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Multilevel Monte Carlo Approximation of Distribution Functions and Densities∗
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Abstract. We construct and analyze multilevel Monte Carlo methods for the approximation of distribution
functions and densities of univariate random variables. Since, by assumption, the target distribution
is not known explicitly, approximations have to be used. We provide a general analysis under suitable
assumptions on the weak and strong convergence. We apply the results to smooth path-independent
and path-dependent functionals and to stopped exit times of stochastic differential equations (SDEs).
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1. Introduction. Let Y denote a real-valued random variable with distribution function
F and density ρ. We study the approximation of F and ρ with respect to the supremum
norm on a compact interval [S0, S1], without assuming that the distribution of Y is explicitly
known or that the simulation of Y is feasible. Instead, we assume there exists a sequence of
random variables Y (�) that converge to Y in a suitable way and that are suited to simulation.

We present a general approach which is later applied in the context of stochastic differential
equations (SDEs). In this specific setting we aim for the distribution of Lipschitz continuous,
path-independent or path-dependent functionals of the solution process, or the distribution
of stopped exit times from bounded domains.

In the general setting, a naive Monte Carlo algorithm for the approximation of ρ works
as follows: Choose a level � ∈ N and a replication number n ∈ N, generate n independent
samples according to Y (�), and apply a kernel density estimator, say, to these samples. For the
approximation of F one proceeds analogously, and here the empirical distribution function of
the samples is the most elementary choice.

In this paper we develop the multilevel Monte Carlo approach, which relies on the coupled
simulation of Y (�) and Y (�−1) on a finite range of levels �. For the multilevel approach to work
well for the approximation of distribution functions or densities, a smoothing step is necessary
on every level. The smoothing is based on rescaled translates of a suitable function g, which is
meant to approximate either the indicator function of ]−∞, 0] or the Dirac functional at zero.
At its first stage the multilevel algorithm provides an approximation to F or ρ at discrete
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Table 1
Orders of convergence of the multilevel algorithm.

F ρ F (s)

Smooth functional 2 + 2
r+1

2 + 4
r

2 + 1
r+1

Stopped exit time 3 + 2
r+1

3 + 5
r

3 + 2
r+1

points, which is extended to a function on [S0, S1] in a standard and purely deterministic
way. The parameters of our multilevel algorithm are the minimal and maximal levels, the
replication numbers per level, the smoothing parameter, and the number of discrete points to
be used in the first stage.

In general, the analysis of multilevel Monte Carlo algorithms is based on assumptions
about the convergence rates of the weak and the strong error in terms of the computational
cost. For the present problem, the standard assumptions that are used for the approximation
of expectations have to be modified appropriately. We derive upper bounds for error(A), the
root mean square error, and the computational cost, cost(A), in terms of the parameters of the
algorithm A, the strong and weak convergence rates, and the smoothness of ρ, and we present
the asymptotically optimal choice of the parameters with respect to our upper bounds. This
leads to a final estimate of the form cost(A) ≤ O

(
error(A)−θ+ε

)
for every ε > 0, where θ > 0.

Roughly speaking, θ is the order of convergence of the multilevel algorithm. See Theorems
2.6 and 4.3 for the precise statements involving also powers of log error(A).

Here we only present an application of these theorems for functionals ϕ : C([0, T ],Rd) → R

of the solution process X of a d-dimensional system of SDEs, i.e., Y = ϕ(X). For simplicity
we take the Euler scheme with equidistant time-steps for the approximation of X in the
construction of the multilevel algorithm, and we assume that the random variable Y has a
density ρ on R that is r-times continuously differentiable on [S0 − δ0, S1 + δ0] for some r ≥ 1
and δ0 > 0 for the rest of the introduction.

Table 1 contains the values of θ for the approximation of F and ρ on [S0, S1] as well as
for the approximation of F at a single point s ∈ [S0, S1]. In the first row, ϕ is assumed to
be Lipschitz continuous, and in the second row, ϕ(x) = inf{t ≥ 0 : x(t) ∈ ∂D} ∧ T is a
stopped exit time from a bounded domain D ⊂ R

d. We note that in every case represented
in Table 1, proper multilevel algorithms turn out to be superior to single-level algorithms, as
far as our upper bounds are concerned. We do not achieve better upper bounds if we restrict
considerations to path-independent functionals, i.e., Y = ϕ(XT ) with ϕ : R

d → R being
Lipschitz continuous; here, however, the situation changes if the Euler scheme is replaced by
the Milstein scheme (in dimension d = 1), which yields θ = 2 + 1/(r + 1), θ = 2 + 3/r, and
θ = 2 for the approximation of F , ρ, and F (s), respectively.

Corresponding results are available for the approximation of the expectation of ϕ(X) by
means of multilevel Euler algorithms. It is well known that θ = 2 if ϕ is Lipschitz continuous,
and θ = 3 holds for stopped exit times ϕ; see Higham et al. [15]. In the limit r → ∞ we
achieve the same values of θ for the approximation of the distribution function or the density
of ϕ(X). It is well known that the forward Kolmogorov equation provides an alternative way
to approximate the density of the random variable Y in the case of a low-dimensional SDE
and a path-independent functional ϕ. We refer the reader to Gobet and Menozzi [13] for a
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corresponding representation result in the case of stopped exit times.
Multilevel algorithms, which have been introduced by Heinrich [14] and Giles [9] (see also

Kebaier [17] for the two-level construction), are applied to rather different computational
problems. The approximation of distribution functions and densities seems to be a new
application, which exhibits, in particular, the following features: A singularity, which is due to
the presence of the indicator function or the Dirac functional, and the fact that we approximate
elements of function spaces instead of just real numbers. The first issue is also investigated,
without smoothing, by Avikainen [3] and Giles, Higham, and Mao [11], and with implicit
smoothing through the use of conditional expectations by Giles [8] and Giles, Debrabant,
and Rößler [10]. Furthermore, Altmayer and Neuenkirch [2] combine smoothing by Malliavin
integration by parts with the multilevel approach to approximate expectations of discontinuous
payoffs in the Heston model. The second issue has already been worked out by Heinrich [14]
in the general setting of algorithms taking values in Banach spaces.

We stress that a two-level construction for the approximation of densities in the SDE
setting with Y = XT has already been proposed and analyzed by Kebaier and Kohatsu-
Higa [18] in the case r = ∞, and their analysis yields θ = 5/2.

This paper is organized as follows. In sections 2–4 we provide the general analysis of the
three approximation problems, namely, for distribution functions and densities on compact
intervals and for distribution functions at a single point. The structure and the approach in
each of these sections are similar: We discuss, in particular, the assumptions on the weak and
the strong convergence, and we construct and analyze the respective multilevel algorithms.
Section 5 contains, in particular, the application of the results from sections 2–4 to functionals
of the solutions of SDEs, which is complemented by numerical experiments for simple test cases
in section 6.

2. Approximation of distribution functions on compact intervals. We consider a random
variable Y , and we study the approximation of its distribution function F on a compact
interval [S0, S1], with S0 < S1 being fixed throughout this section. We do not assume that the
distribution of Y can be simulated exactly. Instead, we assume that the simulation is feasible
for random variables Y (�) that converge to Y in a suitable way.

2.1. Smoothing. For the approximation of F , a straightforward application of the multi-
level Monte Carlo approach based on F (s) = E(1]−∞,s](Y )) could suffer from the discontinuity
of 1]−∞,s]; see Remark 5.1 below. This can be avoided by a smoothing step, provided that a
density exists and is sufficiently smooth. Specifically, we assume that
(A1) the random variable Y has a density ρ on R that is r-times continuously differentiable

on [S0 − δ0, S1 + δ0] for some r ∈ N0 and δ0 > 0.
The smoothing is based on rescaled translates of a function g : R → R with the following
properties:
(S1) The cost of computing g(s) is bounded by a constant, uniformly in s ∈ R.
(S2) g is Lipschitz continuous.
(S3) g(s) = 1 for s < −1 and g(s) = 0 for s > 1.
(S4)

∫ 1
−1 s

j · (1]−∞,0](s)− g(s)) ds = 0 for j = 0, . . . , r − 1.
Obviously, g is bounded due to (S2) and (S3).
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Remark 2.1. Such a function g is easily constructed as follows. There exists a uniquely
determined polynomial p of degree at most r+1 such that

∫ 1
−1 s

j · p(s) ds = (−1)j/(j +1) for
j = 0, . . . , r − 1, as well as p(1) = 0 and p(−1) = 1. The extension g of p with g(s) = 1 for
s < −1 and g(s) = 0 for s > 1 has the properties as claimed. Since g−1/2 is an odd function,
the same function g arises in this way for r and r + 1 if r is even.

We have the following estimate for the bias that is induced by smoothing with parameter
δ, i.e., by approximation of 1]−∞,s] by g((· − s)/δ). We omit the proof, which is based on a
Taylor expansion in a straightforward way.

Lemma 2.2. There exists a constant c > 0 such that for all δ ∈ ]0, δ0],

sup
s∈[S0,S1]

|F (s)− E(g((Y − s)/δ))| ≤ c · δr+1.

2.2. Assumptions on weak and strong convergence. Our multilevel Monte Carlo con-
struction is based on a sequence (Y (�))�∈N0 of random variables, defined on a common proba-
bility space together with Y , with the following properties for some constant c > 0:
(A2) There exists a constant M > 1 such that the simulation of the joint distribution of

Y (�) and Y (�−1) is possible at a cost of at most c ·M � for every � ∈ N.
(A3) There exist constants α1 ≥ 0, α2 > 0, and α2 ≥ α3 ≥ 0 such that the weak error

estimate

sup
s∈[S0,S1]

∣∣∣E(
g((Y − s)/δ) − g((Y (�) − s)/δ)

)∣∣∣ ≤ c ·min
(
δ−α1 ·M−�·α2 ,M−�·α3

)
holds for all δ ∈ ]0, δ0] and � ∈ N0.

