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An empirical interpolation and model-variance reduction method for computing
statistical outputs of parametrized stochastic partial differential equations

F. Vidal-Codina†, N. C. Nguyen†, M. B. Giles‡, J. Peraire†

Abstract. We present an empirical interpolation and model-variance reduction method for the fast and reliable
computation of statistical outputs of parametrized stochastic elliptic partial differential equations.
Our method consists of three main ingredients: (1) the real-time computation of reduced basis (RB)
outputs approximating high-fidelity outputs computed with the hybridizable discontinuous Galerkin
(HDG) discretization; (2) the empirical interpolation (EI) for an efficient offline-online decoupling
of the parametric and stochastic influence; and (3) a multilevel variance reduction method that ex-
ploits the statistical correlation between the low-fidelity approximations and the high-fidelity HDG
discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance
reduction method provides efficient computation of the statistical outputs by shifting most of the
computational burden from the high-fidelity HDG approximation to the RB approximations. Fur-
thermore, we develop a posteriori error estimates for our approximations of the statistical outputs.
Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions
of the RB approximations and the size of Monte Carlo samples to achieve a given error tolerance.
In addition, we extend the method to compute estimates for the gradients of the statistical out-
puts. The proposed method is particularly useful for stochastic optimization problems where many
evaluations of the objective function and its gradient are required.

Key words. Model reduction, variance reduction, empirical interpolation method, reduced basis method, a
posteriori error estimation, hybridizable discontinuous Galerkin method, multilevel Monte Carlo
method, stochastic elliptic parametrized PDEs, stochastic optimization
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1. Introduction. In this paper we propose a methodology to accelerate the computation
of statistical outputs from parametrized stochastic partial differential equations (PSPDEs).
Let us define the quantity of interest s(θ,y) as a functional of a high-fidelity solution u(θ,y)
of an underlying PSPDE, where θ = (θ1, . . . , θQ) ∈ Θ is a vector of deterministic design
parameters in the parameter space Θ and y is a vector of random parameters with probability
density function ρ(y). We focus on the evaluation of both the expectation E [s(θ,y)] and
variance V [s(θ,y)] as well as their gradients for many different values of θ ∈ Θ. This task
can be extremely expensive if classic techniques such as Monte Carlo (MC) are employed.

The method developed herein is intended to tackle scenarios that require multiple evalua-
tions of the statistical outputs. One of such scenarios is the stochastic optimization problem:

(SP) min
θ∈Θ

Fγ(θ) = E [s(θ,y)] + γ
√
V [s(θ,y)],
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where γ ≥ 0 is a given constant. The problem (SP) arises when optimizing an observable
quantity of a physical system governed by a PDE in the presence of randomness. Solving
(SP) often requires multiple queries of the objective function Fγ(θ) and its gradient.

The most natural approach is to approximate the objective function using a MC simulation

(SP-MC) min
θ∈Θ

FM,γ(θ) = EM [s(θ,y)] + γ
√
VM [s(θ,y)]

with M i.i.d. samples drawn from the corresponding probability distribution. A common
technique to solve the problem (SP-MC) is to use sample average approximation (SAA) [41, 38,
42] in a deterministic optimization method, where the samples are fixed beforehand and reused
at each optimization step. Extensive research has been conducted for problems with special
structure [23, 39] developing convergence rates and stochastic bounds [27, 3]. Robbins-Monro
stochastic approximation (SA) [36] is a different approach involving an iterative procedure
that resembles steepest descent with stochastic gradient information. The Robbins-Monro
algorithm is the most widely used stochastic approximation technique, and it has motivated
substantial research regarding convergence conditions and step size policies [34, 29, 4].

In any event, in order to solve (SP-MC), we may need many evaluations of the high-fidelity
output due to the slow rate of convergence of MC. This situation negatively impacts the com-
putational cost, since the high-fidelity output can be very expensive. A possible strategy to
alleviate the computational cost is to approximate the high-fidelity output with an inexpen-
sive surrogate. A popular technique is the reduced basis (RB) method [32, 35, 31], which
enables the computation of real-time solutions and error bounds of parametrized PDEs. The
RB method has been used for various uncertainty quantification problems: evaluation of sta-
tistical moments using MC sampling methods [6, 18, 44]; PDE-constrained stochastic optimal
control problems, combining the RB method with sparse grid stochastic collocation for the
approximation of the stochastic space [9, 8]; Bayesian estimation of parameters with control
variates [5]; and Bayesian inversion problems [10]. In these problems, the RB method effects
a significant reduction of the computational cost, since the expensive truth approximation is
replaced by the inexpensive RB model.

In our previous work [44] we introduced a model and variance reduction method (MVR)
to address evaluation of statistical moments for stochastic PDEs. In this article we extend
the MVR method by combining it with the empirical interpolation (EI) method [1] to tackle
scenarios where evaluating output statistics for many queries is desired. Instead of computing
the statistical output for each parameter value independently, we exploit the fact that the
solutions lie on a low-dimensional manifold induced by the (θ,y)-dependence. The main idea
is to construct an empirical interpolant that decouples the parametric and stochastic influence
of the problem, enabling an offline-online strategy that allows us to reuse the precomputed
RB outputs. The proposed method can be advantageous, for instance, in solving stochastic
optimization problems such as (SP). This approach is built upon variance reduction techniques
such as the control variates method [5, 7, 19], the multilevel Monte Carlo method [14, 2, 12, 43],
the multi-fidelity Monte Carlo method [30], and parametric multilevel Monte Carlo [21, 20].
The common strategy for these techniques is to achieve a reduction in the variance of the
output by making use of the correlation between the output and a surrogate.
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This article is organized as follows. In Section 2 we review the computation of the output
and its gradient, using the hybridizable discontinuous Galerkin (HDG) method for a high-
fidelity approximation and the reduced basis (RB) method for a real-time, albeit coarser,
approximation of the output. In Section 3 we pursue a decomposition between design variables
θ and stochastic variables y through the EIM [1] that allows for an efficient offline-online
objective function evaluation. In Section 4 we devise a multilevel control variates method
that exploits the statistical correlation between different output approximations to accelerate
the convergence of the Monte Carlo simulations, extending the framework in [44] to include EI
approximations. In addition, we also propose estimators for the gradient of statistical outputs
by combining the gradients of the different output approximations in a similar multilevel
structure. In Section 5, we present numerical results to demonstrate the performance of the
proposed method. Finally, in Section 6, we discuss some directions for future research.

