
Abstra
tThe linear analysis of turboma
hinery aeroelasti
ity is based on the linearizationof the unsteady 
ow equations around the mean 
ow �eld whi
h 
an be determinedby a nonlinear steady solver. The unsteady periodi
 
ow 
an be de
omposed intoa sum of harmoni
s, ea
h of whi
h 
an be 
omputed independently solving a setof linearized equations. The analysis 
onsiders just one parti
ular frequen
y ofunsteadiness at a time and the obje
tive is to 
ompute a 
omplex 
ow solution whi
hrepresents the amplitude and phase of the unsteady 
ow. The solution pro
edureof both the nonlinear steady and the linear harmoni
 Euler/Navier-Stokes solversof the HYDRA suite of 
odes 
onsists of a pre
onditioned �xed-point iteration.This paper do
uments the numeri
al instabilities en
ountered solving the linearharmoni
 equations for some turboma
hinery test 
ases, highlights their physi
alorigin and summarizes the implementation of a GMRES algorithm aiming at thestabilization of the linear 
ode. Presented results in
lude the 
utter analysis of atwo-dimensional turbine se
tion and a 
ivil engine fan.
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1 Introdu
tionThe aeroelasti
 phenomena of 
on
ern in the turboma
hinery industry are blade
utter and for
ed response, as they may both lead to dramati
 me
hani
al failures ifnot properly a

ounted for in the design of the engine. The blades of an assembly
an undergo 
utter vibrations when the aerodynami
 damping asso
iated with
ertain 
ow regimes be
omes negative and is not 
ounterbalan
ed by the me
hani
aldamping. In su
h 
ir
umstan
es, the free vibration of the blades triggered by anytemporary perturbation is sustained through the energy fed into the stru
ture bythe unsteady aerodynami
 for
es. The high 
y
le fatigue (HCF) 
aused by thesevibrations may shorten the life of the blades below the target life of the engine.Blade for
ed response may also lead to HCF and is 
aused by the relative motionof adja
ent frames of referen
e, whi
h transforms steady 
ir
umferential variationsof the 
ow �eld in one frame into periodi
 time-varying for
es a
ting on the bladesin the other. Well known examples in
lude for
ing due to the wakes shed by anupstream blade-row and fan inlet distortions due to 
ross-wind 
onditions.The unsteady aerodynami
 analysis intended for turboma
hinery aeroelasti
predi
tions must be appli
able over wide ranges of blade-row geometries and op-erating 
onditions as well as unsteady ex
itation modes and frequen
ies. Also,be
ause of the large number of 
ontrolling parameters involved, there is a stringentrequirement for 
omputational eÆ
ien
y. Over the past two de
ades, a number ofapproa
hes have emerged to 
arry out the analysis of turboma
hinery aeroa
ous-ti
s and aeroelasti
ity [1℄. These methods vary from un
oupled linearized poten-tial 
ow solvers in whi
h the stru
tural equations are solved independently of theaerodynami
s [2, 3℄ to fully-
oupled nonlinear three-dimensional unsteady vis
ous3



methods in whi
h the stru
tural and aerodynami
 time-dependent equations aresolved simultaneously [4℄. Within this range, the un
oupled linear harmoni
 Eulerand Navier-Stokes (NS) methods have proved to be a su

essful 
ompromise be-tween a

ura
y and 
ost and are now widely preferred in industry as a fast anda

urate tool for aeroelasti
 predi
tions. Indeed, a growing body of eviden
e in-di
ates that linear vis
ous 
al
ulations are adequate for a surprisingly large rangeof appli
ations [5, 6, 7, 8℄. This method views the aerodynami
 unsteadiness asa small perturbation of the spa
e-periodi
 mean steady 
ow. Hen
e the unsteady
ow �eld 
an be linearized about it and due to linearity 
an be de
omposed into asum of harmoni
 terms, ea
h of whi
h 
an be 
omputed independently. The 
y
li
periodi
ity of both the steady and unsteady 
ow leads to a great redu
tion of 
om-putational 
osts, sin
e the analysis 
an fo
us on one blade passage rather than thewhole blade-row making use of suitable periodi
 boundary 
onditions. The smallamplitude of the aerodynami
 unsteadiness often allows one to negle
t both the
oupling and variations of stru
tural eigenmodes due to the aerodynami
 for
es [9℄.Therefore the investigation 
an be 
arried out 
onsidering one stru
tural mode ata time, determined by a �nite-element program and used as an input for 
al
ulat-ing the unsteady aerodynami
 for
es. The 
omplete aerodynami
 analysis 
onsistsof two phases: a) 
al
ulation of the nonlinear steady 
ow �eld about whi
h thelinearization is performed and b) solution of the linear harmoni
 equations.The HYDRA suite of parallel 
odes [10, 11, 12℄ in
ludes both a nonlinear(hyd) and a linear harmoni
 (hydlin) NS solver. The solution pro
edure for bothhyd and hydlin 
an be viewed as a pre
onditioned �xed-point iteration. Usuallythe linear 
ode 
onverges without diÆ
ulty, but problems have been en
ountered4



