Abstract

The linear analysis of turbomachinery aeroelasticity is based on the linearization
of the unsteady flow equations around the mean flow field which can be determined
by a nonlinear steady solver. The unsteady periodic flow can be decomposed into
a sum of harmonics, each of which can be computed independently solving a set
of linearized equations. The analysis considers just one particular frequency of
unsteadiness at a time and the objective is to compute a complex flow solution which
represents the amplitude and phase of the unsteady flow. The solution procedure
of both the nonlinear steady and the linear harmonic Euler/Navier-Stokes solvers
of the HY DRA suite of codes consists of a preconditioned fixed-point iteration.
This paper documents the numerical instabilities encountered solving the linear
harmonic equations for some turbomachinery test cases, highlights their physical
origin and summarizes the implementation of a GMRES algorithm aiming at the
stabilization of the linear code. Presented results include the flutter analysis of a

two-dimensional turbine section and a civil engine fan.
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1 Introduction

The aeroelastic phenomena of concern in the turbomachinery industry are blade
flutter and forced response, as they may both lead to dramatic mechanical failures if
not properly accounted for in the design of the engine. The blades of an assembly
can undergo flutter vibrations when the aerodynamic damping associated with
certain flow regimes becomes negative and is not counterbalanced by the mechanical
damping. In such circumstances, the free vibration of the blades triggered by any
temporary perturbation is sustained through the energy fed into the structure by
the unsteady aerodynamic forces. The high cycle fatigue (HCF) caused by these
vibrations may shorten the life of the blades below the target life of the engine.
Blade forced response may also lead to HCF and is caused by the relative motion
of adjacent frames of reference, which transforms steady circumferential variations
of the flow field in one frame into periodic time-varying forces acting on the blades
in the other. Well known examples include forcing due to the wakes shed by an
upstream blade-row and fan inlet distortions due to cross-wind conditions.

The unsteady aerodynamic analysis intended for turbomachinery aeroelastic
predictions must be applicable over wide ranges of blade-row geometries and op-
erating conditions as well as unsteady excitation modes and frequencies. Also,
because of the large number of controlling parameters involved, there is a stringent
requirement for computational efficiency. Over the past two decades, a number of
approaches have emerged to carry out the analysis of turbomachinery aeroacous-
tics and aeroelasticity [1]. These methods vary from uncoupled linearized poten-
tial flow solvers in which the structural equations are solved independently of the

aerodynamics [2, 3] to fully-coupled nonlinear three-dimensional unsteady viscous



methods in which the structural and aerodynamic time-dependent equations are
solved simultaneously [4]. Within this range, the uncoupled linear harmonic Euler
and Navier-Stokes (NS) methods have proved to be a successful compromise be-
tween accuracy and cost and are now widely preferred in industry as a fast and
accurate tool for aeroelastic predictions. Indeed, a growing body of evidence in-
dicates that linear viscous calculations are adequate for a surprisingly large range
of applications [5, 6, 7, 8]. This method views the aerodynamic unsteadiness as
a small perturbation of the space-periodic mean steady flow. Hence the unsteady
flow field can be linearized about it and due to linearity can be decomposed into a
sum of harmonic terms, each of which can be computed independently. The cyclic
periodicity of both the steady and unsteady flow leads to a great reduction of com-
putational costs, since the analysis can focus on one blade passage rather than the
whole blade-row making use of suitable periodic boundary conditions. The small
amplitude of the aerodynamic unsteadiness often allows one to neglect both the
coupling and variations of structural eigenmodes due to the aerodynamic forces [9].
Therefore the investigation can be carried out considering one structural mode at
a time, determined by a finite-element program and used as an input for calculat-
ing the unsteady aerodynamic forces. The complete aerodynamic analysis consists
of two phases: a) calculation of the nonlinear steady flow field about which the
linearization is performed and b) solution of the linear harmonic equations.

The HY DRA suite of parallel codes [10, 11, 12] includes both a nonlinear
(hyd) and a linear harmonic (hydlin) NS solver. The solution procedure for both
hyd and hydlin can be viewed as a preconditioned fixed-point iteration. Usually

the linear code converges without difficulty, but problems have been encountered



in situations in which the steady flow calculation itself failed to converge to a
steady state but instead finished in a low-level limit cycle, often related to some
physical phenomenon such as vortex shedding at a blunt trailing edge, unsteady
shock /boundary layer or shock /wake interaction. The main objectives of this paper

are to

e highlight and discuss the relationship between the numerical instabilities of
the linear solver for some turbomachinery test cases and the physical proper-

ties of the underlying base flow;

e demonstrate the effectiveness of the Generalized Minimum Residuals (GM-

RES) algorithm [13] for retrieving the numerical stability of the linear code.

