
Abstra
tThis paper presents an overview of the steady and harmoni
 adjoint methodsfor turboma
hinery design using the `dis
rete' approa
h in whi
h the dis
retizednonlinear Euler/Navier-Stokes equations are linearized and the resulting matrix isthen transposed. Steady adjoint solvers give the linear sensitivity of steady-statefun
tionals su
h as mass 
ow and average exit 
ow angle to arbitrary 
hangesin the geometry of the blades and this linear sensitivity information 
an then beused as part of a nonlinear optimization pro
edure. The harmoni
 adjoint methodis based on a single frequen
y of unsteadiness and allows one to determine thegeneralized for
e a
ting on the blades due to arbitrary in
oming time-periodi
gusts. When the for
ing is due to the wakes of the upstream blades the adjointapproa
h 
an be used to tailor the shape of the in
oming wakes to greatly redu
ethe level of for
ed vibration they indu
e. The presented suite of test-
ases in
ludesthe Inlet Guide Vane and the rotor of a High Pressure Turbine.
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1 Introdu
tionModern turboma
hinery has to meet exa
ting standards of eÆ
ien
y resulting inlow weight and highly loaded engine 
omponents. For this reason, the numeri
almethods for design optimization of fans, 
ompressors and turbines are be
omingin
reasingly popular in the turboma
hinery industry. Multidis
iplinary designsystems allow the designer to modify blade and end-wall geometries in order tooptimize the steady aerodynami
 performan
e [1℄ ful�lling appropriate me
hani
al
onstraints. A typi
al example is the minimum 
ross se
tion of the blade, whi
h
annot be redu
ed below a minimum threshold to prevent the steady workingstress from ex
eeding the material strength. However, even if the redesigned bladeful�lls the steady stress requirements, it may still be subje
t to 
riti
al unsteadystresses due to the blade for
ed response [2℄. This aeroelasti
 phenomenon is 
ausedby the relative motion of adja
ent frames of referen
e, whi
h transforms steady
ir
umferential variations of the 
ow �eld in one frame into periodi
 time-varyingfor
es a
ting on the blades in the other. The resulting for
ed vibration may lead toHigh Cy
le Fatigue, whi
h may shorten the life of the blades below the target lifeof the engine. This and similar other issues motivate the growing interest of theturboma
hinery 
ommunity in the unsteady design methods. By this expression,one means designing 
omponents whi
h 
an better withstand unsteady aeroelasti
loads, su
h as those due to for
ed response.Several fun
tionals 
an be envisaged for the optimization of the steady design.One obvious 
hoi
e would be the stage eÆ
ien
y, whi
h in turn depends on theexit loss. However, the se
ondary kineti
 energy [1℄ is often preferred, being lessa�e
ted than the loss by possible ina

ura
ies asso
iated with the turbulen
e mod-3



els. Other obje
tive fun
tions in
lude the mass 
ow and the radial distributionof the exit-plane whirl angle. The formulation of the unsteady design problem isless trivial. Over the past two de
ades, a number of methods have emerged to
arry out the analysis of turboma
hinery aeroelasti
ity, varying from un
oupledlinearized potential 
ow solvers [3, 4℄ to fully-
oupled nonlinear three-dimensionalunsteady vis
ous methods [5℄.Within this range, the un
oupled linear harmoni
Euler and Navier-Stokes (NS) methods have proved to be a su

essful 
ompromisebetween a

ura
y and 
ost [6, 7, 8, 9℄. This approa
h views the aerodynami
 un-steadiness as a small perturbation of the spa
e-periodi
 mean steady 
ow. Hen
ethe unsteady 
ow �eld 
an be linearized about it and due to linearity 
an bede
omposed into a sum of harmoni
 terms, ea
h of whi
h 
an be 
omputed inde-pendently. The 
y
li
 periodi
ity of both the steady and unsteady 
ow leads to agreat redu
tion of 
omputational 
osts, sin
e the analysis 
an fo
us on one bladepassage rather than the whole blade-row making use of suitable periodi
 bound-ary 
onditions [9℄. In the linear analysis of blade for
ed response the harmoni

omponent under investigation is that whose frequen
y is 
losest to the me
hani-
al frequen
y of a parti
ular stru
tural mode (near-resonan
e 
onditions) and theoutput of interest is the worksum fun
tional [2℄. In the 
ontext of Lagrangianme
hani
s, the worksum 
orresponds to the generalized for
e a
ting on the bladesfor a parti
ular stru
tural mode of vibration due to the linear 
ow unsteadinessand is therefore the obvious 
hoi
e for the obje
tive fun
tion to be minimized inthe unsteady design problem. When the for
ed response is 
aused by the wakesshed by an upstream blade-row, the design spa
e is that asso
iated with the shapeof the in
oming wakes and ea
h wake 
orresponds to a parti
ular design of the4



upstream blades.The nonlinear gradient-based optimization of the steady design requires thesensitivities of the obje
tive fun
tion to a set of m design variables at ea
h stepof the optimization. One way of a

