Abstract

This paper presents an overview of the steady and harmonic adjoint methods
for turbomachinery design using the ‘discrete’ approach in which the discretized
nonlinear Euler/Navier-Stokes equations are linearized and the resulting matrix is
then transposed. Steady adjoint solvers give the linear sensitivity of steady-state
functionals such as mass flow and average exit flow angle to arbitrary changes
in the geometry of the blades and this linear sensitivity information can then be
used as part of a nonlinear optimization procedure. The harmonic adjoint method
is based on a single frequency of unsteadiness and allows one to determine the
generalized force acting on the blades due to arbitrary incoming time-periodic
gusts. When the forcing is due to the wakes of the upstream blades the adjoint
approach can be used to tailor the shape of the incoming wakes to greatly reduce
the level of forced vibration they induce. The presented suite of test-cases includes

the Inlet Guide Vane and the rotor of a High Pressure Turbine.
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1 Introduction

Modern turbomachinery has to meet exacting standards of efficiency resulting in
low weight and highly loaded engine components. For this reason, the numerical
methods for design optimization of fans, compressors and turbines are becoming
increasingly popular in the turbomachinery industry. Multidisciplinary design
systems allow the designer to modify blade and end-wall geometries in order to
optimize the steady aerodynamic performance [1] fulfilling appropriate mechanical
constraints. A typical example is the minimum cross section of the blade, which
cannot be reduced below a minimum threshold to prevent the steady working
stress from exceeding the material strength. However, even if the redesigned blade
fulfills the steady stress requirements, it may still be subject to critical unsteady
stresses due to the blade forced response [2]. This aeroelastic phenomenon is caused
by the relative motion of adjacent frames of reference, which transforms steady
circumferential variations of the flow field in one frame into periodic time-varying
forces acting on the blades in the other. The resulting forced vibration may lead to
High Cycle Fatigue, which may shorten the life of the blades below the target life
of the engine. This and similar other issues motivate the growing interest of the
turbomachinery community in the unsteady design methods. By this expression,
one means designing components which can better withstand unsteady aeroelastic
loads, such as those due to forced response.

Several functionals can be envisaged for the optimization of the steady design.
One obvious choice would be the stage efficiency, which in turn depends on the
exit loss. However, the secondary kinetic energy [1] is often preferred, being less

affected than the loss by possible inaccuracies associated with the turbulence mod-



els. Other objective functions include the mass flow and the radial distribution
of the exit-plane whirl angle. The formulation of the unsteady design problem is
less trivial. Over the past two decades, a number of methods have emerged to
carry out the analysis of turbomachinery aeroelasticity, varying from uncoupled
linearized potential flow solvers [3, 4] to fully-coupled nonlinear three-dimensional
unsteady viscous methods [5].Within this range, the uncoupled linear harmonic
Euler and Navier-Stokes (NS) methods have proved to be a successful compromise
between accuracy and cost [6, 7, 8, 9]. This approach views the aerodynamic un-
steadiness as a small perturbation of the space-periodic mean steady flow. Hence
the unsteady flow field can be linearized about it and due to linearity can be
decomposed into a sum of harmonic terms, each of which can be computed inde-
pendently. The cyclic periodicity of both the steady and unsteady flow leads to a
great reduction of computational costs, since the analysis can focus on one blade
passage rather than the whole blade-row making use of suitable periodic bound-
ary conditions [9]. In the linear analysis of blade forced response the harmonic
component under investigation is that whose frequency is closest to the mechani-
cal frequency of a particular structural mode (near-resonance conditions) and the
output of interest is the worksum functional [2]. In the context of Lagrangian
mechanics, the worksum corresponds to the generalized force acting on the blades
for a particular structural mode of vibration due to the linear flow unsteadiness
and is therefore the obvious choice for the objective function to be minimized in
the unsteady design problem. When the forced response is caused by the wakes
shed by an upstream blade-row, the design space is that associated with the shape

of the incoming wakes and each wake corresponds to a particular design of the



upstream blades.