(A4) There exist constants β4 ≥ 0 and β5 > 0 such that the strong error estimate

Emin((Y − Y (�))2/δ2, 1) ≤ c · δ−β4 ·M−�·β5

holds for all δ ∈ ]0, δ0] and � ∈ N0.
For specific applications, we present suitable approximations Y (�) and corresponding values

of the parameters M , αi, and βi in section 5.2. Here we proceed with a general discussion of
(A3) and (A4).

Note that (A4) implies (A3) with α1 = β4/2, α2 = β5/2, and α3 = 0, but often better
estimates for the weak error are known; see sections 4.2 and 5. The presence of α1 and β4
in these assumptions is motivated by weak and strong error estimates for SDEs or SPDEs
(stochastic partial differential equations), which often scale with some power of δ. See, how-
ever, sections 5.1 and 5.2.

Let ‖Z‖p = (E |Z|p)1/p for any random variable Z and 1 ≤ p < ∞. Typically, strong error
estimates for Y − Y (�) instead of min(|Y − Y (�)|, δ) are available in the literature. Straight-
forward relations to (A3) and (A4) are provided by

(2.1) sup
s∈[S0,S1]

∣∣∣E(
g((Y − s)/δ) − g((Y (�) − s)/δ)

)∣∣∣ ≤ cL · δ−1 · ‖Y − Y (�)‖1,

where cL denotes a Lipschitz constant for g, as well as

Emin((Y − Y (�))2, δ2) ≤ min(‖Y − Y (�)‖22, δ2),(2.2)

Emin((Y − Y (�))2, δ2) ≤ E(δ ·min(|Y − Y (�)|, δ)) ≤ min(δ · ‖Y − Y (�)‖1, δ2).(2.3)
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In the following case of equivalence of norms the upper bound in (2.2) is sharp, and then
we have β4 = 2 in (A4), while the optimal value of β5 is determined by the asymptotic behavior
of ‖Y − Y (�)‖22. See sections 5.1 and 5.2 for examples.

Lemma 2.3. Suppose that there exist c1 > 0 and p > 2 such that

0 < ‖Y − Y (�)‖p ≤ c1 · ‖Y − Y (�)‖2
for all � ∈ N0. Then there exists c2 > 0 such that for all δ ∈ ]0, δ0] and � ∈ N0,

Emin((Y − Y (�))2, δ2) ≥ c2 ·min(‖Y − Y (�)‖22, δ2).

Proof. Put Z� = (Y − Y (�))2/‖Y − Y (�)‖22. We show that there exists a constant c2 > 0
such that Emin(Z�, δ) ≥ c2 ·min(1, δ) for all � ∈ N0 and δ > 0.

Clearly E(Z�) = 1 and E(Z
p/2
� ) ≤ cp1. It follows that P ({Z� > u}) ≤ cp1/u

p/2. Put
d� = P ({Z� > 1/2}). We claim that d = inf�∈N0 d� > 0. Assume that d = 0. Use

1 = E(Z�) =

∫ ∞

0
P ({Z� > u}) du ≤ 1/2 +

∫ ∞

1/2
min(d�, c

p
1/u

p/2) du

and dominated convergence to conclude that, for a minimizing subsequence,

lim
k→∞

∫ ∞

1/2
min(d�k , c

p
1/u

p/2) du = 0,

which leads to a contradiction. Therefore,

Emin(Z�, δ) =

∫ δ

0
P ({Z� > u}) du ≥ min(δ, 1/2) · d ≥ d/2 ·min(1, δ).

On the other hand, if ‖Y − Y (�)‖22 and ‖Y − Y (�)‖1 are asymptotically equivalent, then
(2.3) is preferable to (2.2). See section 5.3 for examples.

Assumption (A4) and the Lipschitz continuity and boundedness of g immediately yield
the following fact.

Lemma 2.4. There exists a constant c > 0 such that for all δ ∈ ]0, δ0] and � ∈ N0,

E sup
s∈[S0,S1]

(
g((Y − s)/δ) − g((Y (�) − s)/δ)

)2 ≤ c ·min(δ−β4 ·M−�·β5 , 1).

2.3. The multilevel algorithm. The approximation of F on the interval [S0, S1] is based
on its approximation at finitely many points

(2.4) S0 ≤ s1 < · · · < sk ≤ S1,

followed by a suitable extension to [S0, S1].
For notational convenience we put

gk,δ(t) = (g((t− s1)/δ), . . . , g((t − sk)/δ)) ∈ R
k, t ∈ R,
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as well as Z
(0)
i = Y (−1) = 0.

We choose L0, L1 ∈ N0 with L0 ≤ L1 as the minimal and the maximal level, respectively,
and we choose replication numbers N� ∈ N for all levels � = L0, . . . , L1, as well as k ∈ N and
δ ∈ ]0, δ0]. The corresponding multilevel algorithm for the approximation at the points si is
defined by

(2.5) Mk,δ,L0,L1

NL0
,...,NL1

=
1

NL0

·
NL0∑
i=1

gk,δ(Y
(L0)
i ) +

L1∑
�=L0+1

1

N�
·

N�∑
i=1

(
gk,δ(Y

(�)
i )− gk,δ(Z

(�)
i )

)

with an independent family of R2-valued random variables (Y
(�)
i , Z

(�)
i ) for � = L0, . . . , L1 and

i = 1, . . . , N� such that equality in distribution holds for (Y
(�)
i , Z

(�)
i ) and (Y (�), Y (�−1)).

Remark 2.5. In the particular case L = L0 = L1, i.e., in the single-level case, we actually
have a classical Monte Carlo algorithm, based on independent copies of Y (L) only. In addition
to

Mk,δ,L,L
N =

1

N
·

N∑
i=1

gk,δ(Y
(L)
i )

with δ > 0, we also consider the single-level algorithm without smoothing. Hence we put

gk,0(t) = (1]−,∞,s1](t), . . . , 1]−,∞,sk](t)) ∈ R
k, t ∈ R,

to extend the definition of Mk,δ,L,L
N to δ ≥ 0. Observe that Mk,0,L,L

N yields the values of the
empirical distribution function, based on N independent copies of Y (L), at the points si.

For the analysis of the single-level algorithm it suffices to assume that the simulation of
the distribution of Y (�) is possible at a cost of at most c · M � for every � ∈ N; cf. (A2).
Furthermore, there is no need for a strong error estimate like (A4), and if we do not employ
smoothing, then (A3) may be replaced by the following assumption. There exists a constant
α > 0 such that the weak error estimate

(2.6) sup
s∈[S0,S1]

∣∣∣E(
1]−∞,s](Y )− 1]−∞,s](Y

(�))
)∣∣∣ ≤ c ·M−�·α

holds for all � ∈ N0. It turns out that the analysis of single-level algorithms without smoothing
is formally reduced to the case δ > 0 if we take

(2.7) α1 = 0, α2 = α, α3 = α.

In what follows, ‖ · ‖∞ denotes the supremum norm on C([S0, S1]), and | · |∞ denotes the
�∞-norm on R

k.
For the extension we take a sequence of linear mappings Qr

k : Rk → C([S0, S1]) with the
following properties for some constant c > 0:
(E1) For all k ∈ N and x ∈ R

k the cost for computing Qr
k(x) is bounded by c · k.

(E2) For all k ∈ N and x ∈ R
k we have ‖Qr

k(x)‖∞ ≤ c · |x|∞.
(E3) For all k ∈ N we have ‖F −Qr

k(F (s1), . . . , F (sk))‖∞ ≤ c · k−(r+1).
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For instance, these properties are achieved by piecewise polynomial interpolation with a fixed
degree max(r, 1) at equidistant points si = S0 + (i − 1) · (S1 − S0)/(k − 1) with k ≥ 2. As a
particular example, cubic spline interpolation achieves these properties for r = 3 [7].

We employ Qr
k(M) with M = Mk,δ,L0,L1

NL0
,...,NL1

as a randomized algorithm for the approxima-

tion of F on [S0, S1]. Observe that M is square-integrable, since g is bounded, so that (E2)
yields E ‖Qr

k(M)‖2∞ < ∞. The error of Qr
k(M) is defined by

error(Qr
k(M)) =

(
E ‖F −Qr

k(M)‖2∞
)1/2

.

Since the error is based on the supremum norm, error(Qr
k(M)) does not increase if we replace

Qr
k(x) by s 
→ supu∈[S0,s](Q

r
k(x))(u) to get a nondecreasing approximation on [S0, S1].

The variance of any square-integrable R
k-valued random variable M is defined by

Var(M) = E |M− E(M)|2∞,

and
E |x−M|2∞ ≤ 2 · (|x− E(M)|2∞ +Var(M))

holds for x ∈ R
k. Furthermore, Var(M) ≤ 4·E(|M|2∞). The Bienaymé formula for real-valued

random variables turns into the inequality

(2.8) Var(M) ≤ c · log k ·
n∑

i=1

Var(Mi)

if M =
∑n

i=1Mi with independent square-integrable random variables Mi taking values in
R
k. Here c is a universal constant. In the context of multilevel algorithms this is exploited in

Heinrich [14].
We say that a sequence of randomized algorithms An converges with order (γ, η) ∈ ]0,∞[×

R if limn→∞ error(An) = 0 and if there exists a constant c > 0 such that

cost(An) ≤ c · (error(An))
−γ · (− log error(An))

η.

Moreover, we put

(2.9) q = min

(
r + 1 + α1

α2
,
r + 1

α3

)
.