in situations in whi
h the steady 
ow 
al
ulation itself failed to 
onverge to asteady state but instead �nished in a low-level limit 
y
le, often related to somephysi
al phenomenon su
h as vortex shedding at a blunt trailing edge, unsteadysho
k/boundary layer or sho
k/wake intera
tion. The main obje
tives of this paperare to� highlight and dis
uss the relationship between the numeri
al instabilities ofthe linear solver for some turboma
hinery test 
ases and the physi
al proper-ties of the underlying base 
ow;� demonstrate the e�e
tiveness of the Generalized Minimum Residuals (GM-RES) algorithm [13℄ for retrieving the numeri
al stability of the linear 
ode.Se
tions 2 and 3 present an overview of the steady nonlinear and unsteady linearmodel respe
tively; the main features of the GMRES solver and some basi
 
on
epts
on
erning the numeri
al stability of �xed-point iterations are provided in se
tion4. Finally, se
tion 5 presents two realisti
 appli
ations, the 
utter analysis of atwo-dimensional turbine se
tion for subsoni
 and transoni
 working 
onditions andthat of a 
ivil engine fan from near-
hoke to near-stall operating 
onditions.
2 Nonlinear 
ow analysisThe time-dependent Euler and Reynolds-averaged NS equations in 
onservativeform are approximated on unstru
tured hybrid grids, using an edge-based dis-
retization [14℄. Considering the 
omputational domain 
onsisting of all the pas-sages of a blade-row leads to a system of nonlinear ordinary di�erential equations
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(ODE0s) of the form: T dUdt +R(U;Ub;X; _X) = 0 ; (1)where t is the physi
al time, T is the Ja
obian of the transformation from primitiveto 
onservative variables, U is the ve
tor of primitive 
ow variables, R is the nodalresidual, X and _X are the ve
tors of nodal 
oordinates and velo
ities respe
tively.The ve
tor Ub is used to enfor
e time-dependent disturban
es at the in
ow andout
ow boundaries su
h as wakes shed by an upstream blade row. Ea
h edge ofthe grid 
ontributes only to the residuals 
orresponding to the two nodes at eitherend and the residual ve
tor R depends also on the nodal velo
ities _X, be
ause thegrid 
an deform following the blade vibration. The system (1) has size (Neqs�N0),where N0 is the number of grid nodes, Neqs = 5 for the invis
id 
ow model andNeqs=6 for turbulent 
ows. The 6th 
omponent in the latter 
ase is the turbulen
evariable, determined with the Spalart-Almaras turbulen
e model. The residuals Ralso in
lude the sour
e terms due to the 
entrifugal and Coriolis for
es, sin
e theequations refer to the relative frame of referen
e.The �rst stage of the aeroelasti
 analysis requires the 
omputation of the meansteady 
ow U about whi
h the linearization of the unsteady terms will be 
ar-ried out. Negle
ting the time-dependent terms in the governing equations (1) anddenoting by X the mean nodal 
oordinates yieldsR(U;X) = 0 ; (2)whi
h 
an be solved for a single blade-passage, as the mean 
ow is 
ir
umferentiallyperiodi
. The system (2) has size (N � Neqs) where N = N0=Nblades and Nbladesis the number of blades in the blade-row. The boundary 
onditions to whi
h the6



system (2) is subje
t 
an be of three types: in
ow/out
ow, periodi
 and invis-
id/vis
ous wall. The in
ow and out
ow boundaries are handled through 
uxeswhi
h in
orporate pres
ribed 
ow information and thus they be
ome part of theresidual ve
tor R. At mat
hing pairs of periodi
 nodes the periodi
ity 
onditionfor linear 
as
ades is enfor
ed setting the 
ow state on the upper boundary equalto that on its lower 
ounterpart. In the 
ase of annular domains be
ause of the useof Cartesian 
oordinates, the velo
ity ve
tors on the upper boundary are obtainedby rotating those on the lower one. Combining 
ux residuals at the two periodi
nodes in a suitable manner to maintain periodi
ity, this boundary 
ondition 
analso be in
luded in the de�nition of the 
ux residual ve
tor R.A no-slip boundary 
ondition is applied to vis
ous walls dis
arding the momen-tum residuals and repla
ing these equations by the spe
i�
ation of zero velo
ityat the boundary nodes. The 
omputation of the 
ux residuals at nodes on invis-
id walls is based on zero mass 
ux through the boundary fa
es, but in addition
ow tangen
y is enfor
ed by setting the normal 
omponent of the surfa
e velo
ity tozero and disregarding the normal 
omponent of the momentum residuals. Applyingthese strong wall boundary 
onditions [15℄ to the system (2) yields:(I�B) R(U;X) = 0B U = 0 ; (3)where B is a proje
tion matrix whi
h extra
ts the momentum/velo
ity 
omponentsat the wall boundaries. The dis
rete equations (3) are solved using Runge-Kuttatime-mar
hing a

elerated by Ja
obi pre
onditioning and multigrid [14℄.
7



3 Linear unsteady 
ow analysisDue to the small level of unsteadiness, the time-dependent variables 
an be writtenas the sum of a mean steady part and a small amplitude perturbation:X(t) = X+ ~x(t); jj~xjj � jjXjjUb(t) = Ub + ~ub(t); jj ~ubjj � jjUbjjU(t) = U+ ~u(t); jj~ujj � jjUjj ;where the perturbations are overlined with a tilde symbol. Linearizing equations(1) about the mean steady 
onditions (X;U) yieldsT d~udt + L~u = ~f1 + ~f2 ; (4)where the linearization matrix L and the ve
tors ~f1 and ~f2 are given byL = �R�U ; ~f1 = ���R�X ~x+ �R� _X _~x� ; ~f2 = � �R�Ub ~ub :The unsteady periodi
 
