŷ f
t2n+2

‖2 � (1 − 4γh)(‖Ŷ c
t2n‖

2 + ‖Ŷ f
t2n‖

2) + 12(‖ΔW2n‖2 + ‖ΔW2n+1‖2)

+8βh + 2 e−4γh〈φt2n ,ΔW2n〉 + 2 e−2γh〈φt2n+1 ,ΔW2n+1〉,

where for n ∈ [0, N/2 − 1],

e−4γhφt2n = (1 + Sh)Ŷ c
t2n + (1 − Sh− 2αh)Ŷ f

t2n , e−2γhφt2n+1 = Ŷ c
t2n + Ŷ f

t2n+1
.

Since 1 − 4γh ≤ e−4γh and e4γh � 2, we multiply by e2γt2n+2 on both sides to obtain

e2γt2n+2(‖Ŷ f
t2n+2

‖2 + ‖Ŷ c
t2n+2

‖2) � e2γt2n(‖Ŷ f
t2n‖

2 + ‖Ŷ c
t2n‖

2) + 16βe2γt2nh

+ 24 e2γt2n(‖ΔW2n‖2 + ‖ΔW2n+1‖2) + 2 e2γt2n〈φt2n ,ΔW2n〉

+ 2 e2γt2n+1〈φt2n+1 ,ΔW2n+1〉.

Summing over multiple timesteps gives

e2γt2n(‖Ŷ f
t2n‖

2 + ‖Ŷ c
t2n‖

2) � (‖Ŷ f
t0‖

2 + ‖Ŷ c
t0‖

2) + 24
2n−1∑
k=0

e2γtk‖ΔWk‖2

+ 16β
n−1∑
k=0

e2γt2kh + 2
2n−1∑
k=0

e2γtk〈φtk ,ΔWk〉. (28)

For odd time points, combining (26) and (27), by Cauchy–Schwarz inequality and Young’s inequality, there 
exist constants α1 > 1, β1 > max(1, α1β) such that

‖Ŷ f
t2n+1

‖2 + ‖Ŷ c
t2n+1

‖2 � (1 − 2αh)(‖Ŷ f
t2n‖

2 + ‖Ŷ c
t2n‖

2) + 8 ‖ΔW2n‖2 + 4βh

+ 2〈Ŷ c
t2n ,ΔW2n〉 + 2〈Ŷ f

t2n ,ΔW2n〉

� (1 − 2γh)
(
α1(‖Ŷ f

t2n‖
2 + ‖Ŷ c

t2n‖
2 + 12 ‖ΔW2n‖2) + 4β1h

)
.

Multiplying by e2γt2n+1 on both sides and using the (28) gives

e2γt2n+1(‖Ŷ f
t2n+1

‖2 + ‖Ŷ c
t2n+1

‖2) � α1(‖Ŷ f
t0‖

2 + ‖Ŷ c
t0‖

2) + 24α1

2n∑
k=0

e2γtk‖ΔWk‖2

+ 16β1

n∑
k=0

e2γt2kh + 2α1

2n−1∑
k=0

e2γtk〈φtk ,ΔWk〉. (29)

Then, combining (28) and (29), raising both sides to power p/2, taking the supremum over n ∈ [0, N ] and 
taking expectation on the both sides, by using Jensen’s inequality, we have

E

[
sup eγptn

(
‖Ŷ f

tn‖
2 + ‖Ŷ c

tn‖
2
)p/2

]
� 4p/2−1(24α1β1)p/2(I1 + I2 + I3 + I4),
0≤n≤N
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where

I1 = E

[
(‖Ŷ f

t0‖
2 + ‖Ŷ c

t0‖
2)p/2

]
= 2p/2‖x0‖p/2, I2 =

∣∣∣∣∣
N−1∑
k=0

e2γtkh

∣∣∣∣∣
p/2

,

I3 = E

⎡⎣∣∣∣∣∣
N−1∑
k=0

e2γtk‖ΔWk‖2

∣∣∣∣∣
p/2⎤⎦ , I4 = E

⎡⎣ sup
1≤n≤N/2

∣∣∣∣∣
2n−1∑
k=0

e2γtk〈φtk ,ΔWk〉
∣∣∣∣∣
p/2⎤⎦ .

We will bound these four parts separately. I1 is a constant. For I2, we have

I2 ≤

∣∣∣∣∣∣
T∫

0

e2γt dt

∣∣∣∣∣∣
p/2

≤ eγpT /(2γ)p/2.