Theorem 2.6. The following order, with η = 1, is achieved by algorithms Qr
k(Mk,δ,L0,L1

NL0
,...,NL1

)

with suitably chosen parameters:

q ≤ max(1, β4/β5) ⇒ γ = 2 +
max(1, q)

r + 1
,(2.10)

q > max(1, β4/β5) ∧ β5 > 1 ⇒ γ = 2 +
max(1, β4/β5)

r + 1
,(2.11)

q > 1 > β4 ∧ β5 = 1 ⇒ γ = 2 +
1

r + 1
,(2.12)

q > max(1, β4/β5) ∧ β5 < 1 ⇒ γ = 2 +
max(1, β4 + (1 − β5) · q)

r + 1
.(2.13)
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Moreover, with η = 3,

q > β4 ≥ 1 ∧ β5 = 1 ⇒ γ = 2 +
β4

r + 1
.(2.14)

Proof. Let M denote any square-integrable random variable with values in R
k. For the

error of Qr
k(M) the properties (E2) and (E3) yield

error(Qr
k(M)) ≤ ‖F −Qr

k(F (s1), . . . , F (sk))‖∞ +
(
E ‖Qr

k((F (s1), . . . , F (sk))−M)‖2∞
)1/2

≤ c ·
(
k−(r+1) +

(
E |(F (s1), . . . , F (sk))−M|2∞

)1/2)
≤ 2c ·

(
k−2(r+1) + |(F (s1), . . . , F (sk))− E(M)|2∞ +Var(M)

)1/2
.

Now we consider the algorithm M = Mk,δ,L0,L1

NL0
,...,NL1

with δ > 0. We write a � b if there

exists a constant c > 0 that does not depend on the parameters k, δ, L0, L1, NL0 , . . . , NL1

such that a ≤ c · b. Moreover, a  b means b � a, and a � b stands for a � b and a  b.
Note that E(M) = E(gk,δ(Y (L1))). Hence Lemma 2.2 and (A3) imply a bias estimate

|(F (s1), . . . , F (sk))− E(M)|∞ = sup
i=1,...,k

|F (si)− E(g((Y (L1) − si)/δ))|

� δr+1 +min
(
δ−α1 ·M−L1·α2 ,M−L1·α3

)
.

The variance of M is estimated as follows. From (2.8) we obtain

Var(M) � log k ·
⎛
⎝ 1

NL0

·Var(gk,δ(Y (L0))) +

L1∑
�=L0+1

1

N�
· Var

(
gk,δ(Y (�))− gk,δ(Y (�−1))

)⎞⎠ .

Moreover,

Var
(
gk,δ(Y (�))− gk,δ(Y (�−1))

)
≤ 4 · E sup

i=1,...,k

(
g((Y (�) − si)/δ) − g((Y (�−1) − si)/δ)

)2

� min(δ−β4 ·M−�·β5 , 1)

for � = L0 + 1, . . . , L1 (see Lemma 2.4), and Var(gk,δ(Y (L0))) � 1, since g is bounded. There-
fore,

Var(M) � log k ·
⎛
⎝ 1

NL0

+

L1∑
�=L0+1

min(δ−β4 ·M−�·β5 , 1)

N�

⎞
⎠ .

Combining these estimates, we finally get

error2(Qr
k(M)) � k−2(r+1) + δ2(r+1) +min

(
δ−2α1 ·M−L1·2α2 ,M−L1·2α3

)
(2.15)

+ log k ·
⎛
⎝ 1

NL0

+

L1∑
�=L0+1

min(δ−β4 ·M−�·β5, 1)

N�

⎞
⎠ .
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Now we analyze the computational cost of the algorithm M. For � = L0, . . . , L1 and

i = 1, . . . , N�, the cost of computing gk,δ(Y
(�)
i ) or gk,δ(Y

(�)
i )−gk,δ(Z

(�)
i ) is bounded by M �+k,

up to a constant; see (S1) and (A2). Use (E1) to obtain

(2.16) cost(Qr
k(M)) � c(k, L0, L1, NL0 , . . . , NL1) =

L1∑
�=L0

N� · (M � + k).

Note that for every k the cost per replication is essentially constant on all levels � ≤ L∗, where
L∗ = logM k.

Observe that the estimates (2.15) and (2.16) are also valid for single-level algorithms
without smoothing, i.e., for L0 = L1 and δ = 0, if we formally define the parameters αi by
(2.7), which leads to q = (r + 1)/α.

We determine parameters of the algorithm Qr
k(M) such that an error of about ε ∈]

0,min(1, δr+1
0 )

[
is achieved at a small cost. More precisely, we minimize the upper bound

(2.16) for the cost, subject to the constraint that the upper bound (2.15) for the squared error
is at most ε2, up to multiplicative constants for both quantities.

First, we consider the case δ > 0, and we choose

δ = ε1/(r+1),(2.17)

k = ε−1/(r+1),(2.18)

NL0 = ε−2 · logM ε−1(2.19)

up to integer rounding for k and NL0 . This yields

error2(Qr
k(M)) � ε2 + a2(L1) + log ε−1 ·

L1∑
�=L0+1

min(δ−β4 ·M−�·β5 , 1)

N�

with a(L1) = min
(
δ−α1 ·M−L1·α2 ,M−L1·α3

)
. Furthermore,

(2.20) L∗ =
1

r + 1
· logM ε−1.

Due to the dependence of (2.16) on k and the decay of a(L1) and min(δ−β4 ·M−�·β5 , 1) as
functions of L1 and �, respectively, it suffices to study

(2.21) L0 ≥ L∗.

Moreover, a(L1) ≤ ε requires L1 ≥ q · L∗. Consequently, we choose

(2.22) L1 = max(1, q) · L∗

up to integer rounding.
For a single-level algorithm with smoothing, i.e., for L0 = L1 and δ > 0, all parameters

have thus been determined, and we obtain error(Qr
k(M)) � ε as well as

(2.23) c(k, L1, L1, NL1) � ε−2 · log ε−1 ·Mmax(1,q)·L∗
= log ε−1 ·

{
ε−2−1/(r+1) if q ≤ 1,

ε−2−q/(r+1) if q > 1.
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For a single-level algorithm without smoothing we obtain the same result.
For a proper multilevel algorithm with L∗ ≤ L0 < L1 we obtain

error2(Qr
k(M)) � ε2 + log ε−1 ·

L1∑
�=L0+1

v�
N�

with v� = min(ML∗·β4 ·M−�·β5 , 1), and also

c(k, L0, L1, NL0 , . . . , NL1) � ε−2 · log ε−1 ·ML0 +

L1∑
�=L0+1

N� ·M �.

Observing c(k, L0, L1, NL0 , . . . , NL1)  ε−2 · log ε−1 ·ML∗
and (2.23), we get (2.10) in the case

q ≤ 1 by single-level algorithms, without any need for a multilevel treatment.
To establish the theorem in the case q > 1 we fix L0 for the moment, and we minimize

h(L0, NL0+1, . . . , NL1) = ε−2 · log ε−1 ·ML0 +

L1∑
�=L0+1

N� ·M �

subject to
∑L1

�=L0+1 v�/N� ≤ ε2/ log ε−1. A Lagrange multiplier leads to

(2.24) N� = ε−2 · log ε−1 ·G(L0) ·
(
v� ·M−�

)1/2
,

up to integer rounding, which satisfies the constraint with

G(L0) =

L1∑
�=L0+1

(
v� ·M �

)1/2
=

L1∑
�=L0+1

(
min(ML∗·β4 ·M−�·β5 , 1) ·M �

)1/2
.

Moreover, this choice of NL0+1, . . . , NL1 yields

(2.25) h(L0, NL0+1, . . . , NL1) = ε−2 · log ε−1 · (ML0 +G2(L0)
)
.

Put L† = β4/β5 · L∗. Consider the case 1 < q ≤ β4/β5. Then we have L1 ≤ L†, and
therefore,

ML0 +G2(L0) = ML0 +

⎛
⎝ L1∑

�=L0+1

M �/2

⎞
⎠

2

� ML0 +ML1 � ML∗·q.

Observing (2.23), we get (2.10) in the present case by single-level algorithms, without any
need for a multilevel treatment.

From now on we consider the case q > max(1, β4/β5). Suppose that L0 < L†, which
requires β4/β5 > 1 to hold. Then we get

ML0 +G2(L0) � ML0 +

⎛
⎝ L†∑

�=L0+1

M �/2

⎞
⎠

2

+ML∗·β4 ·
⎛
⎝ L1∑

�=L†+1

M �·(1−β5)/2

⎞
⎠

2

� ML†
+G2(L†).
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It therefore suffices to study the case L0 ≥ L†, where we have

ML0 +G2(L0) = ML0 +ML∗·β4 ·
⎛
⎝ L1∑

�=L0+1

M �·(1−β5)/2

⎞
⎠

2

.

Note that

β5 = 1 ⇒ ML0 +G2(L0) � ML0 +ML∗·β4 · (L1 − L0)
2,

β5 > 1 ⇒ ML0 +G2(L0) � ML0 +ML∗·β4 ·ML0·(1−β5) � ML0 ,

β5 < 1 ⇒ ML0 +G2(L0) � ML0 +ML∗·β4 ·ML1·(1−β5).