omplishing this, is to 
al
ulate m nonlinear
ow �elds asso
iated with m perturbed geometries and determine the gradient ofthe fun
tional by �nite-di�eren
ing. Conversely the use of adjoint equations [10℄allows one to determine all m 
omponents of the gradient with a single adjoint
omputation, at a 
ost 
omparable with that of a single solution of the nonlinear
ow equations. In the for
ed response problem, one may want to tailor the shapeof the in
oming wakes to minimize the for
ed response of the downstream blades.In the 
ontext of the linear unsteady analysis, this would require the solution ofthe linearized equations for ea
h wake 
onsidered. On the other hand, the use ofthe harmoni
 adjoint equations [2, 11℄ provides the generalized for
e on the bladedue to an arbitrary wake with a single harmoni
 adjoint 
al
ulation at a 
ost
omparable with that of the solution of the linear harmoni
 equations. Thus the
omputationally most demanding phase of the optimization pro
ess requires onlytwo CFD 
al
ulations, whi
h are the solution of the mean steady 
ow �eld andthat of the harmoni
 adjoint equations. Florea and Hall [12℄ applied the adjointmethod to 
ompute the sensitivity of blade loads to an in
oming gust. Two-dimensional invis
id unsteady 
ow appli
ations were 
onsidered and the approa
hwas su

essively used for three-dimensional invis
id 
ows [13℄ and two-dimensionalvis
ous problems [14℄. In this paper the extension of the adjoint te
hnique to three-dimensional steady and unsteady vis
ous 
ows will be presented.The adjoint te
hnique for optimal aeronauti
al design has been pioneered by5



Jameson for the potential 
ow, Euler and NS equations [15, 16, 17℄. A numberof other resear
h groups have also developed adjoint CFD 
odes [18, 19, 20℄ usingthe same `
ontinuous' approa
h in whi
h the �rst step is to linearize the originalpartial di�erential equations. Then the adjoint equations and appropriate bound-ary 
onditions are formulated and �nally dis
retized. The alternative `dis
rete'approa
h, whi
h we use, takes a dis
retization of the NS equations, linearizes thedis
rete equations and then uses the transpose of the linear operator to form theadjoint problem. This approa
h has been developed by Elliott and Peraire [21, 22℄,Anderson and Bonhaus [23℄, Nielsen and Anderson [24℄, Mohammadi and Piron-neau [25℄ and Kim et al. [26℄ for external aerodynami
 appli
ations. One of theadvantages of the dis
rete approa
h is that the linear 
ode 
an be validated bydire
t 
omparison with the nonlinear 
ode. Similarly, sin
e the adjoint 
ode is ob-tained by transposing the linear operator, it must produ
e exa
tly the same outputboth at the routine level and for the obje
tive fun
tion. These features enable oneto validate the adjoint against the linear 
ode. Furthermore both the linearizationof the nonlinear dis
rete equations and the implementation of the adjoint 
ode 
anbe performed by automati
 di�erentiation software, greatly redu
ing the develop-ment e�ort. A more detailed 
omparison between the 
ontinuous and the dis
reteadjoint approa
h 
an be found in [27℄.The HYDRA suite of 3D Euler/NS 
odes in
ludes nonlinear, linear and adjointsolvers for external and internal 
ows. These 
odes approximate the 
ow equationson unstru
tured hybrid grids with an edge-based dis
retization and they makeuse of MPI-based distributed parallel 
omputing. The main obje
tives of thispaper are to a) summarize the implementation of the dis
rete adjoint method6



in the HYDRA framework and b) demonstrate the e�e
tiveness of the adjointapproa
h for obtaining the linear sensitivities of steady and unsteady fun
tionalsat a greatly redu
ed 
omputational 
ost when dealing with high-dimensional designspa
es. Presented results in
lude the appli
ation of the adjoint method to a suiteof realisti
 turboma
hinery test 
ases.
2 Adjoint approa
hWe start by 
onsidering the dis
rete nonlinear steady Euler equations with a weakimposition of boundary 
onditions on solid walls enfor
ed spe
ifying zero mass
ux through the fa
es on the surfa
e. As dis
ussed in the next se
tion, the in
ow,out
ow and periodi
 boundary 
onditions are also treated spe
ifying appropriate
uxes and therefore the dis
rete system of equations whi
h is solved has the form:R(U(z);X(z)) = 0 : (1)Here the ve
tor R represents the dis
rete 
ux residuals,U is the ve
tor of primitive
ow variables, X is the ve
tor of nodal 
oordinates and z is a set of m designvariables whi
h 
ontrols the geometry of the blade. Note that both U and Xdepend on z, be
ause the 
omputational mesh deforms 
onforming to the 
urrentgeometry of the blade being designed. The nodal displa
ements are determinedusing the spring analogy [2℄, namely modeling the grid edges as springs with spring
onstants inversely proportional to their length, enfor
ing suitable perturbationsat the nodes on the blade surfa
e.Linearizing equations (1) with respe
t to the perturbation of ea
h design vari-7