The nonlinear gradient-based optimization of the steady design requires the
sensitivities of the objective function to a set of m design variables at each step
of the optimization. One way of accomplishing this, is to calculate m nonlinear
flow fields associated with m perturbed geometries and determine the gradient of
the functional by finite-differencing. Conversely the use of adjoint equations [10]
allows one to determine all m components of the gradient with a single adjoint
computation, at a cost comparable with that of a single solution of the nonlinear
flow equations. In the forced response problem, one may want to tailor the shape
of the incoming wakes to minimize the forced response of the downstream blades.
In the context of the linear unsteady analysis, this would require the solution of
the linearized equations for each wake considered. On the other hand, the use of
the harmonic adjoint equations [2, 11] provides the generalized force on the blade
due to an arbitrary wake with a single harmonic adjoint calculation at a cost
comparable with that of the solution of the linear harmonic equations. Thus the
computationally most demanding phase of the optimization process requires only
two CFD calculations, which are the solution of the mean steady flow field and
that of the harmonic adjoint equations. Florea and Hall [12] applied the adjoint
method to compute the sensitivity of blade loads to an incoming gust. Two-
dimensional inviscid unsteady flow applications were considered and the approach
was successively used for three-dimensional inviscid flows [13] and two-dimensional
viscous problems [14]. In this paper the extension of the adjoint technique to three-
dimensional steady and unsteady viscous flows will be presented.

The adjoint technique for optimal aeronautical design has been pioneered by



Jameson for the potential flow, Euler and NS equations [15, 16, 17]. A number
of other research groups have also developed adjoint CED codes [18, 19, 20] using
the same ‘continuous’ approach in which the first step is to linearize the original
partial differential equations. Then the adjoint equations and appropriate bound-
ary conditions are formulated and finally discretized. The alternative ‘discrete’
approach, which we use, takes a discretization of the NS equations, linearizes the
discrete equations and then uses the transpose of the linear operator to form the
adjoint problem. This approach has been developed by Elliott and Peraire [21, 22],
Anderson and Bonhaus [23], Nielsen and Anderson [24], Mohammadi and Piron-
neau [25] and Kim et al. [26] for external aerodynamic applications. One of the
advantages of the discrete approach is that the linear code can be validated by
direct comparison with the nonlinear code. Similarly, since the adjoint code is ob-
tained by transposing the linear operator, it must produce exactly the same output
both at the routine level and for the objective function. These features enable one
to validate the adjoint against the linear code. Furthermore both the linearization
of the nonlinear discrete equations and the implementation of the adjoint code can
be performed by automatic differentiation software, greatly reducing the develop-
ment effort. A more detailed comparison between the continuous and the discrete
adjoint approach can be found in [27].

The HYDRA suite of 3D Euler/NS codes includes nonlinear, linear and adjoint
solvers for external and internal flows. These codes approximate the flow equations
on unstructured hybrid grids with an edge-based discretization and they make
use of MPI-based distributed parallel computing. The main objectives of this

paper are to a) summarize the implementation of the discrete adjoint method



in the HYDRA framework and b) demonstrate the effectiveness of the adjoint
approach for obtaining the linear sensitivities of steady and unsteady functionals
at a greatly reduced computational cost when dealing with high-dimensional design
spaces. Presented results include the application of the adjoint method to a suite

of realistic turbomachinery test cases.

2 Adjoint approach

We start by considering the discrete nonlinear steady Euler equations with a weak
imposition of boundary conditions on solid walls enforced specifying zero mass
flux through the faces on the surface. As discussed in the next section, the inflow,
outflow and periodic boundary conditions are also treated specifying appropriate

fluxes and therefore the discrete system of equations which is solved has the form:
R(U(z), X(z)) =0. (1)

Here the vector R represents the discrete flux residuals, U is the vector of primitive
flow variables, X is the vector of nodal coordinates and z is a set of m design
variables which controls the geometry of the blade. Note that both U and X
depend on z, because the computational mesh deforms conforming to the current
geometry of the blade being designed. The nodal displacements are determined
using the spring analogy [2], namely modeling the grid edges as springs with spring
constants inversely proportional to their length, enforcing suitable perturbations
at the nodes on the blade surface.