Sections 2 and 3 present an overview of the steady nonlinear and unsteady linear
model respectively; the main features of the GMRES solver and some basic concepts
concerning the numerical stability of fixed-point iterations are provided in section
4. Finally, section 5 presents two realistic applications, the flutter analysis of a
two-dimensional turbine section for subsonic and transonic working conditions and

that of a civil engine fan from near-choke to near-stall operating conditions.

2 Nonlinear flow analysis

The time-dependent Euler and Reynolds-averaged NS equations in conservative
form are approximated on unstructured hybrid grids, using an edge-based dis-
cretization [14]. Considering the computational domain consisting of all the pas-

sages of a blade-row leads to a system of nonlinear ordinary differential equations



(ODE's) of the form:

dU :
T— +R(U,U,X,X) =0, (1)

where t is the physical time, T is the Jacobian of the transformation from primitive
to conservative variables, U is the vector of primitive flow variables, R is the nodal
residual, X and X are the vectors of nodal coordinates and velocities respectively.
The vector Uy, is used to enforce time-dependent disturbances at the inflow and
outflow boundaries such as wakes shed by an upstream blade row. Each edge of
the grid contributes only to the residuals corresponding to the two nodes at either
end and the residual vector R depends also on the nodal velocities X, because the
grid can deform following the blade vibration. The system (1) has size (Negs X Np),
where Nj is the number of grid nodes, N4, = 5 for the inviscid flow model and
Negs =6 for turbulent flows. The 6t component in the latter case is the turbulence
variable, determined with the Spalart-Almaras turbulence model. The residuals R
also include the source terms due to the centrifugal and Coriolis forces, since the
equations refer to the relative frame of reference.

The first stage of the aeroelastic analysis requires the computation of the mean
steady flow U about which the linearization of the unsteady terms will be car-
ried out. Neglecting the time-dependent terms in the governing equations (1) and

denoting by X the mean nodal coordinates yields

which can be solved for a single blade-passage, as the mean flow is circumferentially
periodic. The system (2) has size (N x Ngg5) where N = No/Npigges and Npjgdes

is the number of blades in the blade-row. The boundary conditions to which the



system (2) is subject can be of three types: inflow/outflow, periodic and invis-
cid/viscous wall. The inflow and outflow boundaries are handled through fluxes
which incorporate prescribed flow information and thus they become part of the
residual vector R. At matching pairs of periodic nodes the periodicity condition
for linear cascades is enforced setting the flow state on the upper boundary equal
to that on its lower counterpart. In the case of annular domains because of the use
of Cartesian coordinates, the velocity vectors on the upper boundary are obtained
by rotating those on the lower one. Combining flux residuals at the two periodic
nodes in a suitable manner to maintain periodicity, this boundary condition can
also be included in the definition of the flux residual vector R.

A no-slip boundary condition is applied to viscous walls discarding the momen-
tum residuals and replacing these equations by the specification of zero velocity
at the boundary nodes. The computation of the flux residuals at nodes on invis-
cid walls is based on zero mass flux through the boundary faces, but in addition
flow tangency is enforced by setting the normal component of the surface velocity to
zero and disregarding the normal component of the momentum residuals. Applying

these strong wall boundary conditions [15] to the system (2) yields:

(I-B) R(U,X) = 0
(3)
BU = 0,
where B is a projection matrix which extracts the momentum/velocity components

at the wall boundaries. The discrete equations (3) are solved using Runge-Kutta

time-marching accelerated by Jacobi preconditioning and multigrid [14].



3 Linear unsteady flow analysis

Due to the small level of unsteadiness, the time-dependent variables can be written

as the sum of a mean steady part and a small amplitude perturbation:

X(t) =X +x(t), 1] < |IX]]
Uy (t) = Uy + wp(t), |[ub|| < [Ty
U(t) = U +u(t), la|] < |[O]],

where the perturbations are overlined with a tilde symbol. Linearizing equations

(1) about the mean steady conditions (X, U) yields

di L
Td—ltl+Lﬁ=f1+f2, (4)

where the linearization matrix L and the vectors f'l and f'g are given by

,_ R fl:_<8R~ 8R;>7 i OR

Fiok X< ox ™

The unsteady periodic flow could be determined by solving the linear equations (4),
but due to linearity can be decomposed into a sum of complex harmonics of the
form @y, (t) = R(e****,), each of which can be computed separately. The complex
elements of 1, define the amplitude and phase of the unsteadiness at frequency kw.
Analogous expansions hold for %(¢), X(¢) and w,(¢). Inserting such expressions in
equation (4) and considering only the mode k=1 for simplicity, yields the harmonic
equations

(iwl +Lya=f; + 1, (5)

which can be viewed as the frequency domain counterpart of equations (4). The
linear system (5) is complex and it has size (N x N.g). The vectors f; and f

are its right-hand-side and they give the sensitivity of the residuals to harmonic



deformations of the mesh and to incoming harmonic perturbations respectively.
Based on an idea of Ni and Sisto [16], the linear equations are solved with the
same pseudo time-marching approach adopted for the solution of the nonlinear
steady equations, that is by introducing a fictitious time-derivative du/dr and

time-marching the solution of the system of linear ODFE’s:

% — — [(wT + Lya— £ — )]

until da/d7r vanishes. Discretizing this time-derivative leads to the linear fixed-
point iteration discussed in greater detail in the following section.