Next, if qk, for k = 1, . . . , n is an arbitrary discrete probability distribution, and bk, for k = 1, . . . , n is a set 
of scalar values, then for any p > 1 Jensen’s inequality gives∣∣∣∣∣

n∑
k=1

qkbk

∣∣∣∣∣
p

≤
n∑

k=1

qk|bk|p.

If ak, k = 1, . . . , n is a set of positive scalar values, then setting qk = ak/ 
∑n

k′=1 ak′ gives

∣∣∣∣∣
n∑

k=1

akbk

∣∣∣∣∣
p

≤
∣∣∣∣∣

n∑
k=1

ak

∣∣∣∣∣
p−1 n∑

k=1

ak|bk|p.

For I3, using this inequality, we obtain

I3 = E

⎡⎣ ∣∣∣∣∣
N−1∑
k=0

e2γtkh
‖ΔWk‖2

h

∣∣∣∣∣
p/2⎤⎦ ≤

∣∣∣∣∣
N−1∑
k=0

e2γtkh

∣∣∣∣∣
p/2−1

E

[
N−1∑
k=0

e2γtkh
‖ΔWk‖p
hp/2

]

≤ cp eγpT /(2γ)p/2,

where cp is defined by cp = E 
[
‖ΔWk‖p/hp/2] ≤ dp/2 p!! ≤ dp/2pp/2.

For I4, we rewrite the summation as an Itô integral and then by the Burkholder–Davis–Gundy inequality 
in [2], there exists a positive constant CBDG independent of p such that

I4 ≤ E

⎡⎢⎣ sup
0≤t≤T

∣∣∣∣∣∣
t∫

0

e2γ	s/h
h〈φ	s/h
h, dWs〉

∣∣∣∣∣∣
p/2⎤⎥⎦

≤ (CBDG p)p/4 E

⎡⎣ ∣∣∣∣∣
N−1∑
k=0

e4γtk‖φtk‖2h

∣∣∣∣∣
p/4 ⎤⎦ ,

where, by Young’s inequality,

‖φt2k‖2 � 8(‖Ŷ c
t2k

‖2 + ‖Ŷ f
t2k

‖2), ‖φt2k+1‖2 � 4 (‖Ŷ c
t2k

‖2 + ‖Ŷ f
t2k+1

‖2).

Then by Jensen’s inequality and Young’s inequality, for arbitrary ζ > 0, we have
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I4 ≤ (12CBDGp)p/4
∣∣∣∣∣
N−1∑
k=0

e2γtkh

∣∣∣∣∣
p/4−1

E

[
N−1∑
k=0

e2γtkh sup
0≤n≤N

eγptn/2(‖Ŷ c
tn‖

2 + ‖Ŷ f
tn‖

2)p/4
]

≤ 1
4ζ E

[
sup

0≤n≤N
eγptn

(
‖Ŷ f

tn‖
2 + ‖Ŷ c

tn‖
2
)p/2

]
+ ζ

(
6CBDG

γ

)p/2

pp/2eγpT .

Finally, combining all the estimates above and choosing ζ = 4p/2−1(24α1β1)p/2, there exists a constant
C(2) > 0 such that

E

[
sup

0≤n≤N
eγptn

(
‖Ŷ f

tn‖
2 + ‖Ŷ c

tn‖
2
)p/2

]
� Cp

(2) p
p/2eγpT ,

which implies that there exists constant C(1) > 0 such that, for any 0 < h ≤ C(1),

sup
0≤n≤N

E

[
‖Ŷ f

tn‖
p
]
≤ Cp

(2) p
p/2, sup

0≤n≤N
E

[
‖Ŷ c

tn‖
p
]
≤ Cp

(2) p
p/2. �

6.2. Theorem 2

Proof. The proof is given for p ≥ 4; the result for 1 ≤ p < 4 follows from Hölder’s inequality.
The different updates on odd and even time points give

Ŷ f
t2n+1

− Ŷ c
t2n+1

= (1 − 2Sh)(Ŷ f
t2n − Ŷ c

t2n) + (f(Ŷ f
t2n) − f(Ŷ c

t2n))h,

Ŷ f
t2n+2

− Ŷ c
t2n+2

= (1 − Sh)(Ŷ f
t2n+1

− Ŷ c
t2n+1

) − Sh(Ŷ f
t2n − Ŷ c

t2n) + (f(Ŷ f
t2n+1

) − f(Ŷ c
t2n))h,

and then

Ŷ f
t2n+2

− Ŷ c
t2n+2

= (1 − 4Sh + 2S2h2)(Ŷ f
t2n − Ŷ c

t2n) + (1 − Sh)(f(Ŷ f
t2n) − f(Ŷ c

t2n))h

+ (f(Ŷ f
t2n+1

) − f(Ŷ f
t2n))h.