ow 
ould be determined by solving the linear equations (4),but due to linearity 
an be de
omposed into a sum of 
omplex harmoni
s of theform ~uk(t) = <(eik!tûk), ea
h of whi
h 
an be 
omputed separately. The 
omplexelements of ûk de�ne the amplitude and phase of the unsteadiness at frequen
y k!.Analogous expansions hold for ~x(t), _~x(t) and ~ub(t). Inserting su
h expressions inequation (4) and 
onsidering only the mode k=1 for simpli
ity, yields the harmoni
equations (i!T + L)û = f̂1 + f̂2 ; (5)whi
h 
an be viewed as the frequen
y domain 
ounterpart of equations (4). Thelinear system (5) is 
omplex and it has size (N � Neqs). The ve
tors f̂1 and f̂2are its right-hand-side and they give the sensitivity of the residuals to harmoni
8



deformations of the mesh and to in
oming harmoni
 perturbations respe
tively.Based on an idea of Ni and Sisto [16℄, the linear equations are solved with thesame pseudo time-mar
hing approa
h adopted for the solution of the nonlinearsteady equations, that is by introdu
ing a �
titious time-derivative dû=d� andtime-mar
hing the solution of the system of linear ODE's:dûd� = � h(i!T + L)û� f̂1 � f̂2iuntil dû=d� vanishes. Dis
retizing this time-derivative leads to the linear �xed-point iteration dis
ussed in greater detail in the following se
tion.In the 
utter 
ase, the obje
t of the analysis is to assess the stability of a parti
u-lar stru
tural mode. The frequen
y ! and the blade mode shape are 
al
ulated witha �nite-element program and used to determine f̂1, whi
h is non-zero throughoutthe 
omputational domain sin
e the grid deforms following the harmoni
 vibrationof the blade, whereas f̂2 is set to zero. The phase between the motion of adja
entblades (Inter-blade Phase-Angle or IBPA) is an additional parameter of the anal-ysis. It is given by �j = 2�j=Nblades and the index j usually 
alled nodal diameter
an take any integer value between 0 and (Nblades � 1), though the 
riti
al valuesare usually the �rst few ones, as shown in [9℄. Equations (5) 
an then be solved fora single passage, introdu
ing the 
omplex phase shift ei�j between the two periodi
boundaries. The output of interest is the net energy 
ux from the stru
ture to theworking 
uid over one 
y
le of vibration, de�ned by the worksum integralW = Z Tv0 ZS publade � dSdt ;in whi
h Tv is the period of vibration, p and ublade are the time-dependent bladestati
 pressure and velo
ity respe
tively, dS is the elemental blade surfa
e with9



outward normal and S is the overall blade surfa
e. A positive sign indi
ates stabilityas energy is transferred from the stru
ture to the 
uid, whereas a negative signindi
ates the o

urren
e of 
utter. In the engineering 
ommunity, the logarithmi
de
rement Æ is a more frequently used stability parameter, whi
h depends on theratio between the amplitude V of two 
onse
utive 
y
les of vibration. It is de�nedas Æ=V (t+ Tv)=V (t) and it 
an be proved thatÆ = W!2 :In for
ed response, the obje
t of the analysis is to determine the unsteady for
esa
ting on the blade due to any of the harmoni
 
omponents, into whi
h the in
om-ing time-periodi
 gust 
an be de
omposed. The IBPA depends on the geometri
properties of the problem. In the 
ase of for
ing 
oming from 
ir
umferentially pe-riodi
 wakes, the blades and the wakes may have di�erent pit
hes and hen
e thereis a di�eren
e in the times at whi
h neighbouring wakes strike neighbouring blades.Therefore the IBPA of the fundamental harmoni
 is 2�Nwakes=Nblades. Again thelinear harmoni
 equations (5) 
an be solved for a single blade passage using 
om-plex periodi
 boundary 
onditions. The ve
tor f̂1 is zero throughout the domainbe
ause the mesh is stationary and the ve
tor f̂2 is non-zero only at the inlet oroutlet boundaries, where the harmoni
 perturbation is pres
ribed. The unsteadyaerodynami
 for
e a
ting on the blade 
an be 
al
ulated in a post-pro
essing stepfor ea
h stru
tural mode using the unsteady pressure �eld determined with theharmoni
 analysis.The linear unsteady analysis is 
ompleted by enfor
ing suitable linearizedboundary 
onditions. The in
ow, out
ow and (
omplex) periodi
 boundary 
on-ditions 
an all be symboli
ally in
luded into equations (5). Taking into a

ount10



the linearized strong wall boundary 
ondition, however, the system to be solvedbe
omes: (I�B) h(i!T + L)û� f̂1 � f̂2i = 0B û = ûwall : (6)The 
omponent ûwall of the linear 
ow velo
ity at the wall is zero for both invis
idand vis
ous walls in the for
ed response problem as the grid does not deform,while it is non-zero for both wall types in the 
utter problem, due to the surfa
edispla
ements and in the invis
id 
ase also to the rotation of the wall normals [15℄.The implementation of the in
ow and out
ow boundary 
onditions is based on one-dimensional nonre
e
ting boundary 
onditions [17℄. Equations (6) are then solvedusing the same pre
onditioned pseudo time-mar
hing method as for the nonlinearequations.
4 GMRES stabilizationThe linearized harmoni
 NS equations (6) 
an be viewed as a simple linear systemof the form Ax = b : (7)Though equations (6) are 
omplex, hydlin has been written using real arithmeti
,that is 
onsidering real ve
tors of size (2�Neqs�N) with the fa
tor 2 a

ounting forreal and imaginary part, rather than 
omplex ve
tors of size (Neqs�N). This 
hoi
ehas been made be
ause of errors often introdu
ed by highly optimized FORTRAN
ompilers when dealing with 
omplex arithmeti
. Therefore the system (7) alsohas dimension (2�Neqs �N) and the 
ode for its solution 
an be regarded as the11