able zi yields Lûi = fi ; i = 1; : : : ;m ;where L � �R�U ; ûi � dUdzi ; fi � ��R�zi :The 
orresponding m perturbations of a nonlinear fun
tional J(U(z); z) are:eJi � dJdzi = gT ûi + �J�zi ; i = 1; : : : ;m ; (2)where gT � �J�U :Using the adjoint approa
h, the m sensitivities 
an be obtained by evaluatingeJi = vT fi + �J�zi ; i = 1; : : : ;m ; (3)where the adjoint solution v satis�es the equationLTv = g :The equivalen
e of this formulation 
omes from the following identity:gT ûi = gTL�1 fi = �(LT )�1g�T fi = vT fi :Ea
h design variables gives rise to a di�erent ve
tor fi, whereas if there is only onefun
tional J , there is only one ve
tor g. Thus the adjoint approa
h requires justone adjoint 
al
ulation to obtain the sensitivity of one obje
tive fun
tion to anynumber of design variables. On the other hand, the linear approa
h would requirem solutions of the linearized 
ow equations to obtain the m 
ow �elds ûi. (Notethat the ve
tors fi and g are determined in a 
omputationally 
heap prepro
essingstep). 8



In the for
ed response problem, the linear harmoni
 equations are 
omplexand the linearized fun
tional eJi 
orresponds to the worksum integral wi, whi
hrepresents the generalized for
e a
ting on the blade for a parti
ular stru
turalmode [2℄. Denoting by H the Hermitian 
onjugate operator, one has:eJi = vH fi = wi : (4)The ve
tor fi depends only on the in
oming gust and hen
e the blade for
edresponse 
an be 
omputed for any sour
e of aerodynami
 unsteadiness, on
e thesolution v of the harmoni
 adjoint equations has been determined. In this 
ase,the grid does not deform and 
onsequently the term �J�zi appearing in equations (2)and (3) is identi
ally zero and so does not appear in equation (4).Finally note that the elements of the ve
tor g are non-zero only at nodes wherethe obje
tive fun
tion is de�ned, at the nodes on the outlet plane if the fun
tionalis the exit mass 
ow and at the nodes on the blade surfa
e if the fun
tional is theworksum integral. The analysis of the nonlinear, linear and adjoint equations is
arried out in greater detail in the three following se
tions.
3 Nonlinear 
ow analysisThe dis
rete nonlinear analysis of the time-averaged 
ow �eld is applied to asingle turboma
hinery blade-row in the relative frame of referen
e. The 
ow 
anbe modeled by either the Euler or the Reynolds{averaged NS equations 
oupledwith the Spalart{Almaras turbulen
e model. Due to the rotational speed, sour
eterms asso
iated with the 
entrifugal and Coriolis for
es appear in the momentumequations. Denoting byU andX the unperturbed 
ow �eld and nodal 
oordinates9



respe
tively, these terms 
an all be formally in
luded in the equationR(U;X) = 0 : (5)Be
ause the governing equations are approximated on an unstru
tured grid usingan edge-based algorithm [28, 29℄, the residual ve
tor R is a sum of 
ontributionsfrom all of the edges of the grid, with ea
h edge 
ontributing only to the residuals
orresponding to the two nodes at either end. The nonlinear system (5) has size(Neqs � N), where N is the number of grid nodes, Neqs= 5 for the invis
id 
owmodel and Neqs=6 for turbulent 
ows. The 6th 
omponent in the latter 
ase isthe turbulen
e variable, determined with the Spalart-Almaras turbulen
e model.The boundary 
onditions to whi
h the system (5) is subje
t 
an be of threetypes: in
ow/out
ow, periodi
 and invis
id/vis
ous wall. The in
ow and out
owboundaries are handled through 
uxes whi
h in
orporate pres
ribed 
ow informa-tion and thus they be
ome part of the residual ve
tor R. At mat
hing pairs ofperiodi
 nodes the periodi
ity 
ondition for linear 
as
ades is enfor
ed setting the
ow state on the upper boundary equal to that on its lower 
ounterpart. In the
ase of annular domains be
ause of the use of Cartesian 
oordinates, the velo
ityve
tors on the upper boundary are obtained by rotating those on the lower one.Combining 
ux residuals at the two periodi
 nodes in a suitable manner to main-tain periodi
ity, this boundary 
ondition 
an also be in
luded in the de�nition ofthe 
ux residual ve
tor R. A no-slip boundary 
ondition is applied to vis
ous wallsdis
arding the momentum residuals and repla
ing these equations by the spe
i�
a-tion of zero velo
ity at the boundary nodes. The 
omputation of the 
ux residualsat nodes on invis
id walls is based on zero mass 
ux through the boundary fa
es,but in addition 
ow tangen
y is enfor
ed by setting the normal 
omponent of the10