2. HDG Discretization and Model Reduction.

2.1. Problem statement. Let D ∈ Rd be a regular domain with Lipschitz boundary ∂D.
We consider the following stochastic boundary value problem: find a function u such that,

−∇ · (κ∇u) + %u = f, ∀x ∈ D ,(2.1a)

κ∇u · n+ νu = g, ∀x ∈ ∂D ,(2.1b)

where f is the source term, κ is the diffusion coefficient, % is the Helmholtz parameter, ν is the
Robin coefficient, and g is the boundary data. For simplicity of exposition we shall assume
that % is a stochastic function and that f, κ, ν, g are deterministic. Note that since we allow
%, f, κ, ν, g to be complex-valued functions, the solution u is in general a complex stochastic
function.

We next introduce a probability space (Ω,F , P ), where Ω is the sample space, F is the
σ-algebra of the subsets of Ω, and P is the probability measure. If Z is a real random
variable in (Ω,F , P ) and ω an element of the probability space, we denote its expectation by
E[Z] =

∫
Ω Z(ω)dP (ω). We will consider random functions v in L2(D×Ω) equipped with the

following norm

‖v‖2 = E

[∫
D
|v(x, ·)|2dx

]
=

∫
Ω

∫
D
|v(x, ω)|2dx dP (ω).

We will assume that % ∈ L2(D×Θ×Ω), where % ≡ %(θ,y) depends affinely on some parameters
θ ∈ Θ ⊂ RQ and random variables y =

(
y1(ω), . . . , yQ′(ω)

)
for ω ∈ Ω. It thus follows that we

can write % in the form

(2.2) %(x,θ,y) = %0(x) +

R∑
r=1

σr(θ,y)%r(x).

The amount of terms R in the expansion depends on the interaction between the design and
stochastic parameters, but we can assume it is in the order of QQ′. We shall assume that
the random variables are mutually independent and defined in the interval Λq′ ⊂ R with a

probability density function ρq′ : Λq′ → R+, hence y ∈ Λ with Λ =
∏Q′

q′=1 Λq′ .
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Therefore, the solution u of (2.1) can be written as a function of θ ∈ Θ and y ∈ Λ, namely,
u(x,θ,y). Now let ` be a bounded linear functional. We introduce a random output s defined
as

(2.3) s(θ,y) = `(u(·,θ,y)).

We are interested in evaluating the expectation and variance of s for any value of the design
parameters θ as

E[s(θ,y)] =

∫
Λ
s(θ,y)ρ(y)dy, V [s(θ,y)] =

∫
Λ

(E[s(θ,y)]− s(θ,y))2 ρ(y)dy,

where ρ(y) =
∏Q′

q′=1 ρq′(yq′).

2.2. Problem discretization. We now state the results for computing the output (2.3)
using the HDG method to discretize (2.1), referring the reader to [44] for a more thorough
derivation. The physical domain D is triangulated into elements T forming a mesh Th sat-
isfying the standard finite element conditions [11]. Then, letting ∂Th := {∂T : T ∈ Th} and
denoting by Fh the set of the faces F of the elements T ∈ Th, we seek a scalar approximation
uh ∈ W p

h to u, and a scalar approximation ûh ∈Mp
h to the trace of u on element boundaries,

where

W p
h = {w ∈ L2(D) : w|T ∈ Pp(T ) ∀T ∈ Th},

Mp
h = {µ ∈ L2(Fh) : µ|F ∈ Pp(F ) ∀F ∈ Fh},

and Pp(D) is a space of complex-valued polynomials of degree at most p on D. Note that
ûh are defined only on the faces of the elements, hence they are single valued. Following the
discussion in [44], we set the N -dimensional approximation space to be W p

h := W p
h ×M

p
h , for

a solution uh := (uh, ûh), whose degrees of freedom are represented in the vector u. Since we
never have access to the true solution, we approximate the output using our HDG solution as

sh(θ,y) = `†u(θ,y),

where ` results from the HDG approximation of the linear functional `(·) and the superscript
† denotes the conjugate transpose. The degrees of freedom for the field uh are obtained as
the solution of the linear system

(2.4) A(θ,y)u = b,

where the matrix A(θ,y) and the vector b result from the weak formulation of the HDG
method described in [44]. The HDG discretization and the expression (2.2) allows for an
affine representation of the matrix as

A(θ,y) = A0 +

R∑
r=1

σr(θ,y)Ar,

where the matrices Ar, r = 0, . . . R, are independent of (θ,y). Finally, even though the
parameter independent matrices are used for the reduced basis approximation, the solution uh
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is never computed as the solution of the full system (2.4). Instead, we can invoke discontinuity
of the approximation spaces to write uh in terms of ûh. This common strategy in HDG
methods enables us to solve for the global degrees of freedom of ûh only and then recover uh
efficiently.

2.3. Reduced Basis formulation. We now briefly review the RB method [32, 35, 31] for
approximating the output of a parametric PDE. Let us assume that we are given Nmax basis
functions ζn ∈W p

h , 1 ≤ n ≤ Nmax. We define the associated hierarchical RB space as

WN = span{ζn, 1 ≤ n ≤ N}, N = 1, . . . , Nmax .

The space WN consists of orthonormalized solutions at parameter values selected by a Greedy
sampling procedure [37, 16]. We then form the matrix ΨN whose columns are the vectors of
degrees of freedom of the first N basis functions.

Finally, we apply the Galerkin projection as follows: Given (θ,y) ∈ Θ× Λ, we find a RB
approximation uN (θ,y) = ΨNλN in which the coefficient vector λN is the solution of

(2.5)
(
Ψ†NA(θ,y)ΨN

)
λN = Ψ†Nb .

We can now evaluate the RB output as

(2.6) sN (θ,y) = `†uN (θ,y).

The above RB formulation is implemented using the offline-online decomposition procedure
[31, 35]. The online cost of evaluating the RB output sN (θ,y) for any given (θ,y) ∈ Θ × Λ
is O(N3 +RN2); see [31, 35] for details.

The above formulation can be further extended by including the dual problem and de-
veloping a “primal-dual” formulation, which usually leads to superior RB convergence and
error characterization of the output [33, 31]. However, we do not include the primal-dual
formulation in this work as we focus only on the multiple output scenario, where it is more
efficient to develop only a primal RB.

2.4. Computation of gradients. In the optimization context the usage of first order op-
timization algorithms usually leads to accelerated convergence to the optimum value. For
stochastic problems, where each evaluation of the objective function is expensive, the incor-
poration of gradient information can lead to a more efficient exploration of the design space,
and it should be used whenever available. We review now how to obtain the gradients for
both the HDG output sh and the RB output sN with respect to the design parameters θ.

For clarity, we drop the y-dependence on A since it is irrelevant for gradient computation,
and for completeness we also consider parametric dependence for the source term b. We recall
that the HDG output is evaluated as

(2.7) A(θ)u(θ) = b(θ), sh(θ) = `†u(θ).