�xed-point iteration: xn+1 = (I �M�1A)xn +M�1b ; (8)in whi
h M�1 is a pre
onditioning matrix resulting from the Runge-Kutta time-mar
hing algorithm, the Ja
obi pre
onditioner and one multigrid 
y
le. Linearstability analysis of (8) shows that ne
essary 
ondition for its 
onvergen
e is thatall the eigenvalues of (I �M�1A) lie within the unit 
ir
le 
entred at the originin the 
omplex plane or equivalently that all the eigenvalues of M�1A lie in theunit dis
 
entred at (1; 0). For most aeroelasti
 problems of pra
ti
al interest, this
ondition is ful�lled and the linear 
ode 
onverges without diÆ
ulty. However anexponential growth of the residual has been en
ountered in situations in whi
hthe steady 
ow 
al
ulation itself failed to 
onverge to a steady-state but instead�nished in a small-amplitude limit 
y
le, related to some physi
al phenomenon su
has separation bubbles, 
orner stalls and vortex shedding at a blunt trailing edge.The solution pro
edure of the nonlinear steady equations (3) is not time-a

uratebe
ause of the lo
al time-stepping te
hnique and the Ja
obi pre
onditioner usedfor the integration, but it nevertheless re
e
ts some physi
al properties of the 
ow�eld due to the pseudo time-mar
hing strategy asso
iated with the Runge-Kuttaalgorithm. Physi
al small-amplitude limit 
y
les do not prevent the steady solverfrom 
onverging to an a

eptable level, although their e�e
t is sometimes visiblein small os
illations of the residual. However they result in a small number of
omplex 
onjugate pairs of eigenvalues of the linearization matrix (I�M�1A) lyingoutside the unit 
ir
le (outliers) and thus 
ausing the exponential growth of theresidual of the linear equations. This problem has been over
ome by implementinga pre
onditioned GMRES algorithm in hydlin. GMRES is an iterative method for12



the solution of linear systems, belongs to the family of Krylov subspa
e methods[13℄ and is guaranteed to 
onverge even in the presen
e of outliers. The Krylovsubspa
e of dimension m generated by the pre
onditioned operator M�1A and theve
tor M�1b is the ve
torial spa
e spanned by the ve
tors ((M�1A)jM�1b; j =0; : : : m� 1), that isKm =< M�1b; (M�1A)M�1b; : : : ; (M�1A)m�1M�1b > :The GMRES algorithm is based on the progressive redu
ed Arnoldi fa
torization[13℄ of M�1A: M�1AQm = Qm+1 ~Hm ; (9)where m is the 
urrent iteration, ~Hm is a Hessemberg matrix of size ((m+1)�m),Qm is a matrix of size ((2 � Neqs � N) �m) whose m 
olumns qj (j = 1; : : : ;m)form an orthonormal basis for the Krylov subspa
eKm and Qm+1 is Qm augmentedwith a new Krylov ve
tor qm+1. Denoting by hj;m (j = 1; : : : ;m) the elements ofthe mth 
olumn of ~Hm, the mth 
olumn of equation (9) 
an be written as:M�1Aqm = h1;mq1 + : : :+ hm+1;mqm+1 ; (10)whi
h shows that qm+1 satis�es an (m+1)�term re
ursive relation involving itselfand the previous m Krylov ve
tors. It should be noted that the size of ea
h qjis equal to that of the 
omplex linear 
ow �eld. At the mth GMRES iterationthe solution of (7) is approximated by the linear 
ombination of the m qj's whi
hminimizes the 2-norm of the residual rm = M�1(b �Axm) and is thus given byxm = xstart + Qmtm, in whi
h xstart is the initial solution and tm is the 
olumnve
tor 
ontaining the m 
oeÆ
ients of the linear 
ombination. For this reason thealgorithm 
an be viewed as an optimization pro
ess.13



The implementation of the pre
onditioned GMRES solver in hydlin has been
arried out at the top routine level. At this level, the pseudo-
ode of the pre
ondi-tioned multigrid iteration without GMRES looks like:x = xstartx = mg(A;x;b; n
l)xfinish = xwhere `mg' is the 
ore routine whi
h performs the pre
onditioned �xed-point iter-ation (8) and xfinish is the solution after n
l multigrid 
y
les. The GMRES solverdoes not require any 
hange to `mg' and uses it as a bla
k-box to determine thepre
onditioned Krylov ve
tors M�1Aqj . The 
omputationally 
heap minimizationis also 
arried out at the top routine level and the pseudo-
ode of the main hydlinusing GMRES is:q1=mg(A;xstart;b; n
l)�xstart; q1=q1=jq1jfor m = 1 : nKrM�1Aqm = �mg(A;qm;0; n
l)+qmqm+1 from equation (10); qm+1=qm+1=jqm+1jdetermine tm whi
h minimizes rmendxfinish = xstart +QnKrtnKrThe �rst Krylov ve
tor q1 is the normalized residual of the pre
onditioned system,nKr is the overall number of GMRES iterations and n
l is the number of multigrid
y
les per GMRES iteration. Note that the right-hand-side of (7) is set to zero be-fore using `mg' to determine M�1Aqm. The numeri
al solution of the optimization14