surfa
e velo
ity to zero and disregarding the normal 
omponent of the momentumresiduals. Applying these strong wall boundary 
onditions [27℄ to the system (5)yields: (I�B) R(U) = 0 (6)B U = 0 (7)where B is the proje
tor whi
h extra
ts the normal momentum/velo
ity 
ompo-nents at the nodes on invis
id wall boundaries and the whole momentum/velo
ityat the nodes on vis
ous walls. The square matrix asso
iated with the linear oper-ator B has size ((N �Neqs)� (N �Neqs)) and is blo
k-diagonal with ea
h blo
k ofsize (Neqs�Neqs). The matrix B has only nw nonzero blo
ks, nw being the overallnumber of nodes on wall boundaries. Denoting by nw the wall normal and by(nx; ny; nz) its 
omponents, the generi
 form of the diagonal blo
k in the invis
idand vis
ous 
ase is266666666666666664
0 0 0 0 00 n2x nxny nxnz 00 nynx n2y nynz 00 nznx nzny n2z 00 0 0 0 0

377777777777777775 and
266666666666666664
0 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 0

377777777777777775 (8)
respe
tively.The dis
rete equations (6) and (7) are solved using Runge-Kutta time-mar
hinga

elerated by Ja
obi pre
onditioning and multigrid. Further details on the im-plementation of the nonlinear solver 
an be found in referen
es [28, 2℄.
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4 Linear 
ow analysisBoth the variations of the steady 
ow due to geometri
 perturbations and the 
owunsteadiness due to in
oming gusts are treated as small linear perturbations. Inthe steady 
ase, one deliberately uses small perturbations to obtain an a

urateestimate of the gradient. Assuming that the 
ow unsteadiness 
an also be treatedas a small perturbation of the mean steady 
ow �eld, one 
an 
arry out a linearanalysis of the perturbed 
ow �eld in both the steady and unsteady 
ase. Note thatfor
ed response is not a fundamentally linear phenomenon, be
ause it is always
hara
terized by a �nite level of unsteadiness and it is not 
lear a priori thatlinear perturbation methods should give a

urate predi
tions. However a seriesof studies based on the 
omparison of nonlinear and linear results [6, 30, 31, 32℄as well as linear results and experimental data [33℄ point to the suitability of thelinear approa
h for turboma
hinery for
ed response.In the steady design problem, the perturbation of a single design variable zindu
es a 
ow perturbation û � dU=dz and the perturbed 
ow �eld U 
an bewritten as U = U+ û; jjûjj � jjUjjIn the for
ed response problem, the time-periodi
ity of the unsteadiness impliesthat the linear time-dependent 
omponent of the 
ow 
an be written as a sum ofharmoni
s, ea
h of whi
h 
an be analyzed independently due to linearity. Con-sidering just the fundamental harmoni
 of frequen
y !, the unsteady 
ow �eldU(t) 
an be written as the sum of the mean steady nonlinear 
ow �eld U and thereal part of the small harmoni
 perturbation of known frequen
y ! and unknown12




omplex amplitude û: U(t) = U+Rfexp (i!t) ûg: (9)The 
omplex ve
tor û represents the amplitude and phase of the unsteady 
ow.The governing equations for the 
ow perturbation û are formally identi
al inthe steady and unsteady 
ase, sin
e the linearization of both the dis
rete steadyequations (6) and (7) and their unsteady 
ounterpart [9℄ leads to the linear system:(I�B) [(i! + L)û� f ℄ = 0 (10)B û = ûwall : (11)in whi
h the linear operator L � �R�U gives the sensitivity of the dis
rete nonlinearresidual R to the 
ow perturbation û. The perturbation ûwall of the wall velo
ityis zero for vis
ous walls and its general form in the 
ase of stationary and movinginvis
id walls is derived in referen
e [2℄.In the steady problem, the frequen
y ! is zero and the system of equations (10)and (11) is de�ned in the real domain. The sour
e term f � ��R=�z providesthe sensitivity of the residual ve
tor R to the grid perturbation and is non-zerothroughout the 
omputational domain. An a

urate estimate of f is obtained us-ing the 
omplex variable method des
ribed in [27℄. In order to ensure the full
onsisten
e of the steady fun
tionals (whi
h depend on the solution of the non-linear 
ow equations) with their linear sensitivities (whi
h additionally depend onthe solution of the linearized 
ow equations), a 
ompletely re
e
tive treatment ofthe far-�eld boundaries is adopted: the in
ow and out
ow boundary 
onditionsare obtained by linearizing their nonlinear 
ounterparts, that is setting to zerothe appropriate linearized far-�eld information. For example, the linearized total13