Taking the square of both sides gives

‖Ŷ f
t2n+2

− Ŷ c
t2n+2

‖2 = (1 − 4Sh + 2S2h2)2‖Ŷ f
t2n − Ŷ c

t2n‖
2

+ (1 − Sh)2‖f(Ŷ f
t2n) − f(Ŷ c

t2n)‖2h2 + ‖f(Ŷ f
t2n+1

) − f(Ŷ f
t2n)‖2h2

+ 2(1 − 4Sh + 2S2h2)(1 − Sh)〈Ŷ f
t2n − Ŷ c

t2n , f(Ŷ f
t2n) − f(Ŷ c

t2n)〉h

+ 2(1 − 4Sh + 2S2h2)〈Ŷ f
t2n − Ŷ c

t2n , f(Ŷ f
t2n+1

) − f(Ŷ f
t2n)〉h

+ 2(1 − Sh)〈f(Ŷ f
t2n) − f(Ŷ c

t2n), f(Ŷ f
t2n+1

) − f(Ŷ f
t2n)〉h2.

Then provided S > λ/2, the Assumption 2, Lipschitz condition (16), Cauchy–Schwarz inequality and 
Young’s inequality imply, for any fixed γ ∈ (0, 2S − λ),

‖Ŷ f
t2n+2

− Ŷ c
t2n+2

‖2 � (1 − 4γh)‖Ŷ f
t2n − Ŷ c

t2n‖
2 + 2K2‖Ŷ f

t2n+1
− Ŷ f

t2n‖
2h2

+ 2(1 − 4Sh + 2S2h2)〈Ŷ f
t2n − Ŷ c

t2n , f(Ŷ f
t2n+1

) − f(Ŷ f
t2n)〉h. (30)

Following this estimate, we use two different approach to get different upper bounds.
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First, we continue to use Young’s inequality and Lipschitz condition (16) to get

‖Ŷ f
t2n+2

− Ŷ c
t2n+2

‖2 � (1 − 2γh)‖Ŷ f
t2n − Ŷ c

t2n‖
2 +

(
(2γ)−1 + 2

)
K2‖Ŷ f

t2n+1
− Ŷ f

t2n‖
2h.

Then we multiply by eγt2n+2 on both sides and e2γh � 2 gives

eγt2n+2‖Ŷ f
t2n+2

− Ŷ c
t2n+2

‖2 � eγt2n‖Ŷ f
t2n − Ŷ c

t2n‖
2 + (γ−1 + 4)K2 eγt2n‖Ŷ f

t2n+1
− Ŷ f

t2n‖
2h.

Summing over multiple timesteps and noting Ŷ f
t0 − Ŷ c

t0 = 0 gives

eγt2n‖Ŷ f
t2n − Ŷ c

t2n‖
2 � (γ−1 + 4)K2

n−1∑
k=0

eγt2k‖Ŷ f
t2k+1

− Ŷ f
t2k

‖2h.

Then raising both sides to the power p/2, taking supremum over n ∈ [0, N/2], taking expectation and by 
Jensen’s inequality, we obtain

E

[
sup

0≤n≤N/2
eγpt2n/2‖Ŷ f

t2n − Ŷ c
t2n‖

p

]
� (γ−1 + 4)p/2Kp E

⎡⎢⎣
∣∣∣∣∣∣
N/2−1∑
k=0

eγt2k‖Ŷ f
t2k+1

− Ŷ f
t2k

‖2h

∣∣∣∣∣∣
p/2

⎤⎥⎦

≤ (γ−1 + 4)p/2Kp

∣∣∣∣∣∣
N/2−1∑
k=0

eγt2kh

∣∣∣∣∣∣
p/2−1

E

⎡⎣N/2−1∑
k=0

eγt2k‖Ŷ f
t2k+1

− Ŷ f
t2k

‖ph

⎤⎦

≤ (γ−1 + 4)p/2Kp

∣∣∣∣∣∣
N/2−1∑
k=0

eγt2kh

∣∣∣∣∣∣
p/2−1

N/2−1∑
k=0

eγt2kE
[
‖Ŷ f

t2k+1
− Ŷ f

t2k
‖p

]
h.