Hence, we choose

(2.26) L0 = max(1, β4/β5) · L∗

in all of these cases. Hereby we obtain

ML0 +G2(L0) � ML∗·max(1,β4/β5) ·
{
(L∗)2 if β5 = 1 and β4 ≥ 1,

1 if β5 > 1 or β5 = 1 and β4 < 1,

as well as
ML0 +G2(L0) � Mmax(1,β4/β5,β4+(1−β5)·q)·L∗

if β5 < 1. In any case, these estimates are superior to ML∗·q; cf. (2.23). Use (2.25) and
ML∗

= ε−1/(r+1) to derive (2.11)–(2.14).
Remark 2.7. Theorem 2.6 is based on the upper bounds (2.15) and (2.16) for the error and

the cost, respectively, of the algorithms Qr
k(Mk,δ,L0,L1

NL0
,...,NL1

). The parameters that we determined

in the proof of Theorem 2.6 are optimal in the following sense: They minimize the upper bound
for the cost, subject to the constraint that the upper bound for the error is at most ε, up to
multiplicative constants for both quantities.

Obviously, this optimality holds for the choice of δ, k, NL0 , and L1 according to (2.17),
(2.18), (2.19), and (2.22). Moreover, the constraint (2.21) is without loss of generality, so that
the minimal level L0 slowly increases with decreasing ε.

This completes, in particular, the optimization of the parameters of single-level algorithms,
where L0 = L1. For proper multilevel algorithms the optimal values ofN� for � = L0+1, . . . , L1

are presented in (2.24), and the optimal value of L0 is presented in (2.26), if q > max(1, β4/β5).
It is straightforward to verify

(2.27) N� = ε−2−β4/(r+1) · log ε−1 ·M−�·(1+β5)/2 ·

⎧⎪⎨
⎪⎩
L∗ if β5 = 1,

ML∗·max(1,β4/β5)·(1−β5)/2 if β5 > 1,

ML∗·q·(1−β5)/2 if β5 < 1.

Furthermore, we have carried out the comparison of multilevel and single-level algorithms
in the proof of Theorem 2.6. This comparison also is merely based on the upper bounds for
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the error and the cost, and on the assumption that α = α3 in (2.6). In this sense we have a
superiority of proper multilevel algorithms over single-level algorithms if and only if

(2.28) q > max(1, β4/β5),

which corresponds to (2.11)–(2.14) in Theorem 2.6. The lack of superiority, which is present
in (2.10) of Theorem 2.6, is explained as follows. For q ≤ 1, the maximal level can be
chosen so small that the computational cost on all levels is dominated by the number k of
discretization points that is needed to achieve a good approximation of F even from exact
data F (s1), . . . , F (sk). For 1 < q ≤ β4/β5, the negative impact of smoothing on the variances
leads to variances min(δ−β4 ·M−�·β5 , 1) of order one on all levels � = L0 + 1, . . . , L1.

Single-level algorithms with smoothing are never inferior to single-level algorithms without
smoothing, and they are superior if and only if

(2.29)
r + 1

α3
> max(1, q).

For large values of r the latter holds if and only if α2 > α3; see section 5.3 for an example.
Remark 2.8. In the limit r → ∞ we get γ = 2 + max(1 − β5, 0)/α2 in Theorem 2.6,

which coincides with the order for the approximation of expectations by means of multilevel
algorithms; see Giles [9, Thm. 3.1].

Consider the empirical distribution function F̂n based on n independent copies of Y . The
Dvoretzky–Kiefer–Wolfowitz inequality with the optimal constant due to Massart [19] yields

(
E sup

s∈R
|F (s)− F̂n(s)|2

)1/2

≤ n−1/2,

which corresponds to an order two of approximation in terms of the number of samples from
the target distribution. In our analysis we do not assume that sampling from the target
distribution is feasible, and we fully take into account the computational cost to generate
samples from approximate distributions. Still, if β5 is almost one and if r is large, a suitable
multilevel algorithm almost achieves the order two. See sections 5.1 and 5.2 for examples.

3. Approximation of densities on compact intervals. In this section we study the approx-
imation of the density ρ of Y on an interval [S0, S1] for some fixed S0 < S1. The construction
and analysis closely follow the approach from section 2.

3.1. Smoothing. We employ assumption (A1) with r ≥ 1, and g : R → R is assumed to
satisfy the properties (S1) and (S2), while (S3) and (S4) are replaced by
(S5) g(s) = 0 if |s| > 1,
(S6)

∫ 1
−1 g(s) ds = 1 and

∫ 1
−1 s

j · g(s) ds = 0 for j = 1, . . . , r − 1.

Obviously, g is bounded due to (S2) and (S5). Moreover, if g ∈ C1(R) satisfies (S3) and (S4)
and g′ is Lipschitz continuous, then −g′, instead of g, satisfies (S5) and (S6). In kernel density
estimation, a function g with integral one and vanishing moments up to order r − 1 is called
a kernel of order (at least) r.

Remark 3.1. We modify the construction from Remark 2.1 as follows. There exists a
uniquely determined polynomial p of degree at most r + 1 such that

∫ 1
−1 p(s) ds = 1 and
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∫ 1
−1 s

j · p(s) ds = 0 for j = 0, . . . , r − 1, as well as p(1) = p(−1) = 0. Extend p by zero to
obtain g with the properties as claimed. Since g is an even function, the same function g
arises in this way for r and r + 1, if r is odd.

We have the following estimate for the bias that is induced by smoothing with parameter
δ, i.e., by approximation of the Dirac functional at s by 1/δ · g((· − s)/δ). See, e.g., Tsybakov
[24, Prop. 1.2].

Lemma 3.2. There exists a constant c > 0 such that for all δ ∈ ]0, δ0],

sup
s∈[S0,S1]

|ρ(s)− 1/δ · E(g((Y − s)/δ))| ≤ c · δr.

3.2. Assumptions on weak and strong convergence. We employ assumptions (A2)–(A4)
from section 2.2 with possibly different values of αi in the weak error estimate (A3). We make
use of Lemma 2.4, and we refer the reader to section 5 for specific examples with corresponding
values of αi.

3.3. The multilevel algorithm. The definition (2.5) of the algorithms Mk,δ,L0,L1

NL0
,...,NL1

also

applies for the approximation of densities, except for gk,δ, which is now defined by

gk,δ(t) =
1

δ
· (g((t − s1)/δ), . . . , g((t − sk)/δ)) ∈ R

k, t ∈ R.

In the present setting we have δ > 0 also for single-level algorithms.
Hereby we obtain approximations to ρ at the points (2.4), which are extended to functions

on [S0, S1] by means of linear mappings Qr
k : Rk → C([S0, S1]). We assume that (E1) and

(E2) are satisfied, but instead of (E3) the following property is assumed to hold:
(E4) For all k ∈ N, we have ‖ρ−Qr

k(ρ(s1), . . . , ρ(sk))‖∞ ≤ c · k−r.
As before, piecewise polynomial interpolation at equidistant points, now with a fixed degree
max(r − 1, 1), might be used for this purpose.

We employ Qr
k(M) with M = Mk,δ,L0,L1

NL0
,...,NL1

as a randomized algorithm for the approxi-

mation of ρ on [S0, S1], and the error of Qr
k(M) is defined by

error(Qr
k(M)) =

(
E ‖ρ−Qr

k(M)‖2∞
)1/2

.

Clearly the error does not increase if we replace Qr
k(x) by max(Qr

k(x), 0).
Recall the definition of q from (2.9).

Theorem 3.3. The following order, with η = 1, is achieved by algorithms Qr
k(Mk,δ,L0,L1

NL0
,...,NL1

)

with suitably chosen parameters:

q ≤ max(1, β4/β5) ⇒ γ = 2 +
max(1, q) + 2

r
,(3.1)

q > max(1, β4/β5) ∧ β5 > 1 ⇒ γ = 2 +
max(1, β4/β5) + 2

r
,(3.2)

q > 1 > β4 ∧ β5 = 1 ⇒ γ = 2 +
3

r
,(3.3)

q > max(1, β4/β5) ∧ β5 < 1 ⇒ γ = 2 +
max(1, β4 + (1− β5) · q) + 2

r
.(3.4)
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Moreover, with η = 3,

q > β4 ≥ 1 ∧ β5 = 1 ⇒ γ = 2 +
β4 + 2

r
.(3.5)

Proof. We mimic the proof of Theorem 2.6. We use (A3), (E2) and (E4), Lemmas 2.4 and
3.2, and the boundedness of g to obtain

error2(Qr
k(M)) � k−2r + δ2r + 1/δ2 ·min

(
δ−2α1 ·M−L1·2α2 ,M−L1·2α3

)
(3.6)

+ log k/δ2 ·
⎛
⎝ 1

NL0

+

L1∑
�=L0+1

min(δ−β4 ·M−�·β5 , 1)

N�

⎞
⎠ ,

where M = Mk,δ,L0,L1

NL0
,...,NL1

. The upper bound (2.16) for the computational cost is also valid in

the present case. We minimize (2.16), subject to the constraint that the upper bound (3.6)
for the squared error is at most ε2, up to multiplicative constants for both quantities. The
analysis literally follows the proof of Theorem 2.6, with ε being replaced by ε1+1/r.

Remark 3.4. The following comments on optimality, etc., are meant in the sense of Re-
mark 2.7. We have a superiority of proper multilevel algorithms over single-level algorithms if
and only if (2.28) holds true. Moreover, the optimal values of δ, k, NL0 , and L1 are given by
(2.17), (2.18), (2.19), and (2.22), with ε being replaced by ε1+1/r. In particular, this completes
the optimization of the parameters of single-level algorithms, where L0 = L1.

Suppose that q > max(1, β4/β5), so that we consider proper multilevel algorithms. The
optimal value of L0 is given by L0 = max(1, β4/β5)/r · logM ε−1 (see (2.26)), and the optimal
replication numbers N� for � = L0 + 1, . . . , L1 are given by (2.27), with ε being replaced by
ε1+1/r.

4. Approximation of distribution functions at a single point. Now we study the approx-
imation of the distribution function F of Y at a single fixed point s ∈ [S0, S1].