The output derivatives with respect to the design parameters can be computed as

∂sh
∂θq

=
∂sh
∂u

∂u

∂θq
= `†A−1

(
∂b

∂θq
− ∂A

∂θq
u

)
= φ†

(
∂b

∂θq
− ∂A

∂θq
u

)
,
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where φ is the solution of the adjoint system A†φ = `.

The gradients for the RB output can be computed analogously. We note that the primal
RB formulation (2.5) and the RB output (2.6) can be written as

AN (θ)λN (θ) = bN (θ),

sN (θ) = `†NλN (θ),(2.8)

where AN (θ) = Ψ†NA(θ)ΨN , bN (θ) = Ψ†Nb(θ) and `N = Ψ†N`. The derivatives of the RB
output can be evaluated efficiently through the adjoint equation as follows

∂sN
∂θq

= `†NA−1
N

[
∂bN
∂θq

− ∂AN

∂θq
λN

]
= η†N

[
∂bN
∂θq

− ∂AN

∂θq
λN

]
= η†N

∂bN
∂θq
−

R∑
r=1

∂σr
∂θq

η†NAN,rλN .

where ηN is given by

A†NηN = `N .

The gradient is evaluated with only O
(
RN2

)
extra complexity, since we reuse the LU de-

composition of AN from Equation (2.8). This analysis can be extended in a straightforward
manner for the primal-dual formulation, and to include Hessian information as well.

3. Empirical Interpolation Method. The minimization problem defined in (SP) requires,
for any new design parameter θ, the computation of the expected value E[sh(θ,y)]. Approx-
imating this expectation by a MC simulation combined with the RB approximation has been
considered in [6]. In particular, the MC-RB approximation of E[sh(θ,y)] is calculated as

(3.1) EM [sN (θ,y)] =
1

M

M∑
m=1

sN (θ,ym),

where YM = {ym ∈ Λ, 1 ≤ m ≤ M} is a collection of i.i.d. samples drawn from the density
function ρ(y). This will result in a computational cost of O(M(N3 +RN2)). This procedure
can be very expensive if many expectations need to be evaluated and if M is very large.

An alternative methodology is the empirical interpolation method [1] for separating the
parametric variables θ and stochastic variables y. Let K > 0 be a positive integer. The idea
behind the empirical interpolation is to construct a set of interpolation points {yk ∈ Λ}Kk=1 and
a set of interpolation basis functions {vk(y)}Kk=1 such that, for any θ ∈ Θ, we can approximate
sN (θ,y) by a function s̃N (θ,y), defined as

(3.2) s̃N (θ,y) =
K∑
k=1

αk(θ)vk(y).

Here the coefficient vector α(θ) is given by

(3.3) α(θ) = C−1c(θ),
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where cl(θ) = sN (θ,yl) for 1 ≤ k, l ≤ K and C is introduced in Algorithm 1. The gradient
of s̃N (θ,y) is then calculated as

(3.4)
∂s̃N (θ,y)

∂θq
=

K∑
k=1

∂αk(θ)

∂θq
vk(y),

where

(3.5) C
∂α(θ)

∂θq
=
∂c(θ)

∂θq
,

∂cl(θ)

∂θq
=
∂sN (θ,yl)

∂θq
, l = 1, . . . ,K.

Here the gradient of the RB output sN (θ,yl) is computed as described above.
The naive choice of basis is vk(y) = sN (θk,y) for 1 ≤ k ≤ K, where {θk ∈ Θ}Kk=1 are

selected sample points; but it should be avoided as the strong linear dependence between basis
vectors will adversely affect the numerical stability of the interpolation [1]. We can adopt a
more numerically stable basis defined by

(3.6) [v1(y), . . . , vK(y)] = [sN (θ1,y), . . . , sN (θK ,y)]D, y ∈ Λ,

where D = E−1C and E is a K ×K matrix with entries Ekl = sN (θk,yl), 1 ≤ l, k ≤ K.
The sets {yk ∈ YJ}Kk=1, {θk ∈ ΘI}Kk=1 and the matrix C are computed by using the

empirical interpolation method [1] (summarized in Algorithm 1) on the θ-training set ΘI =
[θ1, . . . ,θI ] and the y-training set YJ = [y1, . . . ,yJ ]. These training sets are typically very
large, generated with uniform samples for θ and with samples drawn from ρ(y) for y. Another
option is to employ quasi-random sequences for the training sets in order to better explore
the spaces, or even adaptive sparse grids to help mitigate the curse of dimensionality. Note
that the cost for computing sN (θi,yj) is O(IJ(N3 +RN2)).

After executing Algorithm 1, we need to evaluate the basis functions {vk(y)}Kk=1 on the
desired set of samples YM as

(3.7) [v1(ym), . . . , vK(ym)] = [sN (θ1,ym), . . . , sN (θK ,ym)]D, ∀ym ∈ YM ,

with an additional cost of O(KM(N3+RN2)). Hence, the total computational cost is O((IJ+
KM)(N3 + RN2)). Note that the empirical interpolation is executed only once before we
actually compute the expectation and its gradient for any θ, and that (3.2) will only be
evaluated for the samples in YM .

Finally, we can evaluate the associated expectation for any θ ∈ Θ as

(3.8) EM [s̃N (θ,y)] =
1

M

M∑
m=1

(
K∑
k=1

αk(θ)vk(ym)

)
,

where α(θ) is calculated using (3.3) with O(K(N3 +RN2 +K)) operations. So, EM [s̃N (θ,y)]
requires O(K(N3 + RN2 + K + M)) in complexity. Furthermore, its gradient can be com-
puted with additional cost of O(KRN2). Due to the initial cost for performing the empirical
interpolation procedure once, this approach makes sense only when we wish to compute the
expectation and its gradient for many queries of θ.
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Algorithm 1 Empirical interpolation method on sN (θ,y)

Require: Training sets ΘI = {θi, 1 ≤ i ≤ I} and YJ = {yj , 1 ≤ j ≤ J}. The notation ui
refers to the i-th vector of a set of I vectors, and uji denotes the j-th component of ui.

1: Compute pji = sN (θi,yj) for all (θi,yj) ∈ ΘI × YJ , 1 ≤ i ≤ I, 1 ≤ j ≤ J .
2: Choose the first sample point θ1 as

i1 = arg max
1≤i≤I

‖pi‖∞, θ1 = θi1 .

3: Choose the first interpolation point y1 and the first interpolation vector z1 as

j1 = arg max
1≤j≤J

|pji1 |, y1 = yj1 , z1 = pi1/p
j1
i1
.