Linearizing equations (1) with respect to the perturbation of each design vari-



able z; yields
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The corresponding m perturbations of a nonlinear functional J(U(z),z) are:
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Using the adjoint approach, the m sensitivities can be obtained by evaluating
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where the adjoint solution v satisfies the equation
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The equivalence of this formulation comes from the following identity:

T
gl =g"L = (L") 'g) £i=v"1i.

0z

)

(3)

Each design variables gives rise to a different vector fj, whereas if there is only one

functional J, there is only one vector g. Thus the adjoint approach requires just

one adjoint calculation to obtain the sensitivity of one objective function to any

number of design variables. On the other hand, the linear approach would require

m solutions of the linearized flow equations to obtain the m flow fields @;. (Note

that the vectors f; and g are determined in a computationally cheap preprocessing

step).



In the forced response problem, the linear harmonic equations are complex
and the linearized functional J; corresponds to the worksum integral w;, which
represents the generalized force acting on the blade for a particular structural

mode [2]. Denoting by ¥ the Hermitian conjugate operator, one has:
Ji = v = w,; . (4)

The vector f; depends only on the incoming gust and hence the blade forced
response can be computed for any source of aerodynamic unsteadiness, once the
solution v of the harmonic adjoint equations has been determined. In this case,
the grid does not deform and consequently the term g—i appearing in equations (2)
and (3) is identically zero and so does not appear in equation (4).

Finally note that the elements of the vector g are non-zero only at nodes where
the objective function is defined, at the nodes on the outlet plane if the functional
is the exit mass flow and at the nodes on the blade surface if the functional is the
worksum integral. The analysis of the nonlinear, linear and adjoint equations is

carried out in greater detail in the three following sections.

3 Nonlinear flow analysis

The discrete nonlinear analysis of the time-averaged flow field is applied to a
single turbomachinery blade-row in the relative frame of reference. The flow can
be modeled by either the Euler or the Reynolds—averaged NS equations coupled
with the Spalart—Almaras turbulence model. Due to the rotational speed, source
terms associated with the centrifugal and Coriolis forces appear in the momentum

equations. Denoting by U and X the unperturbed flow field and nodal coordinates



respectively, these terms can all be formally included in the equation
R(U,X) =0. (5)

Because the governing equations are approximated on an unstructured grid using
an edge-based algorithm [28, 29], the residual vector R is a sum of contributions
from all of the edges of the grid, with each edge contributing only to the residuals
corresponding to the two nodes at either end. The nonlinear system (5) has size
(Negs x N), where N is the number of grid nodes, Neys =5 for the inviscid flow
model and N5 =6 for turbulent flows. The 6" component in the latter case is
the turbulence variable, determined with the Spalart-Almaras turbulence model.
The boundary conditions to which the system (5) is subject can be of three
types: inflow/outflow, periodic and inviscid/viscous wall. The inflow and outflow
boundaries are handled through fluxes which incorporate prescribed flow informa-
tion and thus they become part of the residual vector R. At matching pairs of
periodic nodes the periodicity condition for linear cascades is enforced setting the
flow state on the upper boundary equal to that on its lower counterpart. In the
case of annular domains because of the use of Cartesian coordinates, the velocity
vectors on the upper boundary are obtained by rotating those on the lower one.
Combining flux residuals at the two periodic nodes in a suitable manner to main-
tain periodicity, this boundary condition can also be included in the definition of
the flux residual vector R. A no-slip boundary condition is applied to viscous walls
discarding the momentum residuals and replacing these equations by the specifica-
tion of zero velocity at the boundary nodes. The computation of the flux residuals
at nodes on inviscid walls is based on zero mass flux through the boundary faces,

but in addition flow tangency is enforced by setting the normal component of the
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surface velocity to zero and disregarding the normal component of the momentum
residuals. Applying these strong wall boundary conditions [27] to the system (5)

yields:

(I-B)R(T) = 0 (6)