4.1. Smoothing. We employ assumption (A1) and the smoothing approach from sec-
tion 2.1, which involves assumptions (S1)–(S4). In particular, we make use of Lemma 2.2.

4.2. Assumptions on weak and strong convergence. We consider the setting from sec-
tion 2.2, and we assume (A2) and (A3), while, instead of (A4), the following property is
assumed to hold with a constant c > 0:
(A5) There exist constants β1 ≥ 0 and β2 > β3 ≥ 0 such that the strong error estimate

sup
s∈[S0,S1]

E
(
g((Y − s)/δ) − g((Y (�) − s)/δ)

)2 ≤ c ·min
(
δ−β1 ·M−�·β2 ,M−�·β3

)

holds for all δ ∈ ]0, δ0] and � ∈ N0.
See section 5 for specific applications and approximations Y (�) with corresponding values

of the parameters βi.
We use different assumptions on the strong error for approximation of F on compact

intervals and at a single point, namely (A4), with Lemma 2.4 as an immediate consequence
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in the first case and (A5) in the second case. Clearly, (A4) implies (A5) for every bounded
and Lipschitz continuous function g with

(4.1) β1 = β4, β2 = β5, β3 = 0,

which is used in section 5.3, but better values of β1, β2, and β3 may be available. See section
5 for examples where β1 < β4 and β3 > 0. Note that (A5) corresponds directly to the weak
error estimate (A3), and it yields the latter for every bounded and measurable function g with
αi = βi/2 for i = 1, 2, 3.

Strong error estimates for Y − Y (�) or 1]−∞,s](Y )− 1]−∞,s](Y
(�)) may be used to establish

(A5) and (A3). From the Lipschitz continuity of g we immediately get (A5) with β1 = 2
and β3 = 0, while the value of β2 is determined by the asymptotic behavior of ‖Y − Y (�)‖22.
A refined analysis, which merely requires Y to have a bounded density, yields the following
results, which are applicable under the assumptions (S2) and (S3) or (S2) and (S5) on g.

Lemma 4.1 (Avikainen [3]). There exists a constant c > 0 such that

sup
s∈[S0,S1]

‖g((Y − s)/δ) − g((Y (�) − s)/δ)‖qq ≤ cq · sup
s∈[S0−δ0,S1+δ0]

‖1]−∞,s](Y )− 1]−∞,s](Y
(�))‖1

and
sup

s∈[S0−δ,S1+δ]
‖1]−∞,s](Y )− 1]−∞,s](Y

(�))‖1 ≤ c · ‖Y − Y (�)‖p/(p+1)
p

hold for all p, q ≥ 1, δ ∈ ]0, δ0], and � ∈ N0.
Proof. See Avikainen [3, p. 387] for the proof of the first estimate and Avikainen [3, Lem.

3.4] for the second estimate.
Lemma 4.2. For every 1 ≤ q ≤ p < ∞ there exists a constant c > 0 such that

sup
s∈[S0,S1]

‖g((Y − s)/δ)− g((Y (�) − s)/δ)‖qq ≤ c · δ1−q−q/p · ‖Y − Y (�)‖qp

holds for all δ ∈ ]0, δ0/2] and � ∈ N0.
Proof. Put

Δ = |g((Y − s)/δ)− g((Y (�) − s)/δ)|.
In what follows, we adopt the notation � from the proof of Theorem 2.6, where now the
hidden constant must not depend on δ, �, or s.

Because of assumption (A1), the density ρ of Y is bounded on [S0 − δ0, S1 + δ0]. By

Lemma 4.1 we have EΔq � ‖Y − Y (�)‖p/(p+1)
p , so all that remains is to establish is

EΔq � δ1−q−q/p · ‖Y − Y (�)‖qp
in the case δ1−q−q/p · ‖Y − Y (�)‖qp ≤ ‖Y − Y (�)‖p/(p+1)

p , i.e., for

(4.2) ‖Y − Y (�)‖p ≤ δ1+1/p.

If |Y − s| > 2δ and |Y − Y (�)| < δ, then |Y (�) − s| > δ, and hence Δ = 0 follows, since g is
constant on ]−∞,−1[ as well as on ]1,∞[. Accordingly, we consider

A1 = {|Y − s| ≤ 2δ}, A2 = {|Y − s| > 2δ} ∩ {|Y − Y (�)| ≥ δ},
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and we then have EΔq = E(Δq · 1A1) + E(Δq · 1A2).
Provided that p1 = P (A1) > 0, then for q < p, Jensen’s inequality and the Lipschitz

continuity of g give

E(Δq |A1) ≤ (E(Δp |A1))
q/p≤ (

p−1
1 · E(Δp)

)q/p � δ−q p
−q/p
1 · ‖Y − Y (�)‖qp.

Hence, using the boundedness of the density of Y ,

E(Δq · 1A1) � δ−q p
1−q/p
1 · ‖Y − Y (�)‖qp � δ1−q−q/p · ‖Y − Y (�)‖qp.

Turning now to A2, Markov’s inequality gives P ({|Y − Y (�)| ≥ δ}) ≤ δ−p · ‖Y − Y (�)‖pp,
and hence, using the boundedness of g,

E(Δq · 1A2) � δ−p · ‖Y − Y (�)‖pp ≤ δ1−q−q/p · ‖Y − Y (�)‖qp,
with the last step coming from (4.2).

If ‖Y − Y (�)‖p and ‖Y − Y (�)‖1 are asymptotically equivalent for every 1 ≤ p < ∞, then
Lemmas 4.1 and 4.2 should be applied with large values of p, and this yields (A5) with β1
arbitrarily close to 1 and (A3) with α1 arbitrarily close to 0. See sections 5.1 and 5.2 for
examples.

4.3. The multilevel algorithm. We study multilevel algorithms

Mδ,L0,L1

NL0
,...,NL1

=
1

NL0

·
NL0∑
i=1

gδ(Y
(L0)
i ) +

L1∑
�=L0+1

1

N�
·

N�∑
i=1

(
gδ(Y

(�)
i )− gδ(Z

(�)
i )

)
,

with gδ(t) = g((t − s)/δ) for t ∈ R, which form a particular instance of (2.5). The error of

M = Mδ,L0,L1

NL0
,...,NL1

is defined by

error(M) =
(
E |F (s)−M|2)1/2 ,

and Remark 2.5 applies to single-level algorithms.
Put β† = β1/(β2 − β3), and recall the definition of q from (2.9).

Theorem 4.3. The following order, with η = 0, is achieved by algorithms Mδ,L0,L1

NL0
,...,NL1

with

suitably chosen parameters:

q ≤ β† ∧ β3 �= 1 ⇒ γ = 2 +
(1− β3)+ · q

r + 1
,(4.3)

q > β† ∧ β3 �= 1 ∧ β2 > 1 ⇒ γ = 2 +
(1− β3)+ · β†

r + 1
,(4.4)

q > β† ∧ β2 < 1 ⇒ γ = 2 +
β1 + (1− β2) · q

r + 1
.(4.5)

Moreover, with η = 2,

β3 = 1 ⇒ γ = 2,(4.6)

q > β† ∧ β2 = 1 ⇒ γ = 2 +
β1

r + 1
.(4.7)
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Proof. We proceed analogously to the proof of Theorem 2.6. Use Lemma 2.2, the assump-
tions (A3) and (A5), and the boundedness of g to obtain

error2(M) � δ2(r+1) +min
(
δ−2α1 ·M−L1·2α2 ,M−L1·2α3

)
(4.8)

+
1

NL0

+

L1∑
�=L0+1

min
(
δ−β1 ·M−�·β2 ,M−�·β3

)
N� · δ2

for M = Mδ,L0,L1

NL0
,...,NL1

. Furthermore, by (S1) and (A2),

(4.9) cost(M) � c(L0, L1, NL0 , . . . , NL1),

with c(L0, L1, NL0 , . . . , NL1) =
∑L1

�=L0
N� · M �. We minimize the upper bound (4.9) for the

cost, subject to the constraint that the upper bound (4.8) for the squared error is at most ε2,
up to multiplicative constants for both quantities.

To this end we choose δ according to (2.17), and, up to integer rounding,

NL0 = ε−2,(4.10)

L1 = q · L∗,(4.11)

with L∗ given by (2.20).
For a single-level algorithm, i.e., L0 = L1, this yields error(M) � ε and

(4.12) c(L1, L1, NL1) � ε−2−q/(r+1).

For a proper multilevel algorithm, i.e., L0 < L1, we obtain

error2(M) � ε2 +

L1∑
�=L0+1

v�
N�

,

with v� = min(ML∗·β1 ·M−�·β2 ,M−�·β3), and also

c(L0, L1, NL0 , . . . , NL1) � ε−2 ·ML0 +

L1∑
�=L0+1

N� ·M �.

Fix L0 for the moment. We minimize h(L0, NL0+1, . . . , NL1) = ε−2 ·ML0 +
∑L1

�=L0+1N� ·M �

subject to
∑L1

�=L0+1 v�/N� ≤ ε2. A Lagrange multiplier leads to

(4.13) N� = ε−2 ·G(L0) ·
(
v� ·M−�

)1/2
,

up to integer rounding, which satisfies the constraint with

G(L0) =

L1∑
�=L0+1

(
v� ·M �

)1/2
=

L1∑
�=L0+1

(
min(ML∗·β1 ·M−�·β2,M−�·β3) ·M �

)1/2
.
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Moreover, this choice of NL0+1, . . . , NL1 yields h(L0, NL0+1, . . . , NL1) = ε−2 ·(ML0 +G2(L0)
)
.

Put L† = β† · L∗. In the case q ≤ β† we have L1 ≤ L†, and therefore

ML0 +G2(L0) = ML0 +

⎛
⎝ L1∑

�=L0+1

M �·(1−β3)/2

⎞
⎠

2

.