pressure, total temperature and 
ow angle perturbations are set to zero at a sub-soni
 in
ow boundary. The linear periodi
 boundary 
ondition is the same as forthe nonlinear equations.In the for
ed response 
ase, the system of linear harmoni
 equations (10)and (11) de�ning the unsteady 
ow perturbation is 
omplex and 
an be viewed asthe frequen
y domain 
ounterpart of the nonlinear unsteady equations. When thein
oming gust is the wake shed by the upstream blade-row, the sour
e term f isnon-zero only at the in
ow boundary and it depends on the radial distribution ofthe 
omplex 
oeÆ
ients of the �rst harmoni
 of the wake. To leading order, theamplitude of these 
oeÆ
ients depends on the 
ir
umferential width of the wake,while their phase provides the 
ir
umferential postion. The far-�eld boundariesare treated with a linearized free-stream boundary 
ondition enfor
ed by settingto zero the 
ow perturbation û and its implementation is based on nonre
e
tingboundary 
onditions to minimize spurious re
e
tions [34℄. The periodi
 boundary
onditions for the 
omplex 
ow �eld û are a generalization of their steady 
oun-terpart, obtained introdu
ing the inter-blade phase angle ' (IBPA). This is a
omplex phase shift exp(i') between the 
ow �eld at the lower and upper periodi
boundaries. In the for
ed response problem, it arises when the wakes and bladeshave di�erent pit
hes and therefore there is a di�eren
e in the times at whi
hneighbouring wakes strike neighbouring blades.The linear equations are solved with the same pseudo time-mar
hing approa
hadopted for the solution of the nonlinear steady equations, that is by introdu
ingand dis
retizing a �
titious time-derivative dû=d� in the system of equations (10)and (11) and time-mar
hing the solution of the pre
onditioned system until a14



'steady state' is a
hieved. Viewing the linearized 
ow equations as the linearsystem Ax = b, this pro
edure 
an be regarded as the pre
onditioned �xed-pointiteration xn+1 = (I �M�1A)xn +M�1b ; (12)in whi
h M�1 is a pre
onditioning matrix resulting from the Runge-Kutta time-mar
hing algorithm, the Ja
obi pre
onditioner and one multigrid 
y
le. The it-erative equation (12) 
onverges if all the eigenvalues of M�1A lie in the unit dis

entred at (1; 0) in the 
omplex plane and this 
ondition is ful�lled for most aeroe-lasti
 problems of pra
ti
al interest. However in some 
ases the nonlinear base 
owused for the linearization is 
hara
terized by small-amplitude limit 
y
les relatedto some physi
al phenomenon su
h as small separation bubbles or vortex shedding.These 
ow instabilities result in a usually small number of 
omplex 
onjugate pairsof outliers of the pre
onditioned linear operator, that prevent the standard iter-ation (12) from 
onverging. In su
h 
ases 
onvergen
e 
an be retrieved only bysolving the linear equations with algorithms whi
h are guaranteed to work evenin the presen
e of outliers. The Generalized Minimum Residuals (GMRES) algo-rithm [35℄ and the Re
ursive Proje
tion Method [36℄ belong to this 
ategory and adetailed des
ription of their use in the linear 
ode is provided in referen
es [9, 37℄.
5 Adjoint Flow AnalysisThe steady and harmoni
 adjoint equations are formally identi
al as they are bothobtained by transposing the linearized 
ow equations. The only pra
ti
al di�eren
eis that the steady adjoint problem is de�ned in the real domain with zero frequen
y15



and IBPA, while the harmoni
 adjoint system is de�ned in the 
omplex domainwith a nonzero frequen
y ! and IBPA '. In the following analysis we use theHermitian operator H for both problems, with the impli
it assumption that thisredu
es to the transpose operator T for the steady equations.In order to determine the adjoint 
ow equations we start by adding equa-tions (10) and (11). This yields:�(I�B)(i! + L) +B� û = (I�B) f + ûwall : (13)The appropriate adjoint equation is then found by taking the Hermitian 
onjugateof the linear operator and sin
e the boundary operator B is symmetri
 this yields:�(i! + L)H(I�B) +B�v = g : (14)At this point it is 
onvenient to de
ompose both v and g into orthogonal 
ompo-nents as v = (I�B)v +Bv = vk + v? ;g = (I�B)g +Bg = gk + g? :Pre-multiplying equation (14) by (I�B) and noting that B is idempotent (i.e.B2=B) shows that vk satis�es the system(I�B)(i! + L)Hvk = gk ; (15)B vk = 0 : (16)These are the equations whi
h are solved iteratively by the adjoint 
ode. On
e vkhas been 
omputed, v? is 
al
ulated in a post-pro
essing step using an equationobtained by pre-multiplying equation (14) by B:v? = g? �B(i! + L)Hvk : (17)16