BU = 0 (7)

where B is the projector which extracts the normal momentum/velocity compo-
nents at the nodes on inviscid wall boundaries and the whole momentum/velocity
at the nodes on viscous walls. The square matrix associated with the linear oper-
ator B has size ((IN X Negs) X (IN X Negs)) and is block-diagonal with each block of
size (Negs X Negs). The matrix B has only n,, nonzero blocks, n,, being the overall
number of nodes on wall boundaries. Denoting by n, the wall normal and by
(ng,ny, n;) its components, the generic form of the diagonal block in the inviscid

and viscous case is

0 0 0 0 0 00000
0 n2 ngny ngny O 01000
0 nyng n2 nyn, 0 and 00100 (8)
0 n,ng nyny ng 0 0 0 010
(00 0 0 0] (00000

respectively.
The discrete equations (6) and (7) are solved using Runge-Kutta time-marching
accelerated by Jacobi preconditioning and multigrid. Further details on the im-

plementation of the nonlinear solver can be found in references [28, 2].
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4 Linear flow analysis

Both the variations of the steady flow due to geometric perturbations and the flow
unsteadiness due to incoming gusts are treated as small linear perturbations. In
the steady case, one deliberately uses small perturbations to obtain an accurate
estimate of the gradient. Assuming that the flow unsteadiness can also be treated
as a small perturbation of the mean steady flow field, one can carry out a linear
analysis of the perturbed flow field in both the steady and unsteady case. Note that
forced response is not a fundamentally linear phenomenon, because it is always
characterized by a finite level of unsteadiness and it is not clear a priori that
linear perturbation methods should give accurate predictions. However a series
of studies based on the comparison of nonlinear and linear results [6, 30, 31, 32]
as well as linear results and experimental data [33] point to the suitability of the
linear approach for turbomachinery forced response.

In the steady design problem, the perturbation of a single design variable z
induces a flow perturbation @ = dU/dz and the perturbed flow field U can be

written as

U=TU+1, la]| < |[O]]

In the forced response problem, the time-periodicity of the unsteadiness implies
that the linear time-dependent component of the flow can be written as a sum of
harmonics, each of which can be analyzed independently due to linearity. Con-
sidering just the fundamental harmonic of frequency w, the unsteady flow field
U(t) can be written as the sum of the mean steady nonlinear flow field U and the

real part of the small harmonic perturbation of known frequency w and unknown
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complex amplitude :

U(t) = U + R{exp (iwt) a}. (9)

The complex vector @ represents the amplitude and phase of the unsteady flow.
The governing equations for the flow perturbation @ are formally identical in
the steady and unsteady case, since the linearization of both the discrete steady

equations (6) and (7) and their unsteady counterpart [9] leads to the linear system:

(I-B)[(iw+L)a—f] = 0 (10)

B = . (11)

in which the linear operator L = g—% gives the sensitivity of the discrete nonlinear
residual R to the flow perturbation @1. The perturbation t,,,; of the wall velocity
is zero for viscous walls and its general form in the case of stationary and moving
inviscid walls is derived in reference [2].

In the steady problem, the frequency w is zero and the system of equations (10)
and (11) is defined in the real domain. The source term f = —9R/0z provides
the sensitivity of the residual vector R to the grid perturbation and is non-zero
throughout the computational domain. An accurate estimate of f is obtained us-
ing the complex variable method described in [27]. In order to ensure the full
consistence of the steady functionals (which depend on the solution of the non-
linear flow equations) with their linear sensitivities (which additionally depend on
the solution of the linearized flow equations), a completely reflective treatment of
the far-field boundaries is adopted: the inflow and outflow boundary conditions
are obtained by linearizing their nonlinear counterparts, that is setting to zero

the appropriate linearized far-field information. For example, the linearized total
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pressure, total temperature and flow angle perturbations are set to zero at a sub-
sonic inflow boundary. The linear periodic boundary condition is the same as for
the nonlinear equations.