In the case q > β† we have L† < L1, and therefore

ML0 +G2(L0) = ML0 +

⎛
⎝ L†∑

�=L0+1

M �·(1−β3)/2 +ML∗·β1/2 ·
L1∑

�=L†+1

M �·(1−β2)/2

⎞
⎠

2

.

Since

ML0 +

⎛
⎝ L∑

�=L0+1

M �·(1−β3)/2

⎞
⎠

2

�

⎧⎪⎨
⎪⎩
ML0 if β3 > 1,

ML0 + (L− L0)
2 if β3 = 1,

ML0 +ML·(1−β3) if β3 < 1,

for L = L1 and L = L†, we take L0 = 0 in both cases. This leads to

ML0 +G2(L0) �

⎧⎪⎨
⎪⎩
1 if β3 > 1,

L2
1 if β3 = 1,

ML1·(1−β3) if β3 < 1

if q ≤ β†. Moreover, it is straightforward to verify

ML0 +G2(L0) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if β3 > 1,

(L†)2 if β3 = 1,

ML†·(1−β3) if β3 < 1 and β2 > 1,

ML∗·β1 · (L1 − L†)2 if β2 = 1,

ML∗·(β1+q(1−β2)) if β2 < 1

if q > β†. Except for the case where β3 = 0 and q ≤ β†, these estimates are superior to ML1 ,
which corresponds to (4.12).

Remark 4.4. The following comments on optimality, etc., are meant in the sense of Re-
mark 2.7. The optimal values of δ, NL0 , and L1 are given by (2.17), (4.10), and (4.11), which
completes the optimization of the parameters of single-level algorithms. For proper multilevel
algorithms, L0 = 0 is optimal, and the optimal replication numbers NL0+1, . . . , NL1 and L0

can be easily derived from (4.13).
Proper multilevel algorithms are superior to single-level algorithms if and only if

β3 �= 0 ∨ q > β1/β2.

In the case where β3 = 0 and q ≤ β1/β2 the lack of superiority is caused by the negative
impact of smoothing, which leads to variances of order one on all levels � = 0, . . . , L1.
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Single-level algorithms with smoothing are superior to single-level algorithms without
smoothing if and only if

(4.14)
r + 1

α3
>

r + 1 + α1

α2
.

5. Applications. First, we consider a general situation, where all we have at hand is (A1),
(A2), and an upper bound on the order of the strong error of Y −Y (�), which does not depend
on p. Specifically, we assume that there exists a constant 0 < β ≤ 2 with the following
property. For every 1 ≤ p < ∞ there exists a constant cp > 0 such that

(5.1) ‖Y − Y (�)‖p ≤ cp ·M−�·β/2

for every � ∈ N. In what follows, ε > 0 may be chosen arbitrarily small.
From (5.1) we obtain (A4) with

(5.2) β4 = 2, β5 = β

(see (2.2)), and Lemmas 4.1 and 4.2 yield (A5) with

(5.3) β1 = 1 + ε, β2 = β, β3 = β/2 − ε

under the assumptions (S2) and (S3) or (S2) and (S5). Using Lemmas 4.1 and 4.2 again we
get (A3) under both sets of assumptions on g, with

(5.4) α1 = ε, α2 = β/2, α3 = β/2− ε,

and (2.6) holds with

(5.5) α = β/2− ε.

It follows that q = 2 · (r + 1)/β + ε and max(1, β4/β5) = 2/β, so that (2.11), (2.13), and
(2.14) in Theorem 2.6 yield

(5.6) 1 ≤ β ≤ 2 ⇒ γ = 2 +
2

β · (r + 1)
and 0 < β < 1 ⇒ γ =

2

β
+

2

r + 1
+ ε

for the approximation of F on [S0, S1]. Likewise, (3.2), (3.4), and (3.5) in Theorem 3.3 yield

(5.7) 1 ≤ β ≤ 2 ⇒ γ = 2 +
2 · (1 + β)

β · r and 0 < β < 1 ⇒ γ =
2

β
+

2 · (1 + β)

β · r + ε,

for the approximation of ρ on [S0, S1]. Moreover, β† = 2/β + ε, so that (4.4), (4.5), and (4.7)
in Theorem 4.3 yield

(5.8) 1 ≤ β ≤ 2 ⇒ γ = 2 +
2− β

β · (r + 1)
+ ε and 0 < β < 1 ⇒ γ =

2

β
+

1

r + 1
+ ε
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for the approximation of F at a single point s ∈ [S0, S1]. For all three problems we get
γ = max(2, 2/β) in the limit r → ∞, and proper multilevel algorithms are always superior to
single-level algorithms; see Remarks 2.7, 3.4, and 4.4.

Remark 5.1. We compare the smoothing approach for the approximation of F at a single
point with a direct approach, which is due to Avikainen [3] and which only requires that Y
has a bounded density ρ; see Lemma 4.1.

We study multilevel algorithms

ML0,L1

NL0
,...,NL1

=
1

NL0

·
NL0∑
i=1

1]−∞,s](Y
(L0)
i ) +

L1∑
�=L0+1

1

N�
·

N�∑
i=1

(
1]−∞,s](Y

(�)
i )− 1]−∞,s](Z

(�)
i )

)

for the approximation of F (s). As previously, we assume that (5.1) with 0 < β ≤ 2 is all we
have at hand. The analysis from Theorem 4.3 directly applies if we take β1 = 0, β2 = β/2−ε,
and β3 = β/2 − ε as well as α1 = 0, α2 = β/2 − ε, and α3 = β/2 − ε. We achieve the order
(γ′, η′) with

γ′ =
2 + β

β
+ ε,

so that the smoothing approach is superior to the direct approach if and only if β < 2 and
r ≥ 1.

In what follows, we consider three specific settings in the context of a stochastic differential
equation (SDE)

dXt = μ(t,Xt) dt+ σ(t,Xt) dWt, t ∈ [0, T ],

X0 = x0.

Here μ : [0, T ]×R
d → R

d, σ : [0, T ]×R
d → R

d×m, x0 ∈ R
d, and (Wt)t∈[0,T ] is anm-dimensional

Brownian motion. We impose at least the following assumptions on the drift coefficient f = μ
and the diffusion coefficient f = σ: There exists a constant K > 0 such that

|f(t, x)− f(t, y)| ≤ K · |x− y|,
|f(s, x)− f(t, x)| ≤ K · (1 + |x|) · |s− t|1/2(5.9)

for all s, t ∈ [0, T ] and x, y ∈ R
d. Here | · | is used to denote arbitrary norms on the correspond-

ing spaces. For simplicity, we always take the Euler scheme with equidistant time-steps for
approximation of X, and generally we do not discuss results on the existence and smoothness
of densities. As previously, ε > 0 may be chosen arbitrarily small.

5.1. Smooth path-independent functionals for SDEs. Let

Y = ϕ(XT ),

where ϕ : Rd → R is Lipschitz continuous. We assume that the cost of computing ϕ(x) is

uniformly bounded for x ∈ R
d, and for approximation of Y we use Y (�) = ϕ(X

(�)
T ), where X(�)

denotes the Euler scheme with 2� equidistant time-steps. Obviously, (A2) holds with M = 2,
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and (5.9) implies (5.1) with β = 1; see, e.g., Müller-Gronbach [21, Thm. 4]. Hence we get
(A4) with

(5.10) β4 = 2, β5 = 1

(see (5.2)), and (A5) with β1 = 1 + ε, β2 = 1, and β3 = 1/2 − ε under assumptions (S2) and
(S3) or (S2) and (S5) on g; see (5.3). We apply (5.4) to obtain (A3) with

(5.11) α1 = ε, α2 = 1/2, α3 = 1/2 − ε;

see also Kebaier [17, sect. 2.2].
We therefore have q = 2 · (r + 1) + ε and max(1, β4/β5) = 2, and (2.14) in Theorem 2.6

yields
(γ, η) = (2 + 2/(r + 1), 3)

for the approximation of F on [S0, S1]. Likewise, (3.5) in Theorem 3.3 yields

(γ, η) = (2 + 4/r, 3)

for the approximation of ρ on [S0, S1]. Moreover, β† = 2 + ε, so that (4.7) in Theorem 4.3
yields

γ = 2 + 1/(r + 1) + ε

for the approximation of F at a single point s ∈ [S0, S1]. For all three problems, we get
γ = 2 in the limit r → ∞, and proper multilevel algorithms are always superior to single-level
algorithms; see Remarks 2.7, 3.4, and 4.4.

Remark 5.2. We refer the reader to Bally and Talay [4] for improved weak error estimates,
which hold under stronger smoothness and nondegeneracy assumptions on the coefficients of
the SDE; see conditions (UH) and (C) in [4]. In this case we obtain (A3) with

(5.12) α1 = 0, α2 = 1, α3 = 1,

and furthermore, (2.6) holds with α = 1. While (5.12) is superior to (5.11), it leads to essen-
tially the same orders of convergence for approximation of densities or distribution functions
if r ≥ 1. For r = 0, we derive γ = 3 instead of γ = 4 and γ = 5/2 + ε instead of γ = 3 + ε
for approximation of F on [S0, S1] and at a single point, respectively, given (5.12) instead of
(5.11).

In Remark 5.1 we compared the smoothing approach for the approximation of F at a single
point with a direct approach in a general setting. Specifically, in the present setting and given
(5.12) instead of (5.11), the direct approach achieves γ′ = 5/2+ε instead of γ′ = 3+ε, so that
the smoothing approach is superior to the direct approach if and only if r ≥ 2. Let us note
that conditions (UH) and (C) from [4] imply the existence of a density of XT in C∞

b (Rd,R),
so that r just depends on the properties of ϕ.