By the update on fine path, Lipschitz condition (16), Theorem 1 and Jensen’s inequality, there exists a 
constant C1 > 0 such that

E

[
‖Ŷ f

t2k+1
− Ŷ f

t2k
‖p

]
= E

[
‖f(Ŷ f

t2k
)h + S(Ŷ c

t2k
− Ŷ f

t2k
)h + ΔW2k‖p

]
≤ 2p−1E

[
‖f(Ŷ f

t2k
) + S(Ŷ c

t2k
− Ŷ f

t2k
)‖p

]
hp + 2p−1E [‖ΔW2k‖p]

� Cp
1p

p/2hp/2, (31)

which implies that

E

[
sup

0≤n≤N/2
eγpt2n/2‖Ŷ f

t2n − Ŷ c
t2n‖

p

]
� 2−p/2(γ−1 + 4)p/2KpCp

1 pp/2eγpT/2hp/2. (32)

Second, we directly multiply by e2γt2n+2 on both sides of (30) and e4γh � 2 gives

e2γt2n+2‖Ŷ f
t2n+2

− Ŷ c
t2n+2

‖2 � e2γt2n‖Ŷ f
t2n − Ŷ c

t2n‖
2 + 4 e2γt2nK2‖Ŷ f

t2n+1
− Ŷ f

t2n‖
2h2

+ 2(1 − 4Sh + 2S2h2) e2γt2n+2〈Ŷ f
t2n − Ŷ c

t2n , f(Ŷ f
t2n+1

) − f(Ŷ f
t2n)〉h.



170 W. Fang, M.B. Giles / J. Math. Anal. Appl. 476 (2019) 149–176
Summing over multiple timesteps and noting that Ŷ f
t0 − Ŷ c

t0 = 0 gives

e2γt2n‖Ŷ f
t2n − Ŷ c

t2n‖
2 � 4

n−1∑
k=0

e2γt2kK2‖Ŷ f
t2k+1

− Ŷ f
t2k

‖2h2

+ 2(1 − 4Sh + 2S2h2)
n−1∑
k=0

e2γt2k+2〈Ŷ f
t2k

− Ŷ c
t2k

, f(Ŷ f
t2k+1

) − f(Ŷ f
t2k

)〉h.

Then raising both sides to the power p/2, taking supremum over n ∈ [0, N/2], taking expectation and by 
Jensen’s inequality, we obtain

E

[
sup

0≤n≤N/2
eγpt2n‖Ŷ f

t2n − Ŷ c
t2n‖

p

]
� 2p/2−14p/2(I1 + I2),

where

I1 = E

⎡⎢⎣
∣∣∣∣∣∣
N/2−1∑
k=0

e2γt2kK2‖Ŷ f
t2k+1

− Ŷ f
t2k

‖2h2

∣∣∣∣∣∣
p/2

⎤⎥⎦ ,

I2 = E

⎡⎣ sup
0≤n≤N/2−1

∣∣∣∣∣
n∑

k=0

e2γt2k〈Ŷ f
t2k

− Ŷ c
t2k

, f(Ŷ f
t2k+1

) − f(Ŷ f
t2k

)〉h
∣∣∣∣∣
p/2

⎤⎦ .

For I1, Jensen’s inequality and the estimate (31) give

I1 ≤

∣∣∣∣∣∣
N/2−1∑
k=0

e2γt2kh

∣∣∣∣∣∣
p/2−1

N/2−1∑
k=0

e2γt2khKpE

[
‖Ŷ f

t2k+1
− Ŷ f

t2k
‖p

]
hp/2

� (2γ)−p/2KpCp
1 pp/2 eγpThp.