In the forced response case, the system of linear harmonic equations (10)
and (11) defining the unsteady flow perturbation is complex and can be viewed as
the frequency domain counterpart of the nonlinear unsteady equations. When the
incoming gust is the wake shed by the upstream blade-row, the source term f is
non-zero only at the inflow boundary and it depends on the radial distribution of
the complex coefficients of the first harmonic of the wake. To leading order, the
amplitude of these coefficients depends on the circumferential width of the wake,
while their phase provides the circumferential postion. The far-field boundaries
are treated with a linearized free-stream boundary condition enforced by setting
to zero the flow perturbation @ and its implementation is based on nonreflecting
boundary conditions to minimize spurious reflections [34]. The periodic boundary
conditions for the complex flow field & are a generalization of their steady coun-
terpart, obtained introducing the inter-blade phase angle ¢ (IBPA). This is a
complex phase shift exp(ip) between the flow field at the lower and upper periodic
boundaries. In the forced response problem, it arises when the wakes and blades
have different pitches and therefore there is a difference in the times at which
neighbouring wakes strike neighbouring blades.

The linear equations are solved with the same pseudo time-marching approach
adopted for the solution of the nonlinear steady equations, that is by introducing
and discretizing a fictitious time-derivative di/dr in the system of equations (10)

and (11) and time-marching the solution of the preconditioned system until a
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'steady state’ is achieved. Viewing the linearized flow equations as the linear
system Ax = b, this procedure can be regarded as the preconditioned fixed-point
iteration

Xpi1 = (I — M A)x, + M b, (12)

in which M~ is a preconditioning matrix resulting from the Runge-Kutta time-
marching algorithm, the Jacobi preconditioner and one multigrid cycle. The it-
erative equation (12) converges if all the eigenvalues of M !4 lie in the unit disc
centred at (1,0) in the complex plane and this condition is fulfilled for most aeroe-
lastic problems of practical interest. However in some cases the nonlinear base flow
used for the linearization is characterized by small-amplitude limit cycles related
to some physical phenomenon such as small separation bubbles or vortex shedding.
These flow instabilities result in a usually small number of complex conjugate pairs
of outliers of the preconditioned linear operator, that prevent the standard iter-
ation (12) from converging. In such cases convergence can be retrieved only by
solving the linear equations with algorithms which are guaranteed to work even
in the presence of outliers. The Generalized Minimum Residuals (GMRES) algo-
rithm [35] and the Recursive Projection Method [36] belong to this category and a

detailed description of their use in the linear code is provided in references [9, 37].

5 Adjoint Flow Analysis

The steady and harmonic adjoint equations are formally identical as they are both
obtained by transposing the linearized flow equations. The only practical difference

is that the steady adjoint problem is defined in the real domain with zero frequency
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and IBPA, while the harmonic adjoint system is defined in the complex domain
with a nonzero frequency w and IBPA ¢. In the following analysis we use the
Hermitian operator 7 for both problems, with the implicit assumption that this
reduces to the transpose operator T for the steady equations.

In order to determine the adjoint flow equations we start by adding equa-

tions (10) and (11). This yields:
[(I-B)(iw+ L) + B] a= (I-B)f + Gwan - (13)

The appropriate adjoint equation is then found by taking the Hermitian conjugate

of the linear operator and since the boundary operator B is symmetric this yields:
(Gw+1)"(I-B)+ B) v =g. (14)
At this point it is convenient to decompose both v and g into orthogonal compo-
nents as
v=(I-B)v+Bv =v|+vy,
g=(U-B)g+Bg =g +8gL-
Pre-multiplying equation (14) by (I —B) and noting that B is idempotent (i.e.
B?=B) shows that v|| satisfies the system
(I-B)(iw+L)v, =g, (15)
Bv, =0. (16)
These are the equations which are solved iteratively by the adjoint code. Once v,
has been computed, v, is calculated in a post-processing step using an equation
obtained by pre-multiplying equation (14) by B:
vL:gL—B(iw-I-L)HVH. (17)
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In the steady problem, the linearized functional is given by

= . oJ R oJ

T =v" (I=B)f + @) + Fr Vﬁf + v Qg + 5

This shows that v gives the sensitivity of the functional to the linearized wall
velocity ,,4;- Note that v does not correspond to the normal momentum com-

ponent of the analytic adjoint solution at the boundary. In the forced response

problem, the worksum functional is
jEw:va:vﬁ{f,

since there is no grid perturbation and the linearized wall velocity 1,4 is zero in
both the inviscid and viscous case [2].