problem of dimension m whi
h leads to tm is des
ribed in [13℄. The value of nKrrequired for full 
onvergen
e is mu
h smaller than the size of A, but neverthelessvery big with respe
t to the 
omputing resour
es usually available. This is dueto the fa
t that at the mth iteration all m qj's are needed to 
ompute the neworthogonal ve
tor of the basis. This problem is over
ome using the restart option,that is performing nKr iterations and re-starting GMRES from the updated solutionre-
omputing from there a new set of nKr Krylov ve
tors. This is a
hieved by wrap-ping the inner loop des
ribed above with an outer one whi
h restarts GMRES ea
htime. Values of nKr between 10 and 30 make the 
omputation a�ordable even forlarge problems and a good 
onvergen
e level is usually a
hieved within 20 restarted
y
les. Unfortunately the restarted solver may lead to numeri
al stagnation of theresidual [13℄. Extensive numeri
al validation on a variety of turboma
hinery test
ases, however, has highlighted that this 
an be avoided provided that both nKrand n
l are 
hosen above 
ertain 
ase dependent threshold values. In
luding theextra CPU-time required for the matrix-ve
tor produ
ts and the minimization pro-
ess of GMRES in the 
ost of one multigrid 
y
le, the CPU-time for exe
uting agiven number of multigrid 
y
les using GMRES is only from 1 to 3 % higher thanusing the standard iteration. The additional burden asso
iated with GMRES is theextra memory allo
ation for the nKr Krylov ve
tors. It should also be noted thatdi�erent 
hoi
es of n
l, as well as other multigrid parameters su
h as the number ofiterations on the di�erent grids, lead to a di�erent pre
onditioner M�1 and there-fore they play a 
ru
ial role in determining the overall number of multigrid 
y
lesto a
hieve the desired 
onvergen
e level. The experien
e gained so far has shownthat a) the 
onvergen
e rate (slope of the 
urve residual vs. number of multigrid15




y
les) always in
reases with nKr and b) there exist values of n
l whi
h maximize it.The upper threshold of nKr is usually �xed by the available 
omputing resour
es.Another advantage of GMRES is that it allows the straightforward determina-tion of the unstable eigenmodes, as the algorithm has the property of solving theleast stable modes �rst, namely those whose eigenvalues are farthest from the 
entreof the unit 
ir
le in the 
omplex plane. As shown in the next se
tion, this enablesone to relate the sour
e of numeri
al instability to the physi
al unsteadiness whi
h
auses it. In order to establish the relationship between the least stable modes andthe set of Krylov ve
tors, let us start by 
onsidering the partial redu
tion of M�1Abased on the mth Krylov subspa
e:QHmM�1AQm = Hm ; (11)where Hm denotes the upper (m �m) portion of ~Hm and the supers
ript H theHermitian 
onjugate operator. The eigenvalues �j of Hm are 
alled Ritz values andthey are de�ned by Hmyj = �jyj ; j = 1; 2; : : : ;m (12)where yj is the right eigenve
tor of Hm asso
iated with �j. Combining equations(11) and (12) yields QHmM�1AQmyj = (QHmQ)�jyj ; (13)and 
onsequently QHm(M�1A� �jI)Qmyj = 0 : (14)The m ve
tors Qmyj = mXl=1(yj)lql j = 1; 2; : : : ;m (15)16



are the Ritz ve
tors of A based on the mth Krylov subspa
e, whi
h provide anapproximate estimate of the sought dominant or least stable eigenmodes. In fa
t,equation (14) states only that the residual of ea
h eigenve
tor reseig = (M�1A ��jI)Qmyj is orthogonal to the subspa
e Km, but the expression (15) would providethe exa
t eigenmodes only if reseig=0. It 
an be proved, however, that the 2-normof reseig depends linearly on the residual of the linear equations. For all the test
ases 
onsidered, 150 GMRES iterations without restart have been suÆ
ient toa
hieve a good 
onvergen
e level of the linear equations and therefore to obtain ana

urate estimate of the dominant modes.Finally, it should be noted that the most appropriate de�nition of the 
ow �elddetermined by solving the nonlinear equations in the presen
e of small limit 
y
leswhi
h then generate the linear instabilities would be `base' or `ba
kground' 
ow.Nevertheless the adje
tives `mean' and `steady' are sometimes used as synonymsin this paper, underlining the fa
t that su
h 
ow �eld has been 
omputed with anumeri
al approa
h suitable for the solution of the steady 
ow equations.
5 Results5.1 Two-dimensional turbine se
tionOne of the test 
ases that has been used for both assessing the predi
tive 
apabilitiesof hydlin and testing the implemented GMRES solver is the 2D turbine se
tionof the 11th Standard Con�guration, whi
h is the mid-span blade-to-blade se
tionof an annular turbine 
as
ade with 20 blades. The annular test-rig and 
as
adegeometry are brie
y des
ribed in referen
e [18℄, whi
h also provides experimental17