In the flutter case, the object of the analysis is to assess the stability of a particu-
lar structural mode. The frequency w and the blade mode shape are calculated with
a finite-element program and used to determine f,, which is non-zero throughout
the computational domain since the grid deforms following the harmonic vibration
of the blade, whereas f, is set to zero. The phase between the motion of adjacent
blades (Inter-blade Phase-Angle or IBPA) is an additional parameter of the anal-
ysis. It is given by ¢; = 275 /Npiades and the index j usually called nodal diameter
can take any integer value between 0 and (Npjqqes — 1), though the critical values
are usually the first few ones, as shown in [9]. Equations (5) can then be solved for
a single passage, introducing the complex phase shift e’?i between the two periodic
boundaries. The output of interest is the net energy flux from the structure to the

working fluid over one cycle of vibration, defined by the worksum integral

Ty
W = / / PUplade - dSdt
o Js

in which T, is the period of vibration, p and wuyq4. are the time-dependent blade

static pressure and velocity respectively, dS is the elemental blade surface with



outward normal and S is the overall blade surface. A positive sign indicates stability
as energy is transferred from the structure to the fluid, whereas a negative sign
indicates the occurrence of flutter. In the engineering community, the logarithmic
decrement ¢ is a more frequently used stability parameter, which depends on the
ratio between the amplitude V' of two consecutive cycles of vibration. It is defined
as 0=V (t+T,)/V(t) and it can be proved that

5_W

==

In forced response, the object of the analysis is to determine the unsteady forces
acting on the blade due to any of the harmonic components, into which the incom-
ing time-periodic gust can be decomposed. The IBPA depends on the geometric
properties of the problem. In the case of forcing coming from circumferentially pe-
riodic wakes, the blades and the wakes may have different pitches and hence there
is a difference in the times at which neighbouring wakes strike neighbouring blades.
Therefore the IBP A of the fundamental harmonic is 27 Nygkes/ Npiades- Again the
linear harmonic equations (5) can be solved for a single blade passage using com-
plex periodic boundary conditions. The vector f) is zero throughout the domain
because the mesh is stationary and the vector f, is non-zero only at the inlet or
outlet boundaries, where the harmonic perturbation is prescribed. The unsteady
aerodynamic force acting on the blade can be calculated in a post-processing step
for each structural mode using the unsteady pressure field determined with the
harmonic analysis.

The linear unsteady analysis is completed by enforcing suitable linearized
boundary conditions. The inflow, outflow and (complex) periodic boundary con-

ditions can all be symbolically included into equations (5). Taking into account
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the linearized strong wall boundary condition, however, the system to be solved

becomes:

(I-B) [(iwl + Lya —f — | = 0
(6)
Bla = Uy -
The component 1,4y of the linear flow velocity at the wall is zero for both inviscid
and viscous walls in the forced response problem as the grid does not deform,
while it is non-zero for both wall types in the flutter problem, due to the surface
displacements and in the inviscid case also to the rotation of the wall normals [15].
The implementation of the inflow and outflow boundary conditions is based on one-
dimensional nonreflecting boundary conditions [17]. Equations (6) are then solved

using the same preconditioned pseudo time-marching method as for the nonlinear

equations.

4 GMRES stabilization

The linearized harmonic NS equations (6) can be viewed as a simple linear system
of the form

Ax=b. (7)

Though equations (6) are complex, hydlin has been written using real arithmetic,
that is considering real vectors of size (2 x N¢gs x N') with the factor 2 accounting for
real and imaginary part, rather than complex vectors of size (Nggs X N). This choice
has been made because of errors often introduced by highly optimized FORTRAN
compilers when dealing with complex arithmetic. Therefore the system (7) also

has dimension (2 x N4 X N) and the code for its solution can be regarded as the
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fixed-point iteration:
Xpi1 = (I = M~ A)x, + M~ 'b, (8)