It is not obvious how best to solve the adjoint equations. Using the same itera-
tive method as for the nonlinear and linear equations (except with the transpose of
the Jacobi preconditioning matrix) was found to work well for inviscid flows, but
there were significant stability problems with viscous flows. To overcome these,
Giles analyzed the iterative evolution of the output functional, finding that the
adjoint code can be designed to give exactly the same iterative history as the linear
code in terms of the output functional. This is achieved by properly constructing
an adjoint version of the usual Runge-Kutta algorithm and using adjoint restric-
tion and prolongation operators for the multigrid [38]. In this way, the stability
and the iterative convergence rate of the adjoint code are identical to those of
the linear code, because this procedure makes the preconditioned adjoint operator
the exact transpose of the preconditioned linear operator and consequently they
have the same eigenvalues. The convergence rate of the linear code is in turn

equal to the asymptotic convergence rate of the nonlinear code for IBPA = 0
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and w — 0. The same GMRES solver implemented in the linear code has also
been used for solving the adjoint equations (15) and (16) in the presence of small-
amplitude limit cycles in the underlying base flow solution, to avoid the numerical
instabilities which would otherwise affect the standard fixed-point iteration.

The linearization of the nonlinear code and the implementation of the adjoint
code of the HYDRA suite have been carried out manually. This requires a bigger
development effort than using automatic differentiation tools [39], but it allows
one to minimize the CPU time per multigrid iteration. The CPU cost per iter-
ation for the steady adjoint code is only 10-20% greater than for the nonlinear
code. The memory requirements are 20-30% greater than for the nonlinear code,
depending on the grid that is used. More details on the optimization of the adjoint

implementation are provided in reference [27].

6 Validation

Using the discrete adjoint method, each routine of the adjoint code is the exact
transpose of its counterpart in the linear code [40, 27]. Therefore the validation
of the adjoint code has been performed at two levels. At the lower level, it has
been checked that each adjoint subroutine provides the same output as its linear
counterpart. At the higher level, it has been checked that the adjoint and linear
codes produce the same value for both the steady and unsteady functionals to
machine accuracy at each step of the iterative process. This exact equivalence is
one advantage of the fully discrete on the continuous adjoint approach.

The linear code itself has also been checked at a subroutine level by comparison
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with the corresponding subroutines in the nonlinear code [40, 27]. In addition it has
been validated using a range of test cases, starting with simple model problems
such as the inviscid flow over 2D flat plate cascades for which a semi-analytic
solution is available [41]. Figure 1 shows the real and imaginary part of the
pressure difference across the unstaggered flat plates of a linear cascade due to
incoming wakes with TBPA = —400°. Validation of the viscous capabilities is
based on benchmark experimental test cases, such as the 2D turbine section of
the 11th Standard Configuration, which is the mid-span blade-to-blade section of
an annular turbine cascade. Experimental measurements and various computed
results of the steady and unsteady flow field due to blade-plunging with prescribed
IBPA are provided in reference [42]. The nonlinear mean flow field and the linear
flow perturbation have been computed with the nonlinear and linear harmonic
HYDRA solvers respectively. All computed results presented in this paper have
been obtained using a mesh with 17745 nodes and figure 2 shows a coarser grid
with 7869 nodes. Figure 3 provides measured and computed profiles of isentropic
Mach number on the blade surface for a transonic working point with exit Mach
number of 0.96. The high pressure patch at about 20 % chord and the rapid
pressure rise at about 80 % chord on the suction surface (figure 3) are due to
a separation bubble and an impinging shock respectively. This is clearly visible
in the Mach number contours of figure 4, which also show how both the blade
boundary layers and wakes thicken after passing through the shock. The measured
and computed amplitude of the linear pressure coefficient for IBPA = 180° are
compared in figure 5-a, while measured and computed values of its phase are shown

in figures 5-b. The overall agreement between measured and computed results is
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fairly good and the computed results are in a very good agreement with those in

the literature [42, 33].