measurements and various 
omputed results of the steady and unsteady 
ow �elddue to blade-plunging with pres
ribed IBPA. Two steady working 
onditions are
onsidered: a subsoni
 one with exit Ma
h number of 0.68 and a transoni
 onewith exit Ma
h number of 0.96. The 
omputational grid that we have used for theinvestigation is a quasi-orthogonal H-type mesh with medium re�nement: it has273 nodes in the streamwise and 65 nodes in the pit
hwise dire
tion, for a totalof 17745 grid nodes. A preliminary mesh-re�nement analysis 
arried out using a
oarser 7869-node (183 � 43) and �ner 39673-node (409 � 97) mesh has shown nodi�eren
e of pra
ti
al interest between the results obtained with the medium and�ner grids. The 
oarser mesh is shown in �gure 1 while �gure 2 provides measuredand 
omputed steady isentropi
 Ma
h number Mis on the blade surfa
e for thetwo working 
onditions. The variable on the x-axis is the nondimensional positionalong the true blade 
hord 
. The high pressure pat
h at about 20 % 
hord and therapid pressure rise at about 80 % 
hord on the su
tion surfa
e in the transoni
 
ase(�gure 2-b) are due to a separation bubble and an impinging sho
k respe
tively.This is 
learly visible in the Ma
h number 
ontours of �gure 3, whi
h also showhow both the blade boundary layers and wakes thi
ken after passing through thesho
k. Figure 4 provides measured and 
omputed amplitude and phase of the �rstharmoni
 of the unsteady pressure 
oeÆ
ient 
p. Its de�nition is:
p = p̂(p01 � p1) 
h ;where p̂ is the 
omplex amplitude of the linear unsteady pressure on the blade sur-fa
e, p01 and p1 are the mass-averaged inlet total and stati
 pressure respe
tivelyand h is the bending amplitude. For both working 
onditions, large di�eren
es be-tween measured and 
omputed results are visible on the su
tion surfa
e where most18



of the unsteady phenomena take pla
e. However the numeri
al results presented inthis paper are in very good agreement with those in the literature [18, 8℄.The stability 
urves (Æ vs: IBPA) for both 
ow regimes are provided in �gure5-a, whi
h shows that the system never be
omes aeroelasti
ally unstable. Thenonlinear 
al
ulations of both the subsoni
 and transoni
 base 
ow 
onverge withoutdiÆ
ulties to ma
hine epsilon (10�18). However all the linear 
al
ulations basedon the transoni
 base 
ow diverge using the standard 
ode and 
onvergen
e 
an beretrieved only using GMRES, as shown in the 
onvergen
e histories of hydlin in�gures 5-b and 5-
, whi
h refer to IBPA= 180o. In both �gures the variable onthe x-axis is the number of multigrid 
y
les and that on the y-axis is the logarithmin base 10 of the root-mean-square of all nodal residuals (rms). The number atthe right of the label 'GMRES' in the legend is nKr. Figure 5-b illustrates thee�e
t of n
l on the 
onvergen
e histories of GMRES 20: among the 4 values triedfor this test 
ase the minimum overall number of multigrid 
y
les or equivalentlyof CPU-time required for dropping the residual below -8 is obtained for n
l = 3and n
l = 10. All the GMRES 
onvergen
e histories in �gure 5-
 refer to n
l = 3and they highlight that the 
onvergen
e rate in
reases monotoni
ally with nKr inthe range of pra
ti
al interest. All linear 
al
ulations based on the subsoni
 
owregime 
onverge also without GMRES and the 
onvergen
e histories of the linear
ode (IBPA=180o) using the standard iteration and GMRES 20 are provided in�gure 5-d. The memory requirements with 3 grid levels for the multigrid s
hemeare 52 and 86 Mbytes respe
tively. Both 
al
ulations have been started from thesame initial solution and run on 8 pro
essors of a 
omputer 
luster 
onsisting of24 four-pro
essor Sun Ultra-80 nodes, with a Sun Blade-1000 front-end. The 70019



iterations for a
hieving a residual level of -17.5 with GMRES have been 
arried outin about 27 minutes of CPU-time, whereas the 1800 needed to obtain the samelevel with the standard iteration have required 69 minutes.In order to investigate the origin of the numeri
al instability of the standard
ode for transoni
 
ow 
onditions, the �rst 150 dominant eigenmodes of the pre-
onditioned linearization matrix M�1A for n
l=1 have been determined using thepro
edure des
ribed in the previous se
tion and they are plotted in the 
omplexplane of �gure 6. The two 
omplex 
onjugate pairs of outliers labelled with 1 and2 are responsible for the exponential growth of the residual asso
iated with the�xed-point iteration (8). In fa
t, its asymptoti
 
onvergen
e rate is determined bythe spe
tral radius � of the linear operator M�1A and it 
an be proved that therelationship between the asymptoti
 slope of the residual 
urve and � is:� (log(rms))Nmg � log � ; (16)where Nmg is the number of multigrid 
y
les a
ross whi
h the variation of rms is
onsidered. This equation provides the theoreti
al relationship between the slopeof the exponentially growing residual 
urve of the standard iteration (�gures 5-band 5-
) and the spe
tral radius of the linear operator (radius of the outlier 1). In-serting the 
omputed values in it yields 46:90e�3 � 47:53e�3, whi
h demonstratesthe 
orre
tness of the mathemati
al analysis. Figure 7-a shows that the maximumpressure amplitude of the eigenve
tor asso
iated with the 
omplex 
onjugate pairof outliers 1 o

urs at the edge of the separation bubble on the su
tion surfa
e andthis proves that the origin of the numeri
al instability is the small limit 
y
le as-so
iated with this unstable separation. The eigenmode asso
iated with the outlier2 also 
orresponds to the separation on the su
tion surfa
e and therefore is not20