Remark 5.3. A two-level construction of the form

Mδ,L0,L1

NL0
,NL1

=
1

NL0

·
NL0∑
i=1

gδ(Y
(L0)
i ) +

1

NL1

·
NL1∑
i=1

(
gδ(Y

(L1)
i )− gδ(Z

(L1)
i )

)
,
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which is the counterpart of the two-level construction from Kebaier [17] for the approximation
of E(ϕ(XT )), is employed by Kebaier and Kohatsu-Higa [18] for the approximation of the
density ρ of Y = XT at a single point s. Here the sequence (Y (�))�∈N consists of suitably
regularized Euler schemes with � equidistant time-steps. By assumption, ρ ∈ C∞

b (Rd,R);
i.e., the multidimensional counterpart to (A1) is satisfied for every r ∈ N0. Using Malliavin

calculus techniques, they derive a central limit theorem for L1 · (Mδ,L0,L1

NL0
,NL1

− ρ(x)) with

properly chosen parameters L0, NL0 , NL1 , and δ as L1 tends to infinity. For every dimension
d, the order γ = 5/2 + ε is achieved in this way, while the multilevel approach achieves the
order γ = 2 + ε (at least for d = 1).

Remark 5.4. Consider the problem of approximating a quantile of Y , which is studied
by Talay and Zheng [23] in the particular case of a projection ϕ(x) = xi. By assumption,
ρ ∈ C∞

b (R,R). They employ a single-level algorithm that is based on a suitably regularized
Euler scheme; cf. Remark 5.3. The approximation to the quantile is given as the corresponding
empirical quantile, and an error of order γ = 3 is achieved, if ρ is bounded away from zero in
a neighborhood of the quantile.

Under the latter assumption, the order of approximation to F in the supremum norm
and to the quantile coincide, and given (A1) for every r ∈ N0 we expect our multilevel
algorithm to achieve the order γ = 2 + ε also for quantile approximation and every Lipschitz
continuous function ϕ. Furthermore, the multilevel algorithm may be used to approximate
the distribution function F and the density ρ in parallel, which allows us to control the impact
of inverting the approximation to F .

Remark 5.5. We comment on the optimality of the parameters αi and βi according to
(5.12) and (5.10) in (A3) and (A4). Due to Bally and Talay [4], under their assumptions
(UH) and (C) on the coefficients of the SDE, the estimate (A3) with (5.12) is sharp. Under
standard assumptions, 2�/2 · (X − X(�)) converges in distribution to a stochastic process U ,
with UT being nondegenerate in general; see Jacod and Protter [16]. In the latter case we
have a projection ϕ(x) = xi such that (5.1) with M = 2 and p = 1 does not hold for any
β > 1. A slight generalization of Lemma 2.3 shows that (A4) does not hold for any β4 < 2 or
β5 > 1. Hence, estimate (A4) with (5.10) cannot be improved in general for the Euler scheme.

The approximation of marginal densities of SDEs is studied in a number of papers under

different aspects. The convergence rate of the density of the Euler approximation X
(�)
T towards

ρ is studied in, e.g., Bally and Talay [5] and Gobet and Labart [12]. Milstein, Schoenmakers,
and Spokoiny [20] construct a forward-reverse kernel estimator and provide an upper bound
for its variance.

5.2. Smooth path-dependent functionals for SDEs. Let

Y = ϕ(X),

with ϕ : C([0, T ],Rd) → R being Lipschitz continuous. We assume that the cost of comput-
ing ϕ(x) for a piecewise linear path x ∈ C([0, T ],Rd) with m breakpoints is bounded by a
constant times m, and for approximation of Y we use Y (�) = ϕ(X(�)), where X(�) denotes the
Euler scheme with 2� equidistant time-steps and piecewise linear interpolation. Then (A2)
holds with M = 2, and (5.9) implies the following upper bound; see, e.g., Müller-Gronbach
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[21, Thm. 2]. For every 1 ≤ p < ∞ there exists a constant cp > 0 such that

‖Y − Y (�)‖p ≤ cp ·
(
� ·M−�

)1/2

for every � ∈ N. Consequently, (5.1) holds with β = 1− ε, and we get (A4) with

(5.13) β4 = 2, β5 = 1− ε

(see (5.2)), (A5) with β1 = 1 + ε, β2 = 1 − ε, and β3 = 1/2 − ε under the assumptions (S2)
and (S3) or (S2) and (S5) (see (5.3)), as well as (A3) with

(5.14) α1 = 0, α2 = 1/2− ε, α3 = 1/2 − ε;

see (5.4). Furthermore, (2.6) holds with α = 1/2 − ε; see (5.5).
We therefore have q = 2 · (r + 1) + ε and max(1, β4/β5) = 2 + ε, and (2.13) in Theorem

2.6 yields

γ = 2 + 2/(r + 1) + ε

for the approximation of F on [S0, S1]. Likewise, (3.4) in Theorem 3.3 yields

γ = 2 + 4/r + ε

for the approximation of ρ on [S0, S1]. Moreover, β† = 2 + ε, so that (4.5) in Theorem 4.3
yields

γ = 2 + 1/(r + 1) + ε

for the approximation of F at a single point s ∈ [S0, S1]. For all three problems, proper
multilevel algorithms are always superior to single-level algorithms; see Remarks 2.7, 3.4, and
4.4.

Note that section 5.1 deals with a particular instance of the functionals studied here. We
achieve essentially the same order of convergence for the problems studied in sections 5.1 and
5.2, if r ≥ 1, and we always get γ = 2 in the limit r → ∞.

Remark 5.6. We comment on the optimality of the parameters αi and βi according to
(5.14) and (5.13) in (A3) and (A4). Due to Remark 5.5, estimate (A4) with (5.13) cannot be
improved in general for the Euler scheme. Concerning (A3), we are not aware of an optimality
result. However, we refer the reader to [1], which studies processes Y (�) that coincide with
the Euler scheme X(�) at the discretization points, but instead of 2� Brownian increments the
whole trajectory of the Brownian motion is employed. The authors of [1] provide an upper
bound of the order 2/3− ε for Wasserstein distance of X and Y (�) in the case d = 1.

5.3. Stopped exit times for SDEs. Consider a bounded domain D ⊂ R
d such that

X0 ∈ D, and let

Y = ϕ(X)

be the corresponding exit time, stopped at T > 0, i.e.,

ϕ(x) = inf{t ≥ 0 : x(t) ∈ ∂D} ∧ T
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for x ∈ C([0, T ],Rd). We assume that the cost of computing ϕ(x) for a piecewise linear
path x ∈ C([0, T ],Rd) with m breakpoints is bounded by a constant times m, and, as in
the previous section, Y (�) is the Euler scheme X(�) composed with ϕ. Then (A2) holds with
M = 2. Furthermore, we suppose that we have an autonomous SDE with bounded and
Lipschitz continuous drift and diffusion coefficients. The following upper bound is established
by Bouchard, Geiss, and Gobet [6, Thm. 3.9] under suitable assumptions on the domain D.
For every 1 ≤ p < ∞ there exists a constant cp > 0 such that

(5.15) ‖Y − Y (�)‖p ≤ cp ·M−�/(2p)

for every � ∈ N. From (2.3) we get (A4) with

(5.16) β4 = 1, β5 = 1/2,

and (4.1) and Lemma 4.1 yield (A5) with β1 = 1, β2 = 1/2, and β3 = 1/4. Furthermore, (2.1)
and Lemma 4.1 yield (A3) with

(5.17) α1 = 1, α2 = 1/2, α3 = 1/4

under assumptions (S2) and (S3) or (S2) and (S5), while (2.6) holds with α = 1/4.
We therefore have q = 2r + 4 and max(1, β4/β5) = 2, and (2.13) in Theorem 2.6 yields

(γ, η) = (3 + 2/(r + 1), 1)

for the approximation of F on [S0, S1]. Likewise, (3.4) in Theorem 3.3 yields

(γ, η) = (3 + 5/r, 1)

for the approximation of ρ on [S0, S1]. Moreover, β† = 3, so that (4.5) in Theorem 4.3 yields

(γ, η) = (3 + 2/(r + 1), 0)

for the approximation of F at a single point s ∈ [S0, S1]. For all three problems, proper
multilevel algorithms are superior to single-level algorithms for every r ∈ N0 (see Remarks
2.7, 3.4, and 4.4), but we only get γ = 3 in the limit r → ∞. The latter is in contrast to
the results from sections 5.1 and 5.2, and it is basically due to the fact that the upper bound
(5.15) for strong approximation of Y by Y (�) depends on p in the most unfavorable way. We
add that numerical experiments suggest that the upper bound (5.15) cannot be improved in
general. Furthermore, observe that for stopped exit times, the same order γ is achieved for
the approximation of F on a compact interval and at a single point.

We add that (2.29) and (4.14) are satisfied for every r ≥ 1, and therefore smoothing
already helps for the single-level algorithm to approximate the distribution function of the
stopped exit time. We refer the reader to Gobet and Menozzi [13] for conditions that ensure
the existence of a density of the exit time in C∞([0, T [ ,R).