4: Initialize the matrix C as C1 1 = 1. Set k = 2.
5: while k ≤ K do
6: For each i ∈ {1, . . . , I}, set cl(θi) = sN (θi,yl), 1 ≤ l ≤ k−1 and compute the interpolant

function of pi as

Ik−1[pi] =
k−1∑
l=1

αl(θi)zl, α(θi) = C−1c(θi).

7: Compute the interpolation error ei = pi − Ik−1[pi]. Choose the next sample point θk
as

ik = arg max
1≤i≤I

‖ei‖∞, θk = θik ,

and define the mean interpolation error as ei = J−1
∑

j

∣∣eji ∣∣.
8: Choose the next interpolation point yk and the next interpolation vector zk as

jk = arg max
1≤j≤J

|ejik |, yk = yjk , zk = eik/e
jk
ik
.

9: Update the matrix C as Cl l′ = zjll′ , 1 ≤ l, l′ ≤ k. Set k = k + 1.
10: end while

4. Empirical Interpolation and Model-Variance Reduction Method. The method pre-
sented here is an extension of the multilevel control variates framework introduced in [44].
The extension is done by introducing the EI as an additional control variate level.

4.1. Two-level Monte Carlo estimator. Consider the scenario where, for each new design
parameter θ, we pursue the computation of an estimate of E[sh(θ,y)]. In [44] we introduced
the estimator

(4.1) E[sh] = E[sh − sN1 ] + E[sN1 ].
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where sN1(θ,y) is the RB output developed in Section 2.3 for some N1 ∈ [1, Nmax]. The
underlying premise here is that the two expectation terms on the right hand side can be
computed efficiently by MC simulations owing to variance reduction and model reduction:
the first term requires a small number of samples because its variance is generally very small,
and the second term is less expensive to evaluate because it involves the RB output.

In this paper, we expand the estimator (4.1) by proposing the following estimator

(4.2) E[sh] = E[sh − sN1 ] + E[sN1 − s̃N1 ] + E[s̃N1 ].

The main advantage of this estimator over (4.1) is that it is faster to compute the sum
E[sN1 − s̃N1 ] + E[s̃N1 ] than E[sN1 ] by using MC simulation. In particular, let Y 0

M0
= {y0

m ∈
Λ, 1 ≤ m ≤M0}, Y 1

M1
= {y1

m ∈ Λ, 1 ≤ m ≤M1} and Y 1
M̃1

= {ỹ1
m ∈ Λ, 1 ≤ m ≤ M̃1} be three

independent sets of random samples drawn in Λ with the probability density function ρ(y).
Actually, the set where s̃N1 is evaluated is precisely YM in (3.7), hence YM = Y 1

M1
∪ Y 1

M̃1
.

We calculate our Empirical Interpolation Model-Variance Reduction (EIMVR) estimate of
E[sh(θ,y)] as

(4.3) E
M0,M1,M̃1

[sh] = EM0 [sh − sN1 ] + EM1 [sN1 − s̃N1 ] + E
M̃1

[s̃N1 ],

where

EM0 [sh − sN1 ] =
1

M0

M0∑
m=1

(
sh(θ,y0

m)− sN1(θ,y0
m)
)
,

EM1 [sN1 − s̃N1 ] =
1

M1

M1∑
m=1

(
sN1(θ,y1

m)− s̃N1(θ,y1
m)
)
,(4.4)

E
M̃1

[s̃N1 ] =
1

M̃1

M̃1∑
m=1

s̃N1(θ, ỹ1
m).

The EI is responsible for alleviating the computational effort in our method since E
M̃1

[s̃N1 ]
only requires the solution of (3.3). In addition, M1 is often quite small since sN1 and s̃N1 are
highly correlated.

Moreover, independence of the sample sets allows us (see [44]) to invoke the CLT to obtain
an error estimate for the expectation error as

(4.5) lim
M0→∞

lim
M1→∞

lim
M̃1→∞

Pr
(∣∣E[sh]− E

M0,M1,M̃1
[sh]
∣∣ ≤ ∆E

M0,M1,M̃1

)
= erf

(
a√
2

)
,

where the a posteriori error bound reads

(4.6) ∆E
M0,M1,M̃1

= a

√
VM0 [sh − sN1 ]

M0
+
VM1 [sN1 − s̃N1 ]

M1
+
V
M̃1

[s̃N1 ]

M̃1

,

with a > 0 being the confidence level in the CLT.
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Similarly, the EIMVR estimate of the true variance V [sh] is given by

(4.7) V
M0,M1,M̃1

[sh] = EM0 [ζh − ζN1 ] + EM1 [ζN1 − ζ̃N1 ] + E
M̃1

[ζ̃N1 ] ,

with new variables ζh = (sh − E
M0,M1,M̃1

[sh])2, ζN1 = (sN1 − E
M0,M1,M̃1

[sh])2 and ζ̃N1 =

(s̃N1 − EM0,M1,M̃1
[sh])2. The application of the CLT yields

(4.8) lim
M0→∞

lim
M1→∞

lim
M̃1→∞

Pr
(∣∣V [sh]− V

M0,M1,M̃1
[sh]
∣∣ ≤ ∆V

M0,M1,M̃1

)
= erf

(
a√
2

)
,

where

(4.9) ∆V
M0,M1,M̃1

= a

√√√√VM0 [ζh − ζN1 ]

M0
+
VM1 [ζN1 − ζ̃N1 ]

M1
+
V
M̃1

[ζ̃N1 ]

M̃1

.

For further details on the derivation of (4.5)-(4.9) we refer the reader to [44].

4.2. Multilevel Monte Carlo estimator. The method can be further generalized and
improved by pursuing a multilevel control variate strategy. Given L different RB output
models sN`

(y), 1 ≤ ` ≤ L, with N1 > N2 > . . . > NL, and an EI decomposition of the coarsest
RB model s̃NL

, we first express the expected value as

E[sh] = E[sh − sN1 ] +
L−1∑
`=1

E[sN`
− sN`+1

] + E[sNL
− s̃NL

] + E[s̃NL
].

We next introduce L+ 2 independent sample sets Y `
M`

= {y`m ∈ Λ, 1 ≤ m ≤M`}, 0 ≤ ` ≤ L,

and Y L
M̃L

= {ỹLm ∈ Λ, 1 ≤ m ≤ M̃L}, which are drawn in Λ with probability density function

ρ(y). We remark that s̃NL
is only evaluated on the sets Y L

ML
and Y L

M̃L
. We then define our

estimate of E[sh] as

(4.10) E
M0,...,M̃L

[sh] = EM0 [sh− sN1 ] +
L−1∑
`=1

EM`
[sN`
− sN`+1

] +EML
[sNL

− s̃NL
] +E

M̃L
[s̃NL

] .