in which M~! is a preconditioning matrix resulting from the Runge-Kutta time-
marching algorithm, the Jacobi preconditioner and one multigrid cycle. Linear
stability analysis of (8) shows that necessary condition for its convergence is that
all the eigenvalues of (I — M 'A) lie within the unit circle centred at the origin
in the complex plane or equivalently that all the eigenvalues of M4 lie in the
unit disc centred at (1,0). For most aeroelastic problems of practical interest, this
condition is fulfilled and the linear code converges without difficulty. However an
exponential growth of the residual has been encountered in situations in which
the steady flow calculation itself failed to converge to a steady-state but instead
finished in a small-amplitude limit cycle, related to some physical phenomenon such
as separation bubbles, corner stalls and vortex shedding at a blunt trailing edge.
The solution procedure of the nonlinear steady equations (3) is not time-accurate
because of the local time-stepping technique and the Jacobi preconditioner used
for the integration, but it nevertheless reflects some physical properties of the flow
field due to the pseudo time-marching strategy associated with the Runge-Kutta
algorithm. Physical small-amplitude limit cycles do not prevent the steady solver
from converging to an acceptable level, although their effect is sometimes visible
in small oscillations of the residual. However they result in a small number of
complex conjugate pairs of eigenvalues of the linearization matrix (I — M ~'4) lying
outside the unit circle (outliers) and thus causing the exponential growth of the
residual of the linear equations. This problem has been overcome by implementing

a preconditioned GMRES algorithm in hydlin. GMRES is an iterative method for
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the solution of linear systems, belongs to the family of Krylov subspace methods
[13] and is guaranteed to converge even in the presence of outliers. The Krylov
subspace of dimension m generated by the preconditioned operator M A and the
vector M~ 'b is the vectorial space spanned by the vectors (M~4)/M~'b, j =

0,...m — 1), that is
Kp=<M"o, (M~ A)M b, ..., (M~ A)™'M~'b> .

The GMRES algorithm is based on the progressive reduced Arnoldi factorization
[13] of M~ A:

M_lAQm = Qm+1ﬁm ) (9)

where m is the current iteration, H,, is a Hessemberg matrix of size ((m + 1) x m),
Qm is a matrix of size ((2 X Negs X N) X m) whose m columns q; (j = 1,...,m)
form an orthonormal basis for the Krylov subspace K, and @Qy,+1 is @, augmented
with a new Krylov vector q,,+1. Denoting by hjm, (j =1,...,m) the elements of

the m' column of H,,, the m* column of equation (9) can be written as:

MﬁlAClm = hl,le + ...+ hm+1,QO+1 ) (10)

which shows that qmy1 satisfies an (m 4 1)—term recursive relation involving itself
and the previous m Krylov vectors. It should be noted that the size of each q;
is equal to that of the complex linear flow field. At the m!* GMRES iteration
the solution of (7) is approximated by the linear combination of the m q;’s which
minimizes the 2-norm of the residual r,, = M (b — Axp,) and is thus given by
Xm = Xstart + Qmbm, In which Xger¢ is the initial solution and t,, is the column
vector containing the m coefficients of the linear combination. For this reason the

algorithm can be viewed as an optimization process.
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The implementation of the preconditioned GMRES solver in hydlin has been
carried out at the top routine level. At this level, the pseudo-code of the precondi-

tioned multigrid iteration without GMRES looks like:

X = Xstart

x = mg(A,x,b,ng)

X finish = X
where ‘mg’ is the core routine which performs the preconditioned fixed-point iter-
ation (8) and Xfipiep is the solution after ny multigrid cycles. The GMRES solver
does not require any change to ‘mg’ and uses it as a black-box to determine the
preconditioned Krylov vectors M *lqu. The computationally cheap minimization
is also carried out at the top routine level and the pseudo-code of the main hydlin

using GMRES is:

a1 =mg(A, Xstart, Dy Net) —Xstart; A1 =q1/|qi]
form=1:ng,
M Adm = —mg(A4, dm, 0,7¢1) +Am
dm+1 from equation (10); Am+1 =Am+1/ |Am+1]
determine t,, which minimizes r,,

end

X finish = Xstart + QnKTtnKr

The first Krylov vector q; is the normalized residual of the preconditioned system,
ngy, 18 the overall number of GMRES iterations and n.; is the number of multigrid
cycles per GMRES iteration. Note that the right-hand-side of (7) is set to zero be-

fore using ‘mg’ to determine M ~'Aq,,. The numerical solution of the optimization
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problem of dimension m which leads to ty, is described in [13]. The value of ng,
required for full convergence is much smaller than the size of A, but nevertheless
very big with respect to the computing resources usually available. This is due
to the fact that at the m'® iteration all m q;’s are needed to compute the new
orthogonal vector of the basis. This problem is overcome using the restart option,
that is performing n g, iterations and re-starting GMRES from the updated solution
re-computing from there a new set of nx, Krylov vectors. This is achieved by wrap-
ping the inner loop described above with an outer one which restarts GMRES each
time. Values of ng, between 10 and 30 make the computation affordable even for
large problems and a good convergence level is usually achieved within 20 restarted
cycles. Unfortunately the restarted solver may lead to numerical stagnation of the
residual [13]. Extensive numerical validation on a variety of turbomachinery test
cases, however, has highlighted that this can be avoided provided that both ng,
and n.; are chosen above certain case dependent threshold values. Including the
extra CPU-time required for the matrix-vector products and the minimization pro-
cess of GMRES in the cost of one multigrid cycle, the CPU-time for executing a
given number of multigrid cycles using GMRES is only from 1 to 3 % higher than
using the standard iteration. The additional burden associated with GMRES is the
extra memory allocation for the ng, Krylov vectors. It should also be noted that
different choices of n.;, as well as other multigrid parameters such as the number of
iterations on the different grids, lead to a different preconditioner A ~! and there-
fore they play a crucial role in determining the overall number of multigrid cycles
to achieve the desired convergence level. The experience gained so far has shown