For I2, we perform a Taylor expansion and by mean value theorem obtain

〈Ŷ f
t2k

− Ŷ c
t2k

, f(Ŷ f
t2k+1

) − f(Ŷ f
t2k

)〉 = 〈Ŷ f
t2k

− Ŷ c
t2k

,∇f(Ŷ f
t2k

)(Ŷ f
t2k+1

− Ŷ f
t2k

)〉 + Rk

= 〈Ŷ f
t2k

− Ŷ c
t2k

,∇f(Ŷ f
t2k

)f(Ŷ f
t2k

)〉h + 〈Ŷ f
t2k

− Ŷ c
t2k

,∇f(Ŷ f
t2k

)ΔW2k〉
+ S〈Ŷ f

t2k
− Ŷ c

t2k
,∇f(Ŷ f

t2k
)(Ŷ c

t2k
− Ŷ f

t2k
)〉h + Rk,

where |Rk| ≤ 2K‖Ŷ f
t2k

− Ŷ c
t2k

‖‖Ŷ f
t2k+1

− Ŷ f
t2k

‖2 and then by Jensen’s inequality, we have

I2 = 4p/2−1(J1 + J2 + J3 + J4),

where

J1 = E

⎡⎣ sup
0≤n≤N/2−1

∣∣∣∣∣
n∑

k=0

e2γt2k〈Ŷ f
t2k

− Ŷ c
t2k

,∇f(Ŷ f
t2k

)f(Ŷ f
t2k

)〉h2

∣∣∣∣∣
p/2

⎤⎦ ,

J2 = E

⎡⎣ sup
0≤n≤N/2−1

∣∣∣∣∣
n∑

e2γt2kS〈Ŷ f
t2k

− Ŷ c
t2k

,∇f(Ŷ f
t2k

)(Ŷ c
t2k

− Ŷ f
t2k

)〉h2

∣∣∣∣∣
p/2

⎤⎦ ,

k=0
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J3 = E

⎡⎣ sup
0≤n≤N/2−1

∣∣∣∣∣
n∑

k=0

e2γt2k〈Ŷ f
t2k

− Ŷ c
t2k

,∇f(Ŷ f
t2k

)ΔW2k〉h
∣∣∣∣∣
p/2

⎤⎦ ,

J4 = E

⎡⎣ sup
0≤n≤N/2−1

∣∣∣∣∣
n∑

k=0

e2γt2kRk h

∣∣∣∣∣
p/2

⎤⎦ .

For J1, by Cauchy–Schwarz inequality, Jensen’s inequality, Young’s inequality, the Lipschitz property of f
and ∇f and Theorem 1, for any ζ > 0, there exists a constant C31 > 0 such that

J1 ≤ E

⎡⎢⎣
∣∣∣∣∣∣
N/2−1∑
k=0

e2γkhh

∣∣∣∣∣∣
p/2−1

N/2−1∑
k=0

e2γkhheγpt2k/2‖Ŷ f
t2k

− Ŷ c
t2k

‖p/2‖∇f(Ŷ f
t2k

)f(Ŷ f
t2k

)‖p/2hp/2

⎤⎥⎦

≤ E

⎡⎢⎣∣∣∣∣∣ sup
0≤n≤N/2

eγpt2n/2‖Ŷ f
t2n − Ŷ c

t2n‖
p/2

∣∣∣∣∣
∣∣∣∣∣∣
N/2−1∑
k=0

e2γkhh

∣∣∣∣∣∣
p/2−1

N/2−1∑
k=0

e2γkhh‖∇f(Ŷ f
t2k

)f(Ŷ f
t2k

)‖p/2hp/2

⎤⎥⎦

≤ 1
4ζE

[
sup

0≤n≤N/2
eγpt2n‖Ŷ f

t2n − Ŷ c
t2n‖

p

]
+ ζE

⎡⎢⎣
∣∣∣∣∣∣
N/2−1∑
k=0

e2γkhh

∣∣∣∣∣∣
p−1

N/2−1∑
k=0

e2γkhh‖∇f(Ŷ f
t2k

)f(Ŷ f
t2k

)‖php

⎤⎥⎦
≤ 1

4ζE
[

sup
0≤n≤N/2

eγpt2n‖Ŷ f
t2n − Ŷ c

t2n‖
p

]
+ ζ Cp

31 p
p eγpT hp.

Similarly, for J2, there exists a constant C32 > 0 such that, for any ζ > 0,

J2 ≤ 1
4ζE

[
sup

0≤n≤N/2
eγpt2n‖Ŷ f

t2n − Ŷ c
t2n‖

p

]
+ ζ Cp

32 p
p eγpT hp.

Then, for J3, by the Burkholder–Davis–Gundy inequality in [2], the Lipschitz property of ∇f and Theorem 1, 
there exists a constant C33 > 0 such that, for any ζ > 0,

J3 ≤ (CBDG p)p/4 E

⎡⎢⎣
∣∣∣∣∣∣
N/2−1∑
k=0

e4γt2k‖Ŷ f
t2k

− Ŷ c
t2k

‖2‖∇f(Ŷ f
t2k

)‖2h3

∣∣∣∣∣∣
p/4

⎤⎥⎦

≤ (CBDG p)p/4E

⎡⎢⎣∣∣∣∣∣ sup
0≤n≤N/2

e
γpt2n

2 ‖Ŷ f
t2n − Ŷ c

t2n‖
p
2

∣∣∣∣∣
∣∣∣∣∣∣
N/2−1∑
k=0

e2γt2kh

∣∣∣∣∣∣
p
4−1

N/2−1∑
k=0

e2γt2kh‖∇f(Ŷ f
t2k

)‖ p
2 h

p
2

⎤⎥⎦
≤ 1

4ζ E

[
sup

0≤n≤N/2
eγpt2n‖Ŷ f

t2n − Ŷ c
t2n‖

p

]
+ ζ Cp

33 p
p eγpT hp.