Similarly, the estimate of the variance is defined as

(4.11) V
M0,...,M̃L

[sh] = EM0 [ζh − ζN1 ] +

L−1∑
`=1

EM`
[ζN`
− ζN`+1

] +EML
[ζNL

− ζ̃NL
] +E

M̃L
[ζ̃NL

] ,

where the auxiliary variables are ζh = (sh − EM0,...,M̃L
[sh])2, ζN`

= (sN`
− EM0,...,ML

[sh])2 for

` = 1, . . . , L and ζ̃NL
= (s̃NL

− E
M0,...,M̃L

[sh])2. The probabilistic guarantees on the error of
the proposed statistics arise from the extension of the CLT results above

lim
M0→∞

. . . lim
M̃L→∞

Pr
(∣∣E[sh]− E

M0,...,M̃L
[sh]
∣∣ ≤ ∆E

M0,...,M̃L

)
= erf

(
a√
2

)
,

lim
M0→∞

. . . lim
M̃L→∞

Pr
(∣∣V [sh]− V

M0,...,M̃L
[sh]
∣∣ ≤ ∆V

M0,...,M̃L

)
= erf

(
a√
2

)
.
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where the a posteriori error bounds read

∆E
M0,...,M̃L

= a

√√√√VM0 [sh − sN1 ]

M0
+
L−1∑
`=1

VM`
[sN`
− sN`+1

]

M`
+
VML

[sNL
− s̃NL

]

ML
+
V
M̃L

[s̃NL
]

M̃L

,

∆V
M0,...,M̃L

= a

√√√√VM0 [ζh − ζN1 ]

M0
+
L−1∑
`=1

VM`
[ζN`
− ζN`+1

]

M`
+
VML

[ζNL
− ζ̃NL

]

ML
+
V
M̃L

[ζ̃NL
]

M̃L

.

(4.12)

Note that all expectations and variances are MC estimates through the sample sets Y `
M`

for

0 ≤ ` ≤ L and Y L
M̃L

.

We will refer to the general EIMVR method with a sequence of L RB models as the
L-EIMVR method. For clarity of notation, we identify sh − sN1 as level 0, s̃NL

as level L̃,
the subsequent sN`

− sN`+1
as level ` ∈ (0, L − 1), and sNL

− s̃NL
as level L. The method

allows us to transfer the computational burden from the higher-fidelity (expensive) outputs to
the lower-fidelity (inexpensive) outputs. In particular, we can choose N1, N2, . . . , NL so as to

have M0 � M1 � . . . � ML � M̃L. Hence, the number of evaluations of the higher-fidelity
outputs are significantly smaller than those of the lower-fidelity outputs, thereby resulting in
a significant reduction in the overall computational cost.

4.3. Selection method. We wish to determine the RB dimensions N1, N2, . . . , NL and the
number of samples M0,M1, . . . ,ML, M̃L so as to satisfy the error condition ∆E

M0,...,M̃L
≤ εtol,

while minimizing the computational cost. Obviously, the error condition is satisfied if we take

a2VM0 [sh − sN1 ]

M0
= w0ε

2
tol , a2VM`

[sN`
− sN`+1

]

M`
= w`ε

2
tol, 1 ≤ ` ≤ L− 1 ,

a2VML
[sNL

− s̃NL
]

ML
= wLε

2
tol , a2

V
M̃L

[s̃NL
]

M̃L

= w̃Lε
2
tol ,(4.13)

for any given positive weights such that w0 + . . . + wL + w̃L = 1. The choice of the weights
depends on how we would like to distribute the error among the levels. Furthemore, the terms
vk(ym) need to be precomputed for a predetermined NL on a set YM for k = 1, . . . ,K, m =
1, . . . ,M . Hence, both NL and M are already fixed, and the M samples will be split between
levels L and L̃, that is YM = Y L

ML
∪ Y L

M̃L
.

Let tN`
denote the (online) wall time to compute the RB output sN`

(y) for ` ≥ 1, and
th denote the wall time to compute the HDG output sh(θ,y) for any given y ∈ Λ. Note
that tN`

depends on N`, while th depends on the finite element approximation spaces. Let us
also introduce tα, which refers to the wall time needed to compute α(θ) in (3.3)—the cost
of evaluating the sum (3.8) is very small and thus neglected. The total wall time TL of the
L-EIMVR is given by

(4.14) TL = (th + tN1)M0 +

L−1∑
`=1

M`

(
tN`

+ tN`+1

)
+ tNL

ML + tα.
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We can rewrite this expression by using (4.13) to substitute sample sizes by weights,

CL =
TLε

2
tol

a2
=
VM0 [sh − sN1 ]

w0
(th + tN1) +

L−1∑
`=1

VM`
[sN`
− sN`+1

]

w`

(
tN`

+ tN`+1

)
,

+
VML

[sNL
− s̃NL

]

wL
tNL

+ tα
ε2tol

a2
.

(4.15)

We wish to determine (w0, . . . , wL, w̃L) and (N1, N2, . . . , NL−1) that minimize CL. Unfortu-
nately, this is a nonlinear integer optimization problem which is difficult to solve exactly. We
thus solve an approximate problem as follows.

We first introduce a test sample set Y
M̂

= {ŷm ∈ Λ, 1 ≤ m ≤ M̂} and fix parameter

vector θ ∈ Θ. We then precompute and store the HDG outputs sh(θ, ŷm) for m = 1, . . . , M̂

and the RB outputs sN (θ, ŷm) for m = 1, . . . , M̂ and N = NL, . . . , Nmax. In addition, we
also precompute and store th and tN for N = NL, . . . , Nmax. For any given strictly decreasing
(L − 1)-tuple I = (I1, I2, . . . , IL−1) ∈ [NL, Nmax]L−1 and valid weights w = (w0, . . . , wL), we
evaluate an a priori cost function

ĈL(I,w) =
V
M̂

[sh − sI1 ]

w0
(th + tI1) +

L−1∑
`=1

V
M̂

[sI` − sI`+1
]

w`

(
tI` + tI`+1

)
+
V
M̂

[sNL
− s̃NL

]

wL
tNL

,

≡ Ĉ0
L(I)

w0
+
L−1∑
`=1

Ĉ`L(I)

w`
+
ĈLL
wL

.

Here all the variances are computed using the test sample set Y
M̂

, and the tα term is dropped
as it does not depend on the decision variables. We now set

N ≡ (N1, N2, . . . , NL−1) = arg min
I

ĈL(I,w(I)),

s.t. Nmax ≥ I1 > I2 > . . . > IL−1 ≥ NL

(4.16)

where the weights w(I) are the minimizers of the equivalent cost for any given (L− 1)-tuple
I, thus

(w0(I), w1(I), . . . , wL(I)) = arg min
w

ĈL(I,v),

s.t.