that a) the convergence rate (slope of the curve residual vs. number of multigrid
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cycles) always increases with ng, and b) there exist values of n.; which maximize it.
The upper threshold of ng, is usually fixed by the available computing resources.

Another advantage of GMRES is that it allows the straightforward determina-
tion of the unstable eigenmodes, as the algorithm has the property of solving the
least stable modes first, namely those whose eigenvalues are farthest from the centre
of the unit circle in the complex plane. As shown in the next section, this enables
one to relate the source of numerical instability to the physical unsteadiness which
causes it. In order to establish the relationship between the least stable modes and
the set of Krylov vectors, let us start by considering the partial reduction of M~'4

based on the m! Krylov subspace:
QgMﬁ%AQm =Hp, (11)

where H,, denotes the upper (m x m) portion of H,, and the superscript 7 the
Hermitian conjugate operator. The eigenvalues 6; of H,, are called Ritz values and

they are defined by

where yj; is the right eigenvector of H,, associated with #;. Combining equations

(11) and (12) yields

mM~AQmy; = (QmQ)0;y; (13)
and consequently
QE(M - 0;1)Qny; =0. (14)
The m vectors
Qmyj = i(yj)lfh i=12,....m (15)

=1
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are the Ritz vectors of A based on the m! Krylov subspace, which provide an
approximate estimate of the sought dominant or least stable eigenmodes. In fact,
equation (14) states only that the residual of each eigenvector resg;, = (M A —
0,1)Qnyj is orthogonal to the subspace K,,, but the expression (15) would provide
the exact eigenmodes only if res,;; =0. It can be proved, however, that the 2-norm
of res,;, depends linearly on the residual of the linear equations. For all the test
cases considered, 150 GMRES iterations without restart have been sufficient to
achieve a good convergence level of the linear equations and therefore to obtain an
accurate estimate of the dominant modes.

Finally, it should be noted that the most appropriate definition of the flow field
determined by solving the nonlinear equations in the presence of small limit cycles
which then generate the linear instabilities would be ‘base’ or ‘background’ flow.
Nevertheless the adjectives ‘mean’ and ‘steady’ are sometimes used as synonyms
in this paper, underlining the fact that such flow field has been computed with a

numerical approach suitable for the solution of the steady flow equations.

5 Results

5.1 Two-dimensional turbine section

One of the test cases that has been used for both assessing the predictive capabilities
of hydlin and testing the implemented GMRES solver is the 2D turbine section
of the 11" Standard Configuration, which is the mid-span blade-to-blade section
of an annular turbine cascade with 20 blades. The annular test-rig and cascade

geometry are briefly described in reference [18], which also provides experimental
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measurements and various computed results of the steady and unsteady flow field
due to blade-plunging with prescribed IBPA. Two steady working conditions are
considered: a subsonic one with exit Mach number of 0.68 and a transonic one
with exit Mach number of 0.96. The computational grid that we have used for the
investigation is a quasi-orthogonal H-type mesh with medium refinement: it has
273 nodes in the streamwise and 65 nodes in the pitchwise direction, for a total
of 17745 grid nodes. A preliminary mesh-refinement analysis carried out using a
coarser 7869-node (183 x 43) and finer 39673-node (409 x 97) mesh has shown no
difference of practical interest between the results obtained with the medium and
finer grids. The coarser mesh is shown in figure 1 while figure 2 provides measured
and computed steady isentropic Mach number M;; on the blade surface for the
two working conditions. The variable on the x-axis is the nondimensional position
along the true blade chord ¢. The high pressure patch at about 20 % chord and the
rapid pressure rise at about 80 % chord on the suction surface in the transonic case
(figure 2-b) are due to a separation bubble and an impinging shock respectively.
This is clearly visible in the Mach number contours of figure 3, which also show
how both the blade boundary layers and wakes thicken after passing through the
shock. Figure 4 provides measured and computed amplitude and phase of the first
harmonic of the unsteady pressure coefficient ¢,. Its definition is:

Y
(P01 —pl) h’

Cp
where p is the complex amplitude of the linear unsteady pressure on the blade sur-
face, pp1 and p; are the mass-averaged inlet total and static pressure respectively
and h is the bending amplitude. For both working conditions, large differences be-

tween measured and computed results are visible on the suction surface where most
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of the unsteady phenomena take place. However the numerical results presented in
this paper are in very good agreement with those in the literature [18, 8].