Similarly, for J4, by Jensen’s inequality, Young inequality, Lipschitz property of f and ∇f and Theorem 1, 
for any ζ > 0, there exists a constant C34 > 0 such that, for any ζ > 0,

J4 ≤ E

⎡⎢⎣
∣∣∣∣∣∣
N/2−1∑
k=0

e2γt2kh

∣∣∣∣∣∣
p/2−1

N/2−1∑
k=0

e2γt2kheγpt2k/2‖Ŷ f
t2k

− Ŷ c
t2k

‖p/2Kp/2‖(Ŷ f
t2k+1

− Ŷ f
t2k

)‖p

⎤⎥⎦
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≤ E

⎡⎢⎣∣∣∣∣∣ sup
0≤n≤N/2

eγpt2n/2‖Ŷ f
t2n − Ŷ c

t2n‖
p/2

∣∣∣∣∣
∣∣∣∣∣∣
N/2−1∑
k=0

e2γt2kh

∣∣∣∣∣∣
p/2−1

N/2−1∑
k=0

e2γt2khKp/2‖(Ŷ f
t2k+1

− Ŷ f
t2k

)‖p

⎤⎥⎦
≤ 1

4ζ E

[
sup

0≤n≤N/2
eγpt2n‖Ŷ f

t2n − Ŷ c
t2n‖

p

]

+ ζ E

⎡⎢⎣
∣∣∣∣∣∣
N/2−1∑
k=0

e2γt2kh

∣∣∣∣∣∣
p−1

N/2−1∑
k=0

e2γt2khKp22p−1
(
‖f(Ŷ f

t2k
) + S(Ŷ c

t2k
− Ŷ f

t2k
)‖2ph2p + ‖ΔW2k‖2p

)⎤⎥⎦
� 1

4ζE
[

sup
0≤n≤N/2

eγpt2n‖Ŷ f
t2n − Ŷ c

t2n‖
p

]
+ ζ Cp

34 p
peγpT hp.

Finally, by choosing ζ = 25p/2−2, there exists a constant C4 > 0 such that

E

[
sup

0≤n≤N/2
eγpt2n‖Ŷ f

t2n − Ŷ c
t2n‖

p

]
� Cp

4 pp eγpThp,

which together with (32) implies that there exists a constant C5 > 0 such that

sup
0≤n≤N/2

E

[
‖Ŷ f

t2n − Ŷ c
t2n‖

p
]
� Cp

5 min
(
pp/2 hp/2, pp hp

)
.

For the odd time points, Lipschitz condition (16) and (18) gives

‖Ŷ f
t2n+1

− Ŷ c
t2n+1

‖2 ≤
(
(1 − 2Sh)2 + 2hλ(1 − 2Sh) + K2h2) ‖Ŷ f

t2n − Ŷ c
t2n‖

2

� 2 ‖Ŷ f
t2n − Ŷ c

t2n‖
2, (33)

which, by raising both sides to power p/2 and taking expectation, there exist constants C(1), C(2) > 0 such 
that, ∀ 0 < h < C(1),

sup
0≤n≤N

E

[
‖Ŷ f

tn − Ŷ c
tn‖

p
]
≤ Cp

(2) min
(
pp/2 hp/2, pp hp

)
. �

6.3. Theorem 3

Proof. For simplicity, we only show the proof for dQ̂c

dP , and the result for dQf

dP follows similarly.
Now we write down the detail of the exact Radon–Nikodym derivative given in (13).

E

[∣∣∣∣∣dQ̂c

dP

∣∣∣∣∣
p]

= E

⎡⎣exp

⎛⎝−pS

N/2−1∑
n=0

〈
Ŷ f
t2n − Ŷ c

t2n , ΔW2n + ΔW2n+1

〉
− p

2S
2
N/2−1∑
n=0

∥∥∥Ŷ f
t2n − Ŷ c

t2n

∥∥∥2
2h

⎞⎠⎤⎦
= E

⎡⎣exp

⎛⎝p(2p− 1)
2 S2

N/2−1∑
n=0

∥∥∥Ŷ f
t2n − Ŷ c

t2n

∥∥∥2
2h

⎞⎠
× exp

⎛⎝−pS

N/2−1∑
n=0

〈
Ŷ f
t2n − Ŷ c

t2n , ΔW2n + ΔW2n+1

〉
− p2S2

N/2−1∑
n=0

∥∥∥Ŷ f
t2n − Ŷ c

t2n

∥∥∥2
2h

⎞⎠⎤⎦ ,
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and then the Hölder’s inequality gives