In the steady problem, the linearized fun
tional is given byeJ = vT �(I�B)f + ûwall�+ �J�z = vTk f + vT?ûwall + �J�z :This shows that v? gives the sensitivity of the fun
tional to the linearized wallvelo
ity ûwall. Note that v? does not 
orrespond to the normal momentum 
om-ponent of the analyti
 adjoint solution at the boundary. In the for
ed responseproblem, the worksum fun
tional iseJ � w = vHf = vHk f ;sin
e there is no grid perturbation and the linearized wall velo
ity ûwall is zero inboth the invis
id and vis
ous 
ase [2℄.It is not obvious how best to solve the adjoint equations. Using the same itera-tive method as for the nonlinear and linear equations (ex
ept with the transpose ofthe Ja
obi pre
onditioning matrix) was found to work well for invis
id 
ows, butthere were signi�
ant stability problems with vis
ous 
ows. To over
ome these,Giles analyzed the iterative evolution of the output fun
tional, �nding that theadjoint 
ode 
an be designed to give exa
tly the same iterative history as the linear
ode in terms of the output fun
tional. This is a
hieved by properly 
onstru
tingan adjoint version of the usual Runge-Kutta algorithm and using adjoint restri
-tion and prolongation operators for the multigrid [38℄. In this way, the stabilityand the iterative 
onvergen
e rate of the adjoint 
ode are identi
al to those ofthe linear 
ode, be
ause this pro
edure makes the pre
onditioned adjoint operatorthe exa
t transpose of the pre
onditioned linear operator and 
onsequently theyhave the same eigenvalues. The 
onvergen
e rate of the linear 
ode is in turnequal to the asymptoti
 
onvergen
e rate of the nonlinear 
ode for IBPA = 017



and ! ! 0. The same GMRES solver implemented in the linear 
ode has alsobeen used for solving the adjoint equations (15) and (16) in the presen
e of small-amplitude limit 
y
les in the underlying base 
ow solution, to avoid the numeri
alinstabilities whi
h would otherwise a�e
t the standard �xed-point iteration.The linearization of the nonlinear 
ode and the implementation of the adjoint
ode of the HYDRA suite have been 
arried out manually. This requires a biggerdevelopment e�ort than using automati
 di�erentiation tools [39℄, but it allowsone to minimize the CPU time per multigrid iteration. The CPU 
ost per iter-ation for the steady adjoint 
ode is only 10-20% greater than for the nonlinear
ode. The memory requirements are 20-30% greater than for the nonlinear 
ode,depending on the grid that is used. More details on the optimization of the adjointimplementation are provided in referen
e [27℄.
6 ValidationUsing the dis
rete adjoint method, ea
h routine of the adjoint 
ode is the exa
ttranspose of its 
ounterpart in the linear 
ode [40, 27℄. Therefore the validationof the adjoint 
ode has been performed at two levels. At the lower level, it hasbeen 
he
ked that ea
h adjoint subroutine provides the same output as its linear
ounterpart. At the higher level, it has been 
he
ked that the adjoint and linear
odes produ
e the same value for both the steady and unsteady fun
tionals toma
hine a

ura
y at ea
h step of the iterative pro
ess. This exa
t equivalen
e isone advantage of the fully dis
rete on the 
ontinuous adjoint approa
h.The linear 
ode itself has also been 
he
ked at a subroutine level by 
omparison18



with the 
orresponding subroutines in the nonlinear 
ode [40, 27℄. In addition it hasbeen validated using a range of test 
ases, starting with simple model problemssu
h as the invis
id 
ow over 2D 
at plate 
as
ades for whi
h a semi-analyti
solution is available [41℄. Figure 1 shows the real and imaginary part of thepressure di�eren
e a
ross the unstaggered 
at plates of a linear 
as
ade due toin
oming wakes with IBPA = �4000. Validation of the vis
ous 
apabilities isbased on ben
hmark experimental test 
ases, su
h as the 2D turbine se
tion ofthe 11th Standard Con�guration, whi
h is the mid-span blade-to-blade se
tion ofan annular turbine 
as
ade. Experimental measurements and various 
omputedresults of the steady and unsteady 
ow �eld due to blade-plunging with pres
ribedIBPA are provided in referen
e [42℄. The nonlinear mean 
ow �eld and the linear
ow perturbation have been 
omputed with the nonlinear and linear harmoni
HYDRA solvers respe
tively. All 
omputed results presented in this paper havebeen obtained using a mesh with 17745 nodes and �gure 2 shows a 
oarser gridwith 7869 nodes. Figure 3 provides measured and 
omputed pro�les of isentropi
Ma
h number on the blade surfa
e for a transoni
 working point with exit Ma
hnumber of 0.96. The high pressure pat
h at about 20 % 
hord and the rapidpressure rise at about 80 % 
hord on the su
tion surfa
e (�gure 3) are due toa separation bubble and an impinging sho
k respe
tively. This is 
learly visiblein the Ma
h number 
ontours of �gure 4, whi
h also show how both the bladeboundary layers and wakes thi
ken after passing through the sho
k. The measuredand 
omputed amplitude of the linear pressure 
oeÆ
ient for IBPA = 1800 are
ompared in �gure 5-a, while measured and 
omputed values of its phase are shownin �gures 5-b. The overall agreement between measured and 
omputed results is19