The stability curves (6 vs. IBPA) for both flow regimes are provided in figure
5-a, which shows that the system never becomes aeroelastically unstable. The
nonlinear calculations of both the subsonic and transonic base flow converge without
difficulties to machine epsilon (10~'®). However all the linear calculations based
on the transonic base flow diverge using the standard code and convergence can be
retrieved only using GMRES, as shown in the convergence histories of hydlin in
figures 5-b and 5-c, which refer to IBPA =180°. In both figures the variable on
the x-axis is the number of multigrid cycles and that on the y-axis is the logarithm
in base 10 of the root-mean-square of all nodal residuals (rms). The number at
the right of the label 'GMRES’ in the legend is ng,. Figure 5-b illustrates the
effect of n. on the convergence histories of GMRES 20: among the 4 values tried
for this test case the minimum overall number of multigrid cycles or equivalently
of CPU-time required for dropping the residual below -8 is obtained for n, =3
and ng = 10. All the GMRES convergence histories in figure 5-c¢ refer to n,g =3
and they highlight that the convergence rate increases monotonically with ng, in
the range of practical interest. All linear calculations based on the subsonic flow
regime converge also without GMRES and the convergence histories of the linear
code (IBPA=180°) using the standard iteration and GMRES 20 are provided in
figure 5-d. The memory requirements with 3 grid levels for the multigrid scheme
are 52 and 86 Mbytes respectively. Both calculations have been started from the
same initial solution and run on 8 processors of a computer cluster consisting of

24 four-processor Sun Ultra-80 nodes, with a Sun Blade-1000 front-end. The 700
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iterations for achieving a residual level of -17.5 with GMRES have been carried out
in about 27 minutes of CPU-time, whereas the 1800 needed to obtain the same
level with the standard iteration have required 69 minutes.

In order to investigate the origin of the numerical instability of the standard
code for transonic flow conditions, the first 150 dominant eigenmodes of the pre-
conditioned linearization matrix M~ for n, =1 have been determined using the
procedure described in the previous section and they are plotted in the complex
plane of figure 6. The two complex conjugate pairs of outliers labelled with 1 and
2 are responsible for the exponential growth of the residual associated with the
fixed-point iteration (8). In fact, its asymptotic convergence rate is determined by
the spectral radius p of the linear operator M ~'4 and it can be proved that the

relationship between the asymptotic slope of the residual curve and p is:

A (log(rms))
Ny

~logp, (16)
where N, is the number of multigrid cycles across which the variation of rms is
considered. This equation provides the theoretical relationship between the slope
of the exponentially growing residual curve of the standard iteration (figures 5-b
and 5-c¢) and the spectral radius of the linear operator (radius of the outlier 1). In-
serting the computed values in it yields 46.90e—3 =~ 47.53e—3, which demonstrates
the correctness of the mathematical analysis. Figure 7-a shows that the maximum
pressure amplitude of the eigenvector associated with the complex conjugate pair
of outliers 1 occurs at the edge of the separation bubble on the suction surface and
this proves that the origin of the numerical instability is the small limit cycle as-

sociated with this unstable separation. The eigenmode associated with the outlier

2 also corresponds to the separation on the suction surface and therefore is not
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reported here. The pressure amplitude of the eigenvector associated with the com-
plex conjugate pair of eigenvalues 3 is provided in figure 7-b. Nonzero amplitudes
occur both in the shock and the separation bubble. The eigenvalues of this mode
lie in the unit disk, but they would be responsible for a very low convergence rate
of the standard code in the absence of any outlier because of their proximity to the
unit circle. It has also been found that the two dominant eigenmodes described
above are independent of the TBPA, despite the fact that M4 depends on it.
This phenomenon is probably due to the high spatial localization of the unstable
modes and is highlighted in table 1, which reports the real and imaginary parts of
the first 3 least stable modes for 3 different ITBPA’s. This feature can be exploited
by ‘hybrid’ solvers such as the Recursive Projection Method [19]. This algorithm
uses Newton’s method for determining the projection of the solution on the small
unstable eigenspace associated with the few outliers and the standard fixed-point
iteration for calculating the projection of the solution on the bigger space associ-
ated with the remaining modes. In this way, the unstable eigenspace does not need
to be recomputed for each TBPA. The independence of the unstable eigenspace on

the IBPA, however, cannot be exploited by GMRES.