E

[∣∣∣∣∣dQ̂c

dP

∣∣∣∣∣
p]

≤ I
1/2
1 I

1/2
2 ,

where

I1 = E

⎡⎣exp

⎛⎝p(2p− 1)S2
N/2−1∑
n=0

∥∥∥Ŷ f
t2n − Ŷ c

t2n

∥∥∥2
2h

⎞⎠⎤⎦ ,

I2 = E

⎡⎣exp

⎛⎝−2pS
N/2−1∑
n=0

〈
Ŷ f
t2nn − Ŷ c

t2n ,ΔW2n + ΔW2n+1

〉
− 2p2S2

N/2−1∑
n=0

∥∥∥Ŷ f
t2n − Ŷ c

t2n

∥∥∥2
2h

⎞⎠⎤⎦ ≤ 1,

since the exponential term in I2 is a super-martingale.
For I1, by Fatou’s lemma and Jensen’s inequality, we obtain

I1 ≤
∞∑
k=0

E

[∣∣∣2(pS)2
∑N/2−1

n=0 ‖Ŷ f
t2n − Ŷ c

t2n‖22h
∣∣∣k]

k!

≤
∞∑
k=0

2k(pS)2kT k−1 ∑N/2−1
n=0 E

[∥∥∥Ŷ f
t2n − Ŷ c

t2n

∥∥∥2k
]

2h

k! ,

then by Theorem 2 and the Stirling’s approximation k! ≥
√

2πkk+1/2e−k for any k ≥ 1, there exist constants 
C1, C2 > 0 such that

I1 � 1 +
∞∑
k=1

(2pSC2)2k(Th/e)k√
2πk

< 2,

provided (2pSC2)2Th/e < 1/2.
Therefore, for all T > 0 and p ≥ 1, there exist constants C(1), C(2) > 0 such that, for all 0 < h <

min(C(1), C(2)/(Tp2)),

E

[∣∣∣∣∣dQ̂c

dP

∣∣∣∣∣
p]

≤ 2. �

6.4. Theorem 4

Proof. By Jensen’s and Hölder’s inequalities, we split the expectation into three parts:

E

[∣∣∣∣∣ϕ(Ŷ f
T )dQ̂f

dP − ϕ(Ŷ c
T )dQ̂c

dP

∣∣∣∣∣
p]

= E

[∣∣∣∣∣ϕ(Ŷ f
T )dQ̂f

dP − ϕ(Ŷ f
T ) + ϕ(Ŷ f

T ) − ϕ(Ŷ c
T ) + ϕ(Ŷ c

T ) − ϕ(Ŷ c
T )dQ̂c

dP

∣∣∣∣∣
p]
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≤ 3p−1E
[∣∣∣ϕ(Ŷ f

T ) − ϕ(Ŷ c
T )

∣∣∣p] + 3p−1E

[∣∣∣ϕ(Ŷ f
T )

∣∣∣2p]1/2

E

⎡⎣∣∣∣∣∣1 − dQ̂f

dP

∣∣∣∣∣
2p
⎤⎦1/2

+ 3p−1E

[∣∣∣ϕ(Ŷ c
T )

∣∣∣2p]1/2

E

⎡⎣∣∣∣∣∣1 − dQ̂c

dP

∣∣∣∣∣
2p
⎤⎦1/2

.

By Theorems 1 and 2 and Lipschitz condition, there exists a constant C1 > 0 such that

E

[∣∣∣ϕ(Ŷ f
T ) − ϕ(Ŷ c

T )
∣∣∣p] ≤ Kp E

[∥∥∥Ŷ f
T − Ŷ c

T

∥∥∥p]
� Cp

1 pp hp,

E

[∣∣∣ϕ(Ŷ f
T )

∣∣∣2p] � Cp
1 pp, E

[∣∣∣ϕ(Ŷ c
T )

∣∣∣2p] � Cp
1 pp.

Next we estimate E 
[∣∣∣1 − dQ̂c

dP

∣∣∣p] with dQc

dP = exp(H) where

H � −S

N/2−1∑
n=0

〈
Ŷ f

2n − Ŷ c
2n, ΔW2n + ΔW2n+1

〉
− S2

2

N/2−1∑
n=0

∥∥∥Ŷ f
2n − Ŷ c

2n

∥∥∥2
2h.