7 Results

In practice, it is often required to monitor both the steady and the unsteady perfor-
mance. For example, the forced response of a blade-row subject to the constraint of
constant circumferential lift can be minimized using steady and harmonic adjoint
equations to determine the sensitivities of forced response and lift to variations of
the blade geometry [12]. In the context of gradient-based optimization, at least
two strategies can be devised to cope with multiple steady and/or unsteady func-
tionals. One approach is to consider a single cost function which is a weighted sum
of all functionals. This strategy is often adopted when the design and off-design
performance have to be optimized simultaneously [43]. Then numerical uncon-
strained optimization methods can be used [44]. The alternative approach is to
consider a constrained optimization problem in which one functional (steady or
unsteady) is treated as objective function and the remaining ones are viewed as
constraints. Then constrained optimization techniques such as reduced-gradient-
type or projected Lagrangian methods [44] can be applied. Using either approach,
one has to determine the sensitivities of each functional at each step of the opti-
mization and this can be accomplished by solving a set of adjoint equations for
each functional. The following subsections provide some applications of the ad-
joint method for determining the sensitivities of steady and unsteady objective

functions of turbomachinery interest.
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7.1 Two-dimensional turbine section

The first problem consists in determining the sensitivities of two steady functionals
to variations of the stagger angle A~y of the turbine blades of the 11th standard con-
figuration. The selected objective functions are the mass flow 7 and the quadratic
deviation I' = (8 — 8r)? of the pitchwise averaged exit flow angle 3 from a target
value Br. The reference flow field associated with the unperturbed geometry is
the transonic flow regime discussed in the previous section. Figure 6-a shows the
mass flow computed by the nonlinear solver for perturbed geometries obtained
letting A~y vary between —6° and 7.5°. Note that each circle corresponds to a
different nonlinear calculation and positive increments A~ lead to higher angles
between the blade chord and the axial direction. The nonlinear and the adjoint
sensitivities of 7 are compared in figure 6-b. The nonlinear derivative is com-
puted with centred finite-differences on intervals of 1° and each cross of the curve
giving the linear sensitivity corresponds to a particular adjoint calculation based
on the nonlinear flow field of the corresponding perturbed geometry. The agree-
ment between the two results is fairly good since the relative difference is about
1% for Ay < —3% and about 2% for Ay > —3%. The reason why the agreement
worsens as A~y increases is the growing nonlinearity associated with the separation
bubble on the suction side. Increasing the stagger angle results in a higher flow
incidence, which in turn widens the separation bubble due to the increased aero-
dynamic loading. The quadratic deviation T" of the exit angle computed by the
nonlinear code for 8; = 58.6° is plotted versus A+ in figure 7-a. The nonlinear and
adjoint sensitivities are again in good agreement, as shown in figure 7-b. Though

not clearly visible in the plot, a closer inspection of these results shows that the
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maximum relative difference between the nonlinear and the adjoint sensitivity is
about 3%. The linear sensitivity obtained using the linearized solver is identical

to that determined by the adjoint code and therefore has not been reported.

7.2 Turbine Inlet Guide Vane

The second test-case is the Inlet Guide Vane (IGV) of a high-pressure turbine,
whose geometry and surface mesh are shown in figure 8. These vanes have a low
aspect-ratio and the two end-wall boundary layers meet on the suction side under
the sweeping effect of the two passage vortices resulting in a wide region of low
total pressure in the centre of the passage. This is clearly visible in the non-
dimensional total pressure contours at the outlet plane shown in figure 9. The gas
stream becomes sonic in the passage and the pitchwise averaged exit Mach number
at blade mid-height is 0.76. The adjoint code has been used to determine the
sensitivities of the outlet mass flow to the rotation of 5 blade airfoils around their
Trailing Edge (TE), that is to variations of their stagger angle. The blade geometry
resulting from the perturbation of the mid-height airfoil is shown in figure 10,
whereas figure 11 compares the nonlinear and the adjoint estimates of the 5 mass
flow sensitivities. The nonlinear derivatives have been computed with forward
finite-differences, using the mass flow determined by 5 nonlinear calculations of
the perturbed flow field. The overall agreement of the two estimates is again fairly
good, since the relative difference between the nonlinear and linear sensitivities
due to the perturbation of the mid-height airfoil is about 3% and becomes slightly
higher moving towards the end-walls, due to the nonlinearity of the secondary

flows. The linear sensitivities are equal to the adjoint estimates within machine
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accuracy and therefore are not reported. We emphasize that a single adjoint
calculation is required to determine the 5 linear sensitivities, whereas 5 nonlinear

or linear calculations are needed with the finite-difference approach.