reported here. The pressure amplitude of the eigenve
tor asso
iated with the 
om-plex 
onjugate pair of eigenvalues 3 is provided in �gure 7-b. Nonzero amplitudeso

ur both in the sho
k and the separation bubble. The eigenvalues of this modelie in the unit disk, but they would be responsible for a very low 
onvergen
e rateof the standard 
ode in the absen
e of any outlier be
ause of their proximity to theunit 
ir
le. It has also been found that the two dominant eigenmodes des
ribedabove are independent of the IBPA, despite the fa
t that M�1A depends on it.This phenomenon is probably due to the high spatial lo
alization of the unstablemodes and is highlighted in table 1, whi
h reports the real and imaginary parts ofthe �rst 3 least stable modes for 3 di�erent IBPA's. This feature 
an be exploitedby `hybrid' solvers su
h as the Re
ursive Proje
tion Method [19℄. This algorithmuses Newton's method for determining the proje
tion of the solution on the smallunstable eigenspa
e asso
iated with the few outliers and the standard �xed-pointiteration for 
al
ulating the proje
tion of the solution on the bigger spa
e asso
i-ated with the remaining modes. In this way, the unstable eigenspa
e does not needto be re
omputed for ea
h IBPA. The independen
e of the unstable eigenspa
e onthe IBPA, however, 
annot be exploited by GMRES.5.2 Three-dimensional fanThe se
ond test 
ase 
onsidered is a three-dimensional fan rotor whose geometryand surfa
e grid are shown in �gure 8. This grid has only 157441 nodes and is quite
oarse, but all the phenomena dis
ussed in this se
tion have been also observed with�ner 
omputational meshes and for other test 
ases. The linear 
utter analysishas been 
arried out for 4 points of a 
onstant-speed working line using hyd and21



IBPA (o) mode <(�) =(�)36 1 0.640143 0.9849622 0.665552 0.9921783 0.004075 0.004150180 1 0.640016 0.9849562 0.665476 0.9923223 0.004076 0.004150270 1 0.639930 0.9847632 0.665644 0.9924443 0.004075 0.004150Table 1: First 3 dominant eigenvalues for 3 di�erent IBPA's.hydlin. The 
omputed pressure ratio � is plotted versus the 
omputed mass 
ow_m in �gure 9-a. Their de�nition is:� = p02p01 ; _m = ZS2 �2 u2 � dS2 :All variables in the two expressions above refer to the base 
ow: p01 and p02 arerespe
tively the inlet and outlet mass-averaged total pressure, S2 is the area of theoutlet boundary, �2 is the outlet density and u2 is the outlet velo
ity ve
tor. Notethat the values of both � and _m in �gure 9-a are given as per
entage deviations fromtheir design values. For all 4 working 
onditions the residual of the nonlinear steadyequations drops by four orders of magnitude (�gure 9-b), ending in a low-amplitudelimit 
y
le. 22



The analysis of the 
utter stability of the �rst 
ap mode has been 
arried outfor all 4 working 
onditions and the 
omputed logarithmi
 de
rement is plotted in�gure 10. As expe
ted, the least stable aeroelasti
 modes are those asso
iated withthe �rst few IBPA's and the blades undergo 
utter in the 2 nodal diameter modeat the base 
ow 
onditions D, whi
h are the 
losest to stall. All linear 
al
ula-tions have been performed using GMRES, as they were otherwise unstable. This isvisible in the 
onvergen
e plots of hydlin reported in �gure 11, whi
h refer to thebase 
ow 
onditions D and to IBPA=180o. Figure 11-a shows that the GMRESsolver stagnates if n
l=1 and an a

eptable 
onvergen
e rate 
an be a
hieved onlyusing n
l=3 and nKr � 30. The GMRES solver does not stagnate using nKr=100with either values of n
l, but a better 
onvergen
e rate is obtained with n
l = 3(�gure 11-b). It should be noted that solving the linear equations about a `pseudotime-averaged' base 
ow, obtained by averaging the nonlinear solution over one nu-meri
al limit 
y
le of hyd, has not removed the instability of the linear 
al
ulationsusing the standard iteration. It might be more appropriate to linearize the 
owunsteadiness either about the `stabilized' solution of the nonlinear equations, de-termined by using GMRES [20℄ or about the true time-averaged 
ow. This 
an beobtained either by introdu
ing unsteady stress terms in the nonlinear equations [21℄or solving the time-dependent nonlinear equations and then time-averaging the 
owsolution. It is the authors' view, however, that these approa
hes would also notremove the linear instabilities of the standard linear solver. In fa
t, the limit 
y
lesunder dis
ussion are stable and the theory of dynami
al systems foresees that theunderlying steady solutions are unstable [22℄ leading to the exponential growth oftheir linear perturbations. Figure 11-b also highlights that starting GMRES from23



the last solution of the standard hydlin after the 
al
ulation has diverged, resultsin an initially sharp redu
tion of the residual and then in a 
onvergen
e rate simi-lar to that of the des
ending bran
h of the standard 
ode. This behaviour 
an beexplained by the presen
e of a few outliers: after a few hundred multigrid 
y
lesneeded to resolve the stable modes, the unstable modes asso
iated with the outliersbe
ome dominant and determine the exponential growth of the residual of the stan-dard iteration. They are instead solved very rapidly restarting the 
al
ulation withGMRES. In fa
t, the subset of the spe
trum of M�1A with the �rst 150 dominanteigenvalues has 4 
omplex 
onjugate pairs of outliers, labelled from 1 to 4 in orderof de
reasing distan
e from the 
entre of the unit dis
 in �gure 12, whi
h refers ton
l=1. Inserting in equation (16) the 
omputed data relative to the slope of theas
ending bran
h of the residual 
urve of the standard iteration (�gure 11) and thespe
tral radius of M�1A (radius of the outlier 1) yields 38:82e�3 � 40:17e�3, whi
h
on�rms on
e more the 
orre
tness of the mathemati
al analysis.The eigenmode asso
iated with the pair of outliers 1 is due to the hub 
ornerstall, sin
e its maximum pressure amplitude o