L∑
`=0

w` = 1− w̃L, w` > 0.(4.17)

It only remains to determine the weight w̃L of level L̃. The samples of this level must come
from the precomputed set YM , but a fraction of the samples are also needed for level L.
We express this condition with an allocation parameter β ∈ (0, 1), such that M̃L = βM .
In order to find the optimal weights, we pursue an iterative process for β, first initializing
w̃L = a2VM [s̃NL

]/ε2tolβM . For any β, the KKT conditions for (4.17) yield the optimal weights
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for any (L− 1)-tuple I as

w`(I) =

√
Ĉ`L(I)/Ĉ0

L(I)

L∑
`′=0

√
Ĉ`
′
L (I)/Ĉ0

L(I)

(1− w̃L), 0 ≤ ` ≤ L.(4.18)

The above weights provide a first estimation of (M0, . . . ,ML), hence only need to update the
allocation parameter as β = 1−ML/M and the weight w̃L with the new β. We then recompute
w`(I), 0 ≤ ` ≤ L with (4.18) and repeat until convergence. We solve the minimization problem
(4.16) by simply evaluating the cost function ĈL(I,w(I)) for all feasible (L− 1)-tuples, and
choosing (I∗,w∗(I∗)) that yields the smallest objective value. We finally set N = I∗ and
w = w∗(I∗).

Nevertheless, if sNL
does not have significant statistical correlation with its EI counterpart

s̃NL
, the selection method described above will not deliver the optimal multilevel configuration.

For instance, this situation can occur whenever the new design θ lies in a zone not properly
explored by the θ-training set ΘI . We overcome this limitation by incorporating the new
design θ to the EI basis using Algorithm 1 if no variance reduction is achieved, that is V

M̂
[sNL
−

s̃NL
] > V

M̂
[sNL

]. Moreover, if updating the EI basis is less expensive than not performing an
update (based on the a priori cost), the new design θ is also added to the EI basis. Once
the EI basis is updated we can select the optimal configuration (N ,w) using the procedure
described above.

Having determined the RB dimensions and the weights, we can now proceed with the MC
simulations for all levels. We execute the MC processes for all the levels and enforce the error
constraint ∆E

M0,...,M̃L
= εtol by adding new random parameters to the sample sets until the

following inequalities

ML ≥
a2VML

[sNL
− s̃NL

]

wN
∗

L ε2tol

, M0 ≥
a2VM0 [sh − sN1 ]

wN
∗

0 εtol
, M` ≥

a2VM`
[sN`
− sN`+1

]

wN
∗

` εtol
, ` = 1, . . . , L−1,

are satisfied. Therefore, the sample sets Y `
M`
, ` = 0, . . . , L − 1 are continuously updated

during the MC runs, whereas Y L
ML
, Y L

M̃L
remain fixed. Finally, to provide confidence in the

application of the CLT we also need to enforce that M` are greater than a certain threshold,
say 30.

Although we have assumed that the number of levels L is fixed, our approach also allows
us to compare the computational costs for several values of L. Hence, we can determine not
only the RB dimensions and the weights, but also the optimal number of levels, by repeating
the process above with variable L. This analysis provides inexpensive means to determine the
optimal multilevel structure for each different design parameter θ. Furthermore, the method
can also be improved by constructing the EI basis for different values of NL, and enforcing
the selection method to pick the optimal multilevel structure amongst the optimal multilevel
structures for each value of NL.

4.4. Gradient of estimators. The L-EIMVR method proposed above enables the fast
evaluation of output statistics for multiple instantiations of the design parameters. In addition,
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it is also desirable to simultaneously compute gradients (and maybe Hessians) of the L-EIMVR
estimators using the results in 2.4.

The computation of gradients for expectations is usually addressed by interchanging the
gradient and expectation operators, which is valid under certain regularity assumptions [25, 26]
of the output functional. The procedure then resorts to regular MC simulation on the gradient
of the output to approximate the gradient of the expectation. In our context, it is natural
to capitalize the multilevel structure introduced above to compute derivatives of the relevant
statistics. We therefore define

∇E
M0,...,M̃L

[sh] = EM0 [∇sh −∇sN1 ] +
L−1∑
`=1

EM`
[∇sN`

−∇sN`+1
]

+ EML
[∇sNL

−∇s̃NL
] + E

M̃L
[∇s̃NL

]

(4.19)

and

∇V
M0,...,M̃L

[sh] = EM0 [∇ζh −∇ζN1 ] +

L−1∑
`=1

EM`
[∇ζN`

−∇ζN`+1
]

+ EML
[∇ζNL

−∇ζ̃NL
] + E

M̃L
[∇ζ̃NL

]

(4.20)

where the gradients for the auxiliary variables read

∇ζh = 2
√
ζh

(
∇sh −∇E

M0,...,M̃L
[sh]
)
,

and analogously for ζN`
, ζ̃NL

. The computation of gradients for the HDG and RB outputs
is detailed in Section 2.4, whereas for the EI output s̃NL

we refer the reader to Section
3. Finally, we can trivially compute a posteriori error bounds for each component of the
gradient by combining the results in (4.12) with the multilevel expression for the gradients in
(4.19)-(4.20).

5. Numerical Results. The method described above aims to provide an efficient com-
putation of the statistical outputs and their gradients for any parameters in the parameter
space. This method is well suited for analysis of a stochastic system modeled by parametrized
stochastic PDEs, when we need to study the behavior of the underlying stochastic system and
its sensitivity for many different inputs. The method is also particularly useful for solving
stochastic optimization problems, whose objective value (usually a function of the expectation
and variance) needs to be evaluated many times in order to find an optimal solution. In this
section, we demonstrate our method on an acoustic scattering problem in both the analysis
and optimization contexts.

5.1. Problem description. We consider a wave scattering problem as depicted in Figure
1a. Let us consider a region C, comprised between the circles of radii R1 and R2, formed by Q
disjoint rings of constant (relative) permittivity εq, q = 1, . . . , Q, see Figure 1a. An incident
plane wave u0 with wavenumber k interacts with the cylinder of radius R1, generating a
scattering pattern in the domain. If we express the total wave amplitude ut as the linear



EIMVR FOR COMPUTING STATISTICAL OUTPUTS OF PSPDEs 15

superposition of the incident and scattered fields as ut = u0 + u, the equations driving the
system are

−∆u− k2εu = ∆u0 + k2εu0, ∀x ∈ D ,

∇u · n = iku−Hu, ∀x ∈ ∂DR ,(5.1)

∇u · n = −∇u0 · n, ∀x ∈ ∂DN .

The outer boundary DR, with mean curvature H, is located farfield, limiting the effect of first-

C

∂DN

R1 R2
u0

Γ

D

(a) Geometry of the wave scattering problem. (b) Scattered field for θ∗d and y = 0, using 1380
elements of order p = 4 for N = 31200 dof.