5.2 Three-dimensional fan

The second test case considered is a three-dimensional fan rotor whose geometry
and surface grid are shown in figure 8. This grid has only 157441 nodes and is quite
coarse, but all the phenomena, discussed in this section have been also observed with
finer computational meshes and for other test cases. The linear flutter analysis

has been carried out for 4 points of a constant-speed working line using hyd and
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IBPA (°) mode R(N) I(A)

36 1 0.640143 0.984962

2 0.665552  0.992178

3 0.004075  0.004150

180 1 0.640016  0.984956

2 0.665476  0.992322

3 0.004076  0.004150

270 1 0.639930 0.984763

2 0.665644 0.992444

3 0.004075 0.004150

Table 1: First 3 dominant eigenvalues for 3 different I BP A’s.

hydlin. The computed pressure ratio § is plotted versus the computed mass flow

m in figure 9-a. Their definition is:

Po2 .
B =—, m= [ pauz-dSy.
Po1 So

All variables in the two expressions above refer to the base flow: pg; and pge are
respectively the inlet and outlet mass-averaged total pressure, Ss is the area of the
outlet boundary, po is the outlet density and us is the outlet velocity vector. Note
that the values of both 8 and 7 in figure 9-a are given as percentage deviations from
their design values. For all 4 working conditions the residual of the nonlinear steady
equations drops by four orders of magnitude (figure 9-b), ending in a low-amplitude

limit cycle.
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The analysis of the flutter stability of the first flap mode has been carried out
for all 4 working conditions and the computed logarithmic decrement is plotted in
figure 10. As expected, the least stable aeroelastic modes are those associated with
the first few IBPA’s and the blades undergo flutter in the 2 nodal diameter mode
at the base flow conditions D, which are the closest to stall. All linear calcula-
tions have been performed using GMRES, as they were otherwise unstable. This is
visible in the convergence plots of hydlin reported in figure 11, which refer to the
base flow conditions D and to IBPA=180°. Figure 11-a shows that the GMRES
solver stagnates if n,; =1 and an acceptable convergence rate can be achieved only
using ny =3 and ng, > 30. The GMRES solver does not stagnate using ng, =100
with either values of n., but a better convergence rate is obtained with ny =3
(figure 11-b). It should be noted that solving the linear equations about a ‘pseudo
time-averaged’ base flow, obtained by averaging the nonlinear solution over one nu-
merical limit cycle of hyd, has not removed the instability of the linear calculations
using the standard iteration. It might be more appropriate to linearize the flow
unsteadiness either about the ‘stabilized’ solution of the nonlinear equations, de-
termined by using GMRES [20] or about the true time-averaged flow. This can be
obtained either by introducing unsteady stress terms in the nonlinear equations [21]
or solving the time-dependent nonlinear equations and then time-averaging the flow
solution. It is the authors’ view, however, that these approaches would also not
remove the linear instabilities of the standard linear solver. In fact, the limit cycles
under discussion are stable and the theory of dynamical systems foresees that the
underlying steady solutions are unstable [22] leading to the exponential growth of

their linear perturbations. Figure 11-b also highlights that starting GMRES from
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the last solution of the standard hydlin after the calculation has diverged, results
in an initially sharp reduction of the residual and then in a convergence rate simi-
lar to that of the descending branch of the standard code. This behaviour can be
explained by the presence of a few outliers: after a few hundred multigrid cycles
needed to resolve the stable modes, the unstable modes associated with the outliers
become dominant and determine the exponential growth of the residual of the stan-
dard iteration. They are instead solved very rapidly restarting the calculation with
GMRES. In fact, the subset of the spectrum of M ~'A with the first 150 dominant
eigenvalues has 4 complex conjugate pairs of outliers, labelled from 1 to 4 in order
of decreasing distance from the centre of the unit disc in figure 12, which refers to
ne = 1. Inserting in equation (16) the computed data relative to the slope of the
ascending branch of the residual curve of the standard iteration (figure 11) and the
spectral radius of M ~'A (radius of the outlier 1) yields 38.82e—3 ~ 40.17e—3, which
confirms once more the correctness of the mathematical analysis.

The eigenmode associated with the pair of outliers 1 is due to the hub corner
stall, since its maximum pressure amplitude occurs in a small region between the
suction side and the hub close to the Trailing Edge (TE) as shown in figure 13-
a. Contours of the same variable in a blade-to-blade section close to the hub are
presented in figure 13-b, while a two-dimensional view of the flow separation caused
by the corner stall is given in figure 13-c, which shows the velocity vectors in the
same blade-to-blade section. The eigenmode associated with the pair of outliers
3 corresponds to a separation bubble on the suction side close to the Leading
Edge (LE) in the hub region. The eigenmodes 2 and 4 correspond to the same flow

phenomena as 1 and 3 respectively. The numerical instabilities of the standard code
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are therefore due to the linearization of the small-amplitude limit cycles associated
with the hub corner stall and the LE separation.

The eigenmode corresponding to the complex conjugate pair 5 does not cause
the exponential growth of the residual as it lies in the unit disc, but it would be
responsible for a very low convergence rate of the standard code in the absence of
any outlier because of its proximity to the unit circle, as discussed in [19]. This
eigenmode contains traces of the previous 4 and corresponds also to a shock on
the suction side close to the tip. Similarly to the turbine test case, the dominant
eigenmodes described above have been found to be independent of the IBPA and
this might be due again to their high spatial localization.