Taylor expansion gives

ex = 1 + eξ(x)x, for some ξ(x) with |ξ(x)| < |x|,

which, combined with Hölder’s inequality, implies that

E

⎡⎣∣∣∣∣∣1 − dQ̂c

dP

∣∣∣∣∣
2p
⎤⎦ = E

[
(exp(ξ(H)) |H|)2p

]
≤ E

[
|exp(ξ(H))|4p

]1/2
E

[
|H|4p

]1/2
.

First, by Theorem 3, we obtain

E

[
|exp(ξ(H))|4p

]
≤ E [max(exp(4pH), 1)] ≤ E [exp(4pH)] + 1 � 3,

provided h < C2/(T p2) for some constant C2 > 0.
Second, by Jensen’s inequality and the Burkholder–Davis–Gundy inequality in [2], there exists a constant 

C3 > 0 such that

E

[
|H|4p

]
≤ 24p−1S4p E

⎡⎢⎣
∣∣∣∣∣∣
N/2−1∑
n=0

〈
Ŷ f

2n − Ŷ c
2n, ΔW2n + ΔW2n+1

〉∣∣∣∣∣∣
4p
⎤⎥⎦

+ 24p−1S8p E

⎡⎢⎣
∣∣∣∣∣∣
N/2−1∑
n=0

∥∥∥Ŷ f
2n − Ŷ c

2n

∥∥∥2
h

∣∣∣∣∣∣
4p
⎤⎥⎦

≤ 24p−1S4pCp
3p

2pE

⎡⎢⎣
∣∣∣∣∣∣
N/2−1∑
n=0

∥∥∥Ŷ f
2n − Ŷ c

2n

∥∥∥2
2h

∣∣∣∣∣∣
2p
⎤⎥⎦ + 24p−1S8pT 4p−1E

⎡⎣N/2−1∑
n=0

∥∥∥Ŷ f
2n − Ŷ c

2n

∥∥∥8p
h

⎤⎦

≤ 26p−1S4pCp
3p

2pT 2p−1E

⎡⎣N/2−1∑
n=0

∥∥∥Ŷ f
2n − Ŷ c

2n

∥∥∥4p
h

⎤⎦ + 24p−1S8pT 4p−1E

⎡⎣N/2−1∑
n=0

∥∥∥Ŷ f
2n − Ŷ c

2n

∥∥∥8p
h

⎤⎦ .
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Then, provided h < C4/
√
Tp for some constant C4 > 0, by Theorem 2, there exists a constant C5 > 0 such 

that

E

[
|H|4p

]
� C4p

5 p6p T 2p h4p,

and then

E

⎡⎣∣∣∣∣∣1 − dQ̂c

dP

∣∣∣∣∣
2p
⎤⎦ � 31/2 C2p

5 p3p T p h2p.

Similarly, we can get the same result for E 
[∣∣∣1 − dQ̂f

dP

∣∣∣2p].
Since 1/

√
Tp ≥ 1/(

√
Tp) ≥ min(1, 1/(Tp2)), the condition h < C4/

√
Tp can be replaced by h ≤

C4 min(1, 1/(Tp2)). Overall, combining all the estimates above, there exist constants C(1), C(2), C(3) > 0
such that, for any 0 < h < min(C(1), C(2)/(Tp2)),

E

[∣∣∣∣∣ϕ(Ŷ f
T )dQ̂f

dP − ϕ(Ŷ c
T )dQ̂c

dP

∣∣∣∣∣
p]

≤ Cp
(3) p

2p T p/2 hp. �

7. Conclusions and future work

In this paper, we introduced a change of measure technique for multilevel Monte Carlo estimators. For 
chaotic ergodic SDEs satisfying the one-sided Lipschitz condition, we reduce the exponential increase of 
the variance to a linear increase, which greatly reduces the computational cost when our interest is in the 
expectation with respect to the invariant measure. The numerical results support our analysis.

One direction for extension of the theory is to perform the numerical analysis for ergodic SDEs with a 
non-globally Lipschitz drift using adaptive timesteps and the change of measure technique, since numerical 
experiments in section 5 show it works well in these cases. Another possible direction is to follow the idea 
in [12] to estimate the mean exit time and related path functionals which correspond to the solution of an 
elliptic PDEs. In this case, we need to estimate the mean exit time in the infinite time interval and the 
associated path functionals, which again is a long-time simulation problem.
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