Φ
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∞
(Φ

)|
2
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(c) Radar cross section vs Φ ∈ [0, π] for θ∗d and
y = 0. Target zone and observation angles are
highlighted.

N
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10
-2
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-1

10
0

ǫ
s
N,avg

ǫ
u∞

N,avg

(d) Average farfield pattern error and cumulative
RCS error for a test set vs size of RB N .

Figure 1: Problem specification, optimal deterministic solution and RCS distribution

order radiating boundary conditions on the numerical simulation near the cylinder, whereas
the inner boundary DN guarantees total wave reflection (sound-hard condition). The objec-
tive is to design a material configuration that produces a reduced farfield radiation pattern
on a specific direction. Furthermore, we seek a robust material distribution by introducing
uncertainty in the permittivity field to account for errors in the manufacturing process,

(5.2) εq = θq + yq, θq ∈ [θLB, θUB], yq ∼ N(0;σ2).
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The farfield radiation pattern can be computed with the expression

(5.3) u∞(θ,y; Φ) =

∫
Γ
u
∂e−ikΦ·x

∂n
− ∂u

∂n
e−ikΦ·x = `†(u(θ,y)),

evaluated on the curve Γ located at R2 + (R2 −R1)/Q. The strength of the radiating waves,

known as radar cross section (RCS), is therefore given by
∣∣u∞(Φ)

∣∣2. This quantity measures
the detectability of the scattering cylinder with a radar. The quantity of interest for this
example is the cumulative radar cross section for multiple observation angles

(5.4) s(θ,y) =
B∑
b=1

∣∣u∞(θ,y; Φb)
∣∣2.

The parameters used for this example are k = 4, R1 = 1, R2 = 2, Q = 8, whereas the outer
boundary DR is modeled as a concentric circle of radius 6. We adopt (θLB, θUB) = (1, 5),
σ = 0.03 for the material properties and fabrication error, and aim to minimize the cumulative
RCS on B = 10 observation angles within Φ ∈ [π/4, π/2]. The physical domain is discretized
into a triangular mesh of 1380 elements as shown in Figure 1b and polynomials of degree
p = 4 are used to represent the numerical solution uh. Furthermore, Figure 1b also depicts
the numerical solution obtained using the HDG method for the optimal deterministic (y = 0)
design θ∗d. The radar cross section distribution for this design is shown in Figure 1c, exhibiting
low values on the region of interest.

We develop a RB for the problem (5.1) and the linear output (5.3) jointly over (θ,y) ∈
Θ × Λ. In Figure 1d we show the convergence of the farfield pattern for all angles consid-
ered, together with the convergence of the cumulative RCS, computed as the average errors
εu∞N,avg, ε

s
N,avg over a testing set Ytest of 100 samples with precomputed HDG solutions. The

larger error of the output s compared to the farfield radiation pattern as a function of the RB
size is a consequence of its quadratic nature.

Secondly, we construct an empirical interpolation basis using Algorithm 1. We monitor
the mean interpolation error ei for all sample points θi that have not been included in the
basis as an indicator of the quality of the interpolant. A key point is the model used to
construct the interpolation basis, which needs to be determined beforehand. We construct
the interpolation basis for several reduced basis sizes, setting K = 150, and show ei averaged
over θi ∈ ΘI that are not in the basis, which we define as eI , in Figure 2a. The convergence of
the EI basis is similar for all cases, implying that the decision upon the reduced basis model
for which we develop an EI basis should be independent of the EI procedure.

5.2. Features of L-EIMVR. Firstly, it is important to examine some important features
of the L-EIMVR method. To that end, we select for each case a region of designs that best
illustrates the desired property. To compare the efficiency of L-EIMVR with regular MC we
analyze the speedup πMC = thMMC/TL, where MMC is the amount of samples needed for MC
to achieve the same standard error as L-EIMVR, that is a

√
VMMC

[sh]/MMC = ∆E
M0,...,M̃L

.

5.2.1. Reduction in variance. To show the benefit of including the EI term in terms
of variance reduction, we compute multiple realizations of the output for several design pa-
rameters chosen at random and compare V [sN1 ] with V [sN1 − s̃N1 ] and V [s̃N1 ]. Results are
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(a) Averaged error eI vs size of
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Figure 2: Convergence of empirical interpolation, variance reduction and EI updates

collected in Figure 2b for N1 = 90 and N1 = 180. Even though the set of θ is small, it suffices
to show that further variance reduction can be achieved with the introduction of the EI level.
Indeed, since s̃N1 is precomputed offline, for the same amount of samples for sN1 the error
attained will be smaller for the EI case as V [sN1 − s̃N1 ] < V [sN1 ]. Note that when exploring
a wide range of designs there is no optimal way of choosing N1, since the amount of variance
reduction can exhibit large variations for different N1 across designs.

5.2.2. EI updates. We now illustrate the necessity of allowing updates on the EI basis.
To that end, small perturbations of an initial design θ0 are explored, see Figure 2c (top).
For the sake of clarity we set L = 1 with N1 = 180, so we simplify the selection process to
only determining the weights. In Figure 2c (bottom) we show the reduction in variance for
sN1 − s̃N1 before and after the EI update. The EI basis is unable to approximate the initial
design due to poor correlation (ρ(sN1 , s̃N1) = 0.014) causing an increase in variance. This
situation is corrected by updating the EI basis, which enables for a significant reduction of
variance (2-3 orders of magnitude) in the subsequent designs by increasing the correlation
between both outputs.

The speedup πMC is also presented, showing that the EI update performed for θ0 greatly
impacts the computations for neighbors of θ0. Indeed, after the EI update the 1-EIMVR
achieves an extra order of magnitude of speedup with respect to MC for the same a posteriori
error.
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5.3. Stochastic optimization. The original stochastic optimization problem (SP) is re-
placed by the following stochastic optimization problem

(SP-EIMVR) min
θ∈Θ

F̃γ = E
M0,...,M̃L

[s(θ,y)] + γ
√
V
M0,...,M̃L

[s(θ,y)].

The optimal design for the deterministic problem is θ∗d, generating the scattered field and
radar cross section shown in Figures 1b-1c, and the purpose is to find a new design θ less
sensitive to material imperfections (y 6= 0). The optimization algorithm used is the imple-
mentation of preconditioned truncated Newton [13] available in the nlopt [22] optimization
package, with multiple starts to search for the local optima —results correspond to a particular
initialization.
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Figure 3: Accumulated speedup for EI models NL = 90 and N1 = 180 with respect to MC.