fairly good and the 
omputed results are in a very good agreement with those inthe literature [42, 33℄.
7 ResultsIn pra
ti
e, it is often required to monitor both the steady and the unsteady perfor-man
e. For example, the for
ed response of a blade-row subje
t to the 
onstraint of
onstant 
ir
umferential lift 
an be minimized using steady and harmoni
 adjointequations to determine the sensitivities of for
ed response and lift to variations ofthe blade geometry [12℄. In the 
ontext of gradient-based optimization, at leasttwo strategies 
an be devised to 
ope with multiple steady and/or unsteady fun
-tionals. One approa
h is to 
onsider a single 
ost fun
tion whi
h is a weighted sumof all fun
tionals. This strategy is often adopted when the design and o�-designperforman
e have to be optimized simultaneously [43℄. Then numeri
al un
on-strained optimization methods 
an be used [44℄. The alternative approa
h is to
onsider a 
onstrained optimization problem in whi
h one fun
tional (steady orunsteady) is treated as obje
tive fun
tion and the remaining ones are viewed as
onstraints. Then 
onstrained optimization te
hniques su
h as redu
ed-gradient-type or proje
ted Lagrangian methods [44℄ 
an be applied. Using either approa
h,one has to determine the sensitivities of ea
h fun
tional at ea
h step of the opti-mization and this 
an be a

omplished by solving a set of adjoint equations forea
h fun
tional. The following subse
tions provide some appli
ations of the ad-joint method for determining the sensitivities of steady and unsteady obje
tivefun
tions of turboma
hinery interest. 20



7.1 Two-dimensional turbine se
tionThe �rst problem 
onsists in determining the sensitivities of two steady fun
tionalsto variations of the stagger angle �
 of the turbine blades of the 11th standard 
on-�guration. The sele
ted obje
tive fun
tions are the mass 
ow _m and the quadrati
deviation � = (� � �T )2 of the pit
hwise averaged exit 
ow angle � from a targetvalue �T . The referen
e 
ow �eld asso
iated with the unperturbed geometry isthe transoni
 
ow regime dis
ussed in the previous se
tion. Figure 6-a shows themass 
ow 
omputed by the nonlinear solver for perturbed geometries obtainedletting �
 vary between �60 and 7:50. Note that ea
h 
ir
le 
orresponds to adi�erent nonlinear 
al
ulation and positive in
rements �
 lead to higher anglesbetween the blade 
hord and the axial dire
tion. The nonlinear and the adjointsensitivities of _m are 
ompared in �gure 6-b. The nonlinear derivative is 
om-puted with 
entred �nite-di�eren
es on intervals of 1o and ea
h 
ross of the 
urvegiving the linear sensitivity 
orresponds to a parti
ular adjoint 
al
ulation basedon the nonlinear 
ow �eld of the 
orresponding perturbed geometry. The agree-ment between the two results is fairly good sin
e the relative di�eren
e is about1% for �
 < �30 and about 2% for �
 � �30. The reason why the agreementworsens as �
 in
reases is the growing nonlinearity asso
iated with the separationbubble on the su
tion side. In
reasing the stagger angle results in a higher 
owin
iden
e, whi
h in turn widens the separation bubble due to the in
reased aero-dynami
 loading. The quadrati
 deviation � of the exit angle 
omputed by thenonlinear 
ode for �t = 58:6o is plotted versus �
 in �gure 7-a. The nonlinear andadjoint sensitivities are again in good agreement, as shown in �gure 7-b. Thoughnot 
learly visible in the plot, a 
loser inspe
tion of these results shows that the21



maximum relative di�eren
e between the nonlinear and the adjoint sensitivity isabout 3%. The linear sensitivity obtained using the linearized solver is identi
alto that determined by the adjoint 
ode and therefore has not been reported.7.2 Turbine Inlet Guide VaneThe se
ond test-
ase is the Inlet Guide Vane (IGV) of a high-pressure turbine,whose geometry and surfa
e mesh are shown in �gure 8. These vanes have a lowaspe
t-ratio and the two end-wall boundary layers meet on the su
tion side underthe sweeping e�e
t of the two passage vorti
es resulting in a wide region of lowtotal pressure in the 
entre of the passage. This is 
learly visible in the non-dimensional total pressure 
ontours at the outlet plane shown in �gure 9. The gasstream be
omes soni
 in the passage and the pit
hwise averaged exit Ma
h numberat blade mid-height is 0:76. The adjoint 
ode has been used to determine thesensitivities of the outlet mass 
ow to the rotation of 5 blade airfoils around theirTrailing Edge (TE), that is to variations of their stagger angle. The blade geometryresulting from the perturbation of the mid-height airfoil is shown in �gure 10,whereas �gure 11 
ompares the nonlinear and the adjoint estimates of the 5 mass
ow sensitivities. The nonlinear derivatives have been 
omputed with forward�nite-di�eren
es, using the mass 
ow determined by 5 nonlinear 
al
ulations ofthe perturbed 
ow �eld. The overall agreement of the two estimates is again fairlygood, sin
e the relative di�eren
e between the nonlinear and linear sensitivitiesdue to the perturbation of the mid-height airfoil is about 3% and be
omes slightlyhigher moving towards the end-walls, due to the nonlinearity of the se
ondary
ows. The linear sensitivities are equal to the adjoint estimates within ma
hine22