All calculations have been run with 4 grid levels for the multigrid scheme on the
SUN cluster described in the previous section. The CPU-time of one multigrid
cycle depends on the number of iterations performed on each grid level. The values
chosen for this test case have led to a CPU-time of about 56 seconds for one
multigrid cycle of hydlin using 8 processors, and the 800 cycles needed for a good
convergence of each linear calculation have thus required an overall time of about
12 hours. By comparison, the CPU-time for one multigrid cycle of hyd is about

half of that needed by hydlin.

6 Conclusions

This paper has presented the linear analysis of turbomachinery aeroelasticity from
a simple algebraic viewpoint, which allows one a relatively straightforward under-

standing of the relationship between the numerical instabilities of the linearized
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solver of the Navier-Stokes equations and the small unsteady phenomena of the
base flow field. The implementation of the GMRES algorithm in the existing linear
NS solver based on a preconditioned fixed-point iteration has stabilized the code,
allowing the aeroelastic analysis to be carried out even in presence of small unsteady
phenomena in the base flow, which are believed not to have any significant effect
on the aeroelastic behaviour of the component under investigation. The CPU-time
required for one multigrid cycle in the GMRES solver is only from 1 to 3 % higher
than using the standard iteration. The overall number of multigrid cycles needed to
achieve a given level of convergence with the restarted GMRES algorithm depends
on both the number of GMRES iterations per restarted cycle and the number of
multigrid cycles per GMRES iterations. Increasing the former parameter always
improves the convergence rate, whereas optimal case dependent values seem to ex-
ist for the latter one. The convergence rate of the GMRES iteration also depends
on other multigrid parameters, such as the number of iteration on the different
grid levels. For test cases without unstable modes the same convergence level can
be obtained in considerably fewer iterations by using the GMRES rather than the
standard solver. The extra memory allocation associated with GMRES 10 and
GMRES 30 are about 35 and 100 % of that used by the standard fixed-point itera-
tion respectively. Both the correctness of the analysis and the relationship between
numerical instabilities of the linear solver and unsteady phenomena of the base
flow have been demonstrated through the linear flutter analysis of two realistic

turbomachinery test cases.
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Figure 1: Mesh for the 2D turbine section.
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Figure 2: Isentropic Mach number on the blade surface of the 2D turbine: a) subsonic

conditions and b) transonic conditions.
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Figure 3: Mach contours for transonic conditions of the 2D turbine.
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Figure 4: Unsteady pressure coefficient ¢, on the blade surface of the 2D turbine: a)
amplitude of ¢, for subsonic conditions, b) amplitude of ¢, for transonic conditions, ¢)

phase of ¢, for subsonic conditions and d) phase of ¢, for transonic conditions. All results

refer to IBPA=180°.
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Figure 5: Flutter analysis of the 2D turbine: a) logarithmic decrement versus IBPA, b)
effect of ny on GMRES convergence rate (transonic base flow), b) effect of ng, on GMRES

convergence rate (transonic base flow) and d) convergence histories with standard and

GMRES iteration (subsonic base flow).
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Figure 6: Flutter analysis of the 2D turbine: first 150 dominant eigenvalues of M A

(ng=1) for transonic mean flow and IBPA=180°.
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a) b)

Figure 7: Pressure amplitude of dominant eigenmodes: a) eigenvector associated with

the outlier 1 and b) eigenvector associated with the eigenvalue 3.
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Figure 8: Blade geometry and surface mesh of the 3D fan.
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Figure 9: a) Constant speed working-line of the 3D fan and b) convergence histories of

hyd for 4 working-points.

39



least stable IBPA

90

180
IBPA

270

360

Figure 10: Flutter analysis of the 3D fan: logarithmic decrement for the 4 working

conditions.

40



————— standard
___gmres20,n =
cl
s gmres 30, nclzl
—_ gmres 20, n =3
[} 0, cl
S - gmres 30, n |:3
SN
_10,
2 2000 4000
# mg cycles
a)

Figure 11: Flutter analysis of the 3D fan:

D and IBPA=180°.

Iolg 10(rms)

standard
___ gmres 100, nd:l

..... gmres 100, nC|:3

1000 2000
# mg cycles

b)

convergence histories of hydlin for mean flow

41



0.76

0.27 0.4

Im(\)

0 0.5 1 15 2

0.1

Figure 12: Flutter analysis of the 3D fan: first 150 dominant eigenvalues of M~4 (n,=1)

for mean flow D and I BPA=180°.
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Figure 13: Pressure amplitude of dominant eigenmode associated with the complex con-
jugate pair 1: a) 3D view of the corner between the hub and the suction side close to the
TE and b) blade-to-blade section close to the hub. ¢) Velocity vectors in blade-to-blade

section close to the hub.
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