Remark 5.7. For the approximation of the mean E(Y ) of the stopped exit time, a multilevel
Euler algorithm has been constructed and analyzed in Higham et al. [15]. It is shown that
the order γ = 3+ ε is achieved under standard smoothness assumptions on the coefficients of
the SDE and on the domain D.
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6. Numerical experiments. The main goal of our numerical experiments is to demon-
strate the potential of the new multilevel algorithm. We consider three benchmark problems
according to sections 5.1–5.3 for a simple, scalar SDE, where the solutions are known analyt-
ically. We present results only for the approximation of distribution functions on a compact
interval [S0, S1], as the main numerical difference in the other two problems studied in this
paper is in the deterministic interpolation part. Our numerical experiments show the com-
putational gain in terms of upper bounds, achieved by the multilevel Monte Carlo approach
with smoothing in comparison to the single-level Monte Carlo approach without smoothing.
Furthermore, we compare the error of the multilevel algorithm with the accuracy demand ε,
which serves as an input to the algorithm. An extensive numerical study of our algorithm
and the adaptive choice of its parameters is beyond the scope of the current paper and will
be presented in a subsequent paper.

Consider a geometric Brownian motion X, given by

dXt = 0.05 ·Xt dt+ 0.2 ·Xt dWt, t ∈ [0, T ],

X0 = 1,

where W denotes a scalar Brownian motion. For the approximation of X, we use the Euler
scheme with equidistant time-steps, so that M = 2. In the examples from this section, as-
sumption (A1) holds for every r ∈ N. In what follows, we employ (A1) with r = 3, 5, 7, 9, 11,
and a particular purpose of the numerical experiments is to illustrate the impact of the dif-
ferent values of r. The values of the parameters αi and βi are presented later in each of the
examples.

Given ε as well as the values of αi, βi, and r, we basically choose the remaining pa-
rameters of the multilevel (single-level) algorithm such that all four (three) terms in the
upper bound (2.15) are of the order ε2. For the multilevel algorithm with smoothing we
choose the parameters L0, L1, and N� according to (2.26), (2.22), (2.19), and (2.27), while
δ = 2−1/(r+1) · ε1/(r+1); cf. (2.17). For the single-level algorithm without smoothing (see Re-
mark 2.5), we choose L = L0 = L1 and NL according to (2.22) and (2.19), and note that (2.7)
leads to q = (r + 1)/α.

The second stage of the algorithm differs, however, from what we have presented and
analyzed in sections 2–5. In the numerical experiments, we employ piecewise polynomial
interpolation Q3

k of degree 3 with equidistant knots for any r. Due to the Lebesgue constants
involved, this is preferable to Qr

k with a large value of r if the overall number k of interpolation
points is comparatively small. Furthermore, it is convenient if k − 1 is a multiple of 3 and
proportional to the length of the interval [S0, S1]. In both single-level and multilevel cases,
we therefore take k = 3 · ⌈5 · ε−1/4 · (S1 − S0)/3

⌉
+ 1; cf. (2.18).

To specify the computational gain, we compare the upper bound (2.16) for the cost of
the multilevel Monte Carlo algorithm with smoothing to the corresponding upper bound
c(k, L,N) = N · (2L + k) for the cost of the single-level algorithm. Accordingly, the ratio
c(k, L0, L1, NL0 , . . . , NL1)/c(k, L,N), which is a function of the desired accuracy ε, is used to
describe the computational gain.

To assess the accuracy of the multilevel algorithm, error(Q3
k(M)), which depends on ε

and r, should be compared with the desired accuracy ε. Since error(Q3
k(M)) is not known
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exactly, we employ a simple Monte Carlo experiment with 25 independent replications for
each of the values of r and each of the values ε = 2−i for i = 3, . . . , 11. The estimate is
denoted by RMSE(ε, r). In the present approach we do not have an exact control of the error
of the multilevel (single-level) algorithm for a given ε, since the parameters of the algorithm
are chosen on the basis of the asymptotic analysis from section 2. Therefore we aim only at
RMSE(ε, r) being reasonably close to ε.

6.1. Smooth path-independent functionals for SDEs. We set T = 1, and we approxi-
mate the distribution function

F (s) = E(1]∞,s](XT ))

of XT on the interval [S0, S1] = [0, 2]. Note that XT is lognormally distributed with param-
eters μ − σ2/2 and σ2. The parameters βi are chosen according to (5.10). For the weak
error estimates the result from [4] is not applicable, and we know only that (A3) holds with
(5.11). Still, we choose the parameters according to (5.12), which is justified by the numerical
experiments.

The computational gain as well as the replication numbers N� for the multilevel algorithm
with ε = 2−11 are presented in Figure 1. The maximal level L1 of the multilevel algorithm
coincides with the level chosen by the single-level algorithm, and this level does not depend
on r. For smaller values of r the multilevel algorithm start on a higher level L0, and therefore
the computational gain in the case r = 3 is only about a factor of 2. For large values of
r, we observe a reasonable computational gain for moderate values of ε. We add that the
computational gain would be much larger if (5.11) instead of (5.12) were employed. In Figure
1 we compare the estimate RMSE(ε, r) for the error of the multilevel algorithm to the accuracy
demand ε. Note that RMSE(ε, r) is in the range of ε; actually, it is less than ε in almost all
cases.

6.2. Smooth path-dependent functionals for SDEs. For this test case we choose the
same value of T and the same interval [S0, S1] as in section 6.1. We approximate the function

F (s) = E

(
e−μ·T ·max(XT −X0, 0) · 1]−∞,s]( max

t∈[0,T ]
Xt)

)
(see Shreve [22, p. 307]) for the analytical solution. Note that this problem does not exactly fit
into our framework due the the presence of max(XT −X0, 0) in the definition of the functional.
Still, the multilevel smoothing approach is applicable, and we choose the parameters αi and
βi according to (5.14) and (5.13).

See Figure 2, with replication numbers for ε = 2−10, for the results. The main difference,
compared to the previous section, is that the computational gain is substantially larger for
the path-dependent functional. This is due to the following facts. The orders of strong
convergence are essentially the same for both problems. However, the maximal level, which
once more coincides with the level chosen by the single-level algorithm, is essentially twice as
large as in the previous case, due to the slower decay of the bias. This results in a larger value
of L1 − L0, which provides an advantage to the multilevel approach.

6.3. Stopped exit times for SDEs. We set T = 2, and we approximate the distribution
function

F (s) = E(1]∞,s](inf{t ≥ 0 : Xt = b} ∧ T )),
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Figure 1. Path-independent functional: Replication numbers, computational gain, and error vs. accuracy
demand ε.
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Figure 2. Path-dependent functional: Replication numbers, computational gain, and error vs. accuracy
demand ε.
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Figure 3. Stopped exit time: Replication numbers, computational gain, and error vs. accuracy demand ε.

with b = 1.3 on the interval [S0, S1] = [0, 1]. The distribution of inf{t ≥ 0 : Xt = b} is an
inverse Gaussian distribution with parameters ln b/(μ − σ2/2) and (ln b)2/σ2, and this yields
an explicit formula for F since T > S1. Since b > X0, the drift and the diffusion coefficient
may be redefined to achieve boundedness without any impact on the results. The parameters
αi and βi are chosen according to (5.17) and (5.16).

See Figure 3, with replication numbers for ε = 2−9, for the results. Observe that the
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computational gain is even larger than in the previous section. This difference is due to the
fact that smoothing already yields an improved weak error estimate for the present problem.
Consequently, L1 = (2 + 2/(r + 1)) · log2 ε−1 is the maximal level for the multilevel algorithm,
up to integer rounding, but for the single-level algorithm without smoothing we have to take
L = 4 · log2 ε−1.
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[10] M. B. Giles, K. Debrabant, and A. Rößler, Numerical Analysis of Multilevel Monte Carlo Path

Simulation Using the Milstein Discretisation, preprint, arXiv:1302.4676, 2013.
[11] M. B. Giles, D. J. Higham, and X. Mao, Analysing multilevel Monte Carlo for options with non-

globally Lipschitz payoff, Finance Stoch., 13 (2009), pp. 403–413.
[12] E. Gobet and C. Labart, Sharp estimates for the convergence of the density of the Euler scheme in

small time, Elect. Comm. Probab., 13 (2008), pp. 352–363.
[13] E. Gobet and S. Menozzi, Exact approximation rate of killed hypoelliptic diffusions using the discrete

Euler scheme, Stochastic Process. Appl., 112 (2004), pp. 201–223.
[14] S. Heinrich, Monte Carlo complexity of global solution of integral equations, J. Complexity, 14 (1998),

pp. 151–175.
[15] D. J. Higham, X. Mao, M. Roj, Q. Song, and G. Yin, Mean exit times and the multi-level Monte

Carlo method, SIAM/ASA J. Uncertainty Quantification, 1 (2013), pp. 2–18.
[16] J. Jacod and P. Protter, Asymptotic error distributions for the Euler method for stochastic differential

equations, Ann. Probab., 26 (1998), pp. 267–307.
[17] A. Kebaier, Statistical Romberg extrapolation: A new variance reduction method and applications to

options pricing, Ann. Appl. Probab., 14 (2005), pp. 2681–2705.
[18] A. Kebaier and A. Kohatsu-Higa, An optimal control variance reduction method for density estima-

tion, Stochastic Process. Appl., 118 (2008), pp. 2143–2180.
[19] P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality, Ann. Probab., 18 (1990),

pp. 1269–1283.
[20] G. N. Milstein, J. Schoenmakers, and V. Spokoiny, Transition density estimation for stochastic

differential equations via forward-reverse representations, Bernoulli, 10 (2004), pp. 281–312.



MULTILEVEL MONTE CARLO APPROXIMATION OF DENSITIES 295

[21] T. Müller-Gronbach, The optimal uniform approximation of systems of stochastic differential equa-
tions, Ann. Appl. Probab., 12 (2002), pp. 664–690.

[22] S. E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer-Verlag, New York,
2004.

[23] D. Talay and Z. Zheng, Approximation of quantiles of components of diffusion processes, Stochastic
Process. Appl., 109 (2004), pp. 23–46.

[24] A. B. Tsybakov, Introduction to Nonparametric Estimation, Springer, Berlin, 2009.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