a

ura
y and therefore are not reported. We emphasize that a single adjoint
al
ulation is required to determine the 5 linear sensitivities, whereas 5 nonlinearor linear 
al
ulations are needed with the �nite-di�eren
e approa
h.7.3 Unsteady design: turbine rotorThe harmoni
 adjoint method allows one to determine the sensitivity of for
edresponse to the shape of an arbitrary in
oming wake, whi
h 
an be representedby its radial pro�les of thi
kness and 
ir
umferential position. Considering only
ir
umferential displa
ements relative to a referen
e wake, however, may simplifythe redesign of the upstream blade-row. In fa
t, the new upstream blade may beobtained by re-sta
king the given blade-to-blade airfoils a

ording to the displa
e-ments of the wake whi
h minimizes for
ed response, provided that su
h displa
e-ments are suÆ
iently small. If not, the wake shed by the redesigned blade hasto re
omputed by means of a nonlinear steady 
al
ulation and the sear
h pro
esshas to be iterated. The example 
onsidered 
onsists of a high pressure turbinerotor whose blades undergo for
ed response vibrations due to the wakes shed bythe upstream stator. This test-
ase was previously analyzed by Vahdati et al. [6℄,who found a good agreement in the for
ed response predi
ted by linear un
oupledand nonlinear 
oupled methods. Figure 12 shows the blade geometry and surfa
emesh, whereas �gure 13 provides the Ma
h 
ontours in the mid-height se
tionfor the 
hosen steady working 
onditions. The wakes whi
h have been analyzedare those obtained by keeping 
ir
umferentially �xed the wake 
lose to the hub,shifting the wake 
lose to the tip by a phase shift � and linearly interpolatingthe 
ir
umferential position of the wakes in between. This 
orresponds to a linear23



re-sta
king of the upstream blades a
hieved by leaning them in the 
ir
umferentialdire
tion. The referen
e wake was extra
ted by the nonlinear steady 
ow �eld ofthe upstream stator. The adjoint analysis has been used to determine the work-sum values 
orresponding to this set of wakes and identify a minimum response.Figure 14 shows the magnitude of the worksum 
orresponding to the �rst torsionalmode versus the phase shift � and it indi
ates that the for
e a
ting on the bladesde
reases as j�j in
reases within the range being 
onsidered. The physi
al inter-pretation of this result is that the maximum stru
tural response o

urs when theblades are hit by the wakes at the same time at all radii (� = 0), whereas thefor
ed response 
an be redu
ed by shifting the times at whi
h the wakes hit theblades at di�erent 
ir
umferential positions (in
reasing j�j).The results for the full range of phase shifts were obtained from a single har-moni
 adjoint 
al
ulation. Using the standard linear harmoni
 approa
h wouldrequire a linear 
al
ulation for ea
h wake, sin
e ea
h 
orresponds to a di�erentright-hand-side fi for the linear analysis. As a 
he
k, linear 
al
ulations havebeen performed for a variety of points and they produ
ed identi
al values for theworksum output.
8 Con
lusionsIn this paper the 
onstru
tion of the dis
rete Euler and NS adjoint equationshas been summarized using an algebrai
 approa
h and with a strong emphasis onturboma
hinery appli
ations. The development of the presented adjoint methodshas also involved advan
es in the methodology for developing and validating fully-24



dis
rete adjoint solvers. This is due to a) the exa
t equivalen
e of ea
h linear andadjoint routine and b) the use of a parti
ular form of Runge-Kutta time-mar
hings
heme for the adjoint equations whi
h gives exa
t equivalen
e with the linear 
odenot only in the �nal results but also during the iterative evolution.In the framework of gradient-based optimization, the adjoint approa
h 
an leadto substantial 
omputational savings when dealing with high-dimensional designspa
es. A suite of realisti
 turboma
hinery test-
ases has been used to demon-strate the suitability of the adjoint method for obtaining the linear sensitivities ofsteady and unsteady turboma
hinery fun
tionals. The latter is thought to be the�rst appli
ation of the adjoint approa
h to the linear analysis of three-dimensionalvis
ous blade for
ed response. The 
apability of determining the gradient of as
alar obje
tive fun
tion depending on many design parameters with a single 
al-
ulation has a signi�
ant potential for appli
ation to the design pra
ti
e in theturboma
hinery industry.
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ross the unstaggered 
atplates of a linear 
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Figure 2: Coarse mesh for the 2D turbine of the 11th standard 
on�guration.
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Figure 8: Unperturbed IGV geometry
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Figure 9: Contours of non-dimensionalized total pressure at turbine IGV outlet.
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Figure 10: Perturbed IGV geometry
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ow sensitivity.
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Figure 12: Geometry and grid surfa
e of the turbine rotor.
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Figure 13: Ma
h 
ontours in the mid-height blade-to-blade se
tion of the turbine rotor.
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