The first case corresponds to γ = 0, thus minimizing the expected value of the functional
only. We depict the accumulated speedup, that is the ratio of accumulated costs at each
iteration, in Figure 3 (left) for NL = 90 and N1 = 180. For this results we have used
N1 = 180 to compute the optimal design θ∗0, and then evaluated the L-EIMVR with NL = 90
on the same set of designs to have fair comparisons. Note that there is a large variability in the
accumulated speedups with respect to MC, and that L−EIMVR converges to the optimum
100-200 faster than MC simulation. For this particular example N1 = 180 provides a greater
acceleration, although it can be difficult to predict a priori, especially in wave propagation
problems for which the observable outputs exhibit large variations for small changes on the
design parameters. The results are similar for γ = 1, also shown in Figure 3 (right) for an
optimal design θ∗1.

Finally, we compare the performances of 1-EIMVR and the L-MVR estimator introduced
in [44]. The nature of the L-EIMVR estimator makes it particularly suitable for cases where
many expectations need to be computed, and especially when most of the cost lies on the
coarsest level. We restrict the L-EIMVR method to L = 1 with N1 = 180, whereas we let
the selection algorithm introduced in [44] choose the optimal number of levels for L-MVR,
and compute the online wall time of both methods to achieve the same a posteriori error.
In Figure 4 we show the accumulated speedup for both γ = 0 and γ = 1, that is the ratio
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Figure 4: Accumulated speedup 1-EIMVR (N1 = 180) with respect to L-MVR.

of accumulated L-MVR and 1-EIMVR costs. The 1-EIMVR method outperforms L-MVR
since the cost for the last level in the 1-EIMVR case is minimal. The accumulated speedup
of 1-EIMVR is 1.5 (γ = 0) and 1.46 (γ = 1), that is the same tolerance is achieved with
around 2/3 of the L-MVR cost. These savings correspond to only one optimization run, but
in general multiple initializations are needed to attain the optimum. Hence, if we sequentially
reuse the EI basis for different initializations further computational savings with respect to
L-MVR (and obviously MC) may be attained. The fact that the EI basis is dynamically
adapted to the problem makes the L-EIMVR method attractive for optimization, as opposed
to L-MVR and MC which treat every objective function evaluation independently.

Deterministic sh(θ∗d,0) = minθ∈Θ sh(θ,0) = 1.0688e-1

Stochastic (MC) EM [sh(θ,y)]±∆E
M

√
VM [sh(θ,y)]±∆

√
V

M

θ∗d 2.14e-1 ± 2.5e-3 a 2.49e-1 ± 8.6e-3 a
θ∗0 1.70e-1 ± 8.7e-4 a 8.69e-2 ± 5.1e-3 a
θ∗1 1.79e-1 ± 4.8e-4 a 4.78e-2 ± 1.9e-3 a

Table 1: Expectation and variance of output evaluated at deterministic and stochastic optima
for M = 104 MC realizations of random perturbations, for generic confidence level a > 0.

In order to assess the quality of the solutions, we generate random noise and analyse the
robustness of the various solutions evaluating (SP-MC). Results are collected in Table 1 for
designs θ∗d, θ

∗
0 and θ∗1 and M = 104 samples of noise y. The error bounds for the expectation

and the standard deviation are computed with the standard results from limiting distributions,
that is

∆E
M (θ) = a

√
VM [sh(θ,y)]

M
, ∆

√
V

M (θ) = a

√
VM [sh(θ,y)](κ− 1)

4M

where κ is the fourth standarized moment, or kurtosis, and a refers to the level of confidence for
the CLT. The designs θ∗γ are consistent with respect to the corresponding objective function

F̃γ , since F̃γ=0(θ∗0) < F̃γ=0(θ∗1) < F̃γ=0(θ∗d) and F̃γ=1(θ∗1) < F̃γ=1(θ∗0) < F̃γ=1(θ∗d). In addition
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we observe considerable degradation of the deterministic optimum when noise is included, see
sh(θ∗d)/F̃γ=1(θ∗d) < 0.25, that is the deterministic optimum is not robust in the presence of
randomness as it exhibits a large variance. Conversely, the non-deterministic optimum θ∗1 is
a robust design as the objective function for γ = 1 is already smaller than

√
VM [sh(θ∗d,y)],

with a ratio of standard deviations of
√
VM [sh(θ∗1,y)]/

√
VM [sh(θ∗d,y)] < 0.2. We therefore

see the necessity of performing stochastic optimization to attain robust designs that may not
be achieved if deterministic optimization is pursued.

6. Conclusions. We have presented an empirical interpolation and model-variance reduc-
tion method for computing statistical outputs of stochastic elliptic PDEs. We first reviewed
the construction of a reduced basis for the hybridizable discontinuous Galerkin method, and
the computation of gradients in the reduced basis setting. We next applied the empirical
interpolation to develop a coefficient-function approximation of the RB output. We then in-
corporated the RB and EI outputs into the multilevel control variate framework that exploits
the statistical correlation between the RB and EI approximations and the high-fidelity HDG
discretization to accelerate the convergence rate of the MC simulations by several orders of
magnitude. Moreover, we have combined the multilevel structure with the computation of
gradients to propose estimates of the gradients of the output statistics. In addition we in-
troduced a posteriori error bounds for the estimates of the statistical outputs together with
a selection method for efficiently choosing the RB dimensions, the weights, and the sample
sizes. We presented numerical results for a scattering problem, where we have shown that
the present method is several orders of magnitude faster than the regular MC method for the
same a posteriori error bound.

We conclude the paper by pointing out several possible extensions and directions for fur-
ther research. In terms of the EIMVR method itself, there are a number of ideas that can be
pursued: (1) enable online updates on the reduced basis to better approximate regions on the
parameter space that are not properly represented by the surrogate, thus not achieving suffi-
cient variance reduction in level 0 of the estimator (4.10); (2) devise estimators with multiple
levels of EI outputs, which can increase the competitiveness of the method by introducing
additional levels with small variance at virtually no extra online cost; (3) capitalize Auto-
matic Differentiation methods for a faster evaluation of the gradients [17]; and (4) examine
randomized quasi-Monte Carlo approaches not only for a faster sampling convergence of the
estimators [15], but also for an improved exploration of the stochastic space for the empirical
interpolation.

Finally, we would like to compare the performance of the method with existing approaches
in stochastic optimization that combine the RB method and sparse grids [9, 8]. Furthermore, it
woul also be interesting to analyze how the L-EIMVR method can be applied in the stochastic
approximation framework, leveraging the research and results in stochastic gradient methods
with the fast computation of output statistics of L-EIMVR. We would like to apply this
methodology to fabrication adaptivity problems [40, 24, 28], where manufacturing tolerances
must be addressed to ensure robust designs.
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