urs in a small region between thesu
tion side and the hub 
lose to the Trailing Edge (TE) as shown in �gure 13-a. Contours of the same variable in a blade-to-blade se
tion 
lose to the hub arepresented in �gure 13-b, while a two-dimensional view of the 
ow separation 
ausedby the 
orner stall is given in �gure 13-
, whi
h shows the velo
ity ve
tors in thesame blade-to-blade se
tion. The eigenmode asso
iated with the pair of outliers3 
orresponds to a separation bubble on the su
tion side 
lose to the LeadingEdge (LE) in the hub region. The eigenmodes 2 and 4 
orrespond to the same 
owphenomena as 1 and 3 respe
tively. The numeri
al instabilities of the standard 
ode24



are therefore due to the linearization of the small-amplitude limit 
y
les asso
iatedwith the hub 
orner stall and the LE separation.The eigenmode 
orresponding to the 
omplex 
onjugate pair 5 does not 
ausethe exponential growth of the residual as it lies in the unit dis
, but it would beresponsible for a very low 
onvergen
e rate of the standard 
ode in the absen
e ofany outlier be
ause of its proximity to the unit 
ir
le, as dis
ussed in [19℄. Thiseigenmode 
ontains tra
es of the previous 4 and 
orresponds also to a sho
k onthe su
tion side 
lose to the tip. Similarly to the turbine test 
ase, the dominanteigenmodes des
ribed above have been found to be independent of the IBPA andthis might be due again to their high spatial lo
alization.All 
al
ulations have been run with 4 grid levels for the multigrid s
heme on theSUN 
luster des
ribed in the previous se
tion. The CPU-time of one multigrid
y
le depends on the number of iterations performed on ea
h grid level. The values
hosen for this test 
ase have led to a CPU-time of about 56 se
onds for onemultigrid 
y
le of hydlin using 8 pro
essors, and the 800 
y
les needed for a good
onvergen
e of ea
h linear 
al
ulation have thus required an overall time of about12 hours. By 
omparison, the CPU-time for one multigrid 
y
le of hyd is abouthalf of that needed by hydlin.
6 Con
lusionsThis paper has presented the linear analysis of turboma
hinery aeroelasti
ity froma simple algebrai
 viewpoint, whi
h allows one a relatively straightforward under-standing of the relationship between the numeri
al instabilities of the linearized25



solver of the Navier-Stokes equations and the small unsteady phenomena of thebase 
ow �eld. The implementation of the GMRES algorithm in the existing linearNS solver based on a pre
onditioned �xed-point iteration has stabilized the 
ode,allowing the aeroelasti
 analysis to be 
arried out even in presen
e of small unsteadyphenomena in the base 
ow, whi
h are believed not to have any signi�
ant e�e
ton the aeroelasti
 behaviour of the 
omponent under investigation. The CPU-timerequired for one multigrid 
y
le in the GMRES solver is only from 1 to 3 % higherthan using the standard iteration. The overall number of multigrid 
y
les needed toa
hieve a given level of 
onvergen
e with the restarted GMRES algorithm dependson both the number of GMRES iterations per restarted 
y
le and the number ofmultigrid 
y
les per GMRES iterations. In
reasing the former parameter alwaysimproves the 
onvergen
e rate, whereas optimal 
ase dependent values seem to ex-ist for the latter one. The 
onvergen
e rate of the GMRES iteration also dependson other multigrid parameters, su
h as the number of iteration on the di�erentgrid levels. For test 
ases without unstable modes the same 
onvergen
e level 
anbe obtained in 
onsiderably fewer iterations by using the GMRES rather than thestandard solver. The extra memory allo
ation asso
iated with GMRES 10 andGMRES 30 are about 35 and 100 % of that used by the standard �xed-point itera-tion respe
tively. Both the 
orre
tness of the analysis and the relationship betweennumeri
al instabilities of the linear solver and unsteady phenomena of the base
ow have been demonstrated through the linear 
utter analysis of two realisti
turboma
hinery test 
ases.
26
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Figure 1: Mesh for the 2D turbine se
tion.
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Figure 3: Ma
h 
ontours for transoni
 
onditions of the 2D turbine.
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oeÆ
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a) b)Figure 7: Pressure amplitude of dominant eigenmodes: a) eigenve
tor asso
iated withthe outlier 1 and b) eigenve
tor asso
iated with the eigenvalue 3.
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Figure 8: Blade geometry and surfa
e mesh of the 3D fan.
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e histories of hydlin for mean 
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)Figure 13: Pressure amplitude of dominant eigenmode asso
iated with the 
omplex 
on-jugate pair 1: a) 3D view of the 
orner between the hub and the su
tion side 
lose to theTE and b) blade-to-blade se
tion 
lose to the hub. 
) Velo
ity ve
tors in blade-to-bladese
tion 
lose to the hub. 43