7.3 Unsteady design: turbine rotor

The harmonic adjoint method allows one to determine the sensitivity of forced
response to the shape of an arbitrary incoming wake, which can be represented
by its radial profiles of thickness and circumferential position. Considering only
circumferential displacements relative to a reference wake, however, may simplify
the redesign of the upstream blade-row. In fact, the new upstream blade may be
obtained by re-stacking the given blade-to-blade airfoils according to the displace-
ments of the wake which minimizes forced response, provided that such displace-
ments are sufficiently small. If not, the wake shed by the redesigned blade has
to recomputed by means of a nonlinear steady calculation and the search process
has to be iterated. The example considered consists of a high pressure turbine
rotor whose blades undergo forced response vibrations due to the wakes shed by
the upstream stator. This test-case was previously analyzed by Vahdati et al. [6],
who found a good agreement in the forced response predicted by linear uncoupled
and nonlinear coupled methods. Figure 12 shows the blade geometry and surface
mesh, whereas figure 13 provides the Mach contours in the mid-height section
for the chosen steady working conditions. The wakes which have been analyzed
are those obtained by keeping circumferentially fixed the wake close to the hub,
shifting the wake close to the tip by a phase shift £ and linearly interpolating

the circumferential position of the wakes in between. This corresponds to a linear
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re-stacking of the upstream blades achieved by leaning them in the circumferential
direction. The reference wake was extracted by the nonlinear steady flow field of
the upstream stator. The adjoint analysis has been used to determine the work-
sum values corresponding to this set of wakes and identify a minimum response.
Figure 14 shows the magnitude of the worksum corresponding to the first torsional
mode versus the phase shift £ and it indicates that the force acting on the blades
decreases as |¢| increases within the range being considered. The physical inter-
pretation of this result is that the maximum structural response occurs when the
blades are hit by the wakes at the same time at all radii (¢ = 0), whereas the
forced response can be reduced by shifting the times at which the wakes hit the
blades at different circumferential positions (increasing [£]).

The results for the full range of phase shifts were obtained from a single har-
monic adjoint calculation. Using the standard linear harmonic approach would
require a linear calculation for each wake, since each corresponds to a different
right-hand-side f; for the linear analysis. As a check, linear calculations have
been performed for a variety of points and they produced identical values for the

worksum output.

8 Conclusions

In this paper the construction of the discrete Euler and NS adjoint equations
has been summarized using an algebraic approach and with a strong emphasis on
turbomachinery applications. The development of the presented adjoint methods

has also involved advances in the methodology for developing and validating fully-
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discrete adjoint solvers. This is due to a) the exact equivalence of each linear and
adjoint routine and b) the use of a particular form of Runge-Kutta time-marching
scheme for the adjoint equations which gives exact equivalence with the linear code
not only in the final results but also during the iterative evolution.

In the framework of gradient-based optimization, the adjoint approach can lead
to substantial computational savings when dealing with high-dimensional design
spaces. A suite of realistic turbomachinery test-cases has been used to demon-
strate the suitability of the adjoint method for obtaining the linear sensitivities of
steady and unsteady turbomachinery functionals. The latter is thought to be the
first application of the adjoint approach to the linear analysis of three-dimensional
viscous blade forced response. The capability of determining the gradient of a
scalar objective function depending on many design parameters with a single cal-
culation has a significant potential for application to the design practice in the

turbomachinery industry.
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-1.5 Re —— linear code
= semi—analitic solution
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Figure 1: Real and imaginary part of the pressure difference across the unstaggered flat

plates of a linear cascade due to incoming wakes with TBPA = —400°.
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Figure 3: Isentropic Mach number on the blade surface of the 2D turbine for transonic

working conditions.
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Figure 8: Unperturbed IGV geometry
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Figure 9: Contours of non-dimensionalized total pressure at turbine IGV outlet.
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