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1. Introduction

The last 20 years have seen phenomenal progress in the development and
application of CFD algorithms, advancing from 1D to 3D calculations, from
steady to unsteady flows, from potential flow modelling to the Reynolds-
averaged Navier-Stokes equations, from single-block structured grids to un-
structured and hybrid grids, and from pure CFD applications to a wide
variety of multi-disciplinary applications.

Much of this progress has been built upon a relatively small base of
numerical analysis theory. The numerical stability of constant coefficient
finite difference equations on infinite structured grids is determined using
Fourier analysis. This also gives a necessary, and usually sufficient, local
condition for stability when the coefficients of the finite difference equa-
tion vary smoothly. For unstructured grids, the CFL theorem has been the
mainstay, giving a condition for stability which is necessary, and usually
within a constant factor of 2 — 5 of being sufficient.

Truncation error (or modified equation) analysis is the basis for deter-
mining the order of accuracy of algorithms on structured grids, but for finite
volume methods on unstructured grids this theory is inadequate. Many fi-
nite element methods have their own distinct mathematical theory, but the
accuracy that is achieved in actual computations is often much better than
the error bounds predicted by theory. With such a large discrepancy, it is
not obvious that the numerical analysis provides a good basis for designing
improved discretisations.

Perhaps one of the best examples of the relative strengths and weak-
nesses of engineering computations and numerical analysis has been in grid
adaptation. Numerical analysis theory exists for some very simple applica-
tions, such as the Laplace equation. However, most developments in adap-
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tive 3D computations using the Euler and Navier-Stokes equations have
been with ad hoc adaptation criteria based on a combination of a very good
understanding of fluid dynamics, knowledge of the truncation errors in flux
evaluations, and a considerable amount of numerical experimentation.

My conjecture is that in the next 10 years there will continue to be great
progress in the development and application of CFD algorithms, much of it
in multi-disciplinary and design applications. However, I think algorithmic
developments in ‘core’ areas of CFD, for example improving the accuracy
of a discretisation, or the effectiveness of grid adaptation, will depend in-
creasingly on more detailed numerical analysis of the accuracy and stability
of existing algorithms. In doing so, the numerical analysis will have to cope
with the following aspects of engineering computations:

— systems of equations

— nonlinearity

— irregular and unstructured grids

— boundary conditions

— high Reynolds number viscous flow
— multidisciplinary applications

This paper cannot attempt to survey the range of old and new theory
in numerical analysis which can be applied to address these issues. Instead,
it presents a number of recent analyses performed by the author:

— accuracy of quasi-1D shock capturing (Gil96)

— stability of aerothermal coupling (Gil95b)

— accuracy of aeroelastic coupling (Gil95c¢)

— stability of N-S computations on unstructured grids (Gil95a)

Each is motivated by an engineering application and involves the selec-
tion of a relevant model problem. Together, they illustrate the application
of a selection of the numerical analysis theory which is able to treat some
of the difficulties listed above.
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2. Accuracy of quasi-1D shock capturing

This analysis was motivated by the question of how best to adapt grids for
2D and 3D transonic flow computations in which there are shocks. Ideally,
the criterion will lead to the adaptation of only those cells in which large
flow gradients generate large numerical errors. Unfortunately, at present
there is no complete theory of a posteriori error estimation for the discreti-
sation of nonlinear p.d.e.’s, on which to base rigorous adaptation criteria
and so they have instead been developed based on a combination of model
linear p.d.e.’s, engineering intuition and practical experience (e.g. (LMZ86;
MJ87; PVMZ87; Dan88; WHMM93)).

One typical adaptation parameter that is used is A, = h|dp|, where h is
some measure of the cell length, and dp is a first difference of the pressure
field. At shocks, dp is independent of the cell size and so the shock cells
are adapted repeatedly until 4 is sufficiently small that A, falls below the
adaptation threshold. Away from shocks, A, ~ h2|Vp|, and so the adapted
grid resolution is related to the flow gradient, as desired.

In designing adaptation criteria such as this which will generate a large
number of adapted cells at shocks and so obtain very thin discrete shocks,
it is implicitly assumed that the shock would otherwise cause substantial
numerical errors. The lift on a wing is one of the most important engineer-
ing quantities obtained from a solution of the Euler equations. For such a
calculation it appears, intuitively, that since the shock is ‘smeared’ over one
or two cells there must be an error in the lift prediction of order hs;Ap where
hs is the cell size at the shock and Ap is the jump in pressure across the
shock. This appears to be the basis for the particular adaptation criterion
above, but other adaptation criteria also lead to very substantial refinement
of shock cells and so the belief in a significant first order error at shocks
seems widespread although not stated.

2.1. ANALYSIS

The model problem which was selected is the discretisation of transonic
inviscid flow in a quasi-1D diverging duct. The steady quasi-1D Euler equa-
tions in conservative form are

d dA
—(AF)— —P = 1
(4R - CP =0, (1)

where U is the state vector and F' and P are the usual flux vectors given

by
p pu 0
Uz(pu), F=(pu2+p), Pz(p). (2)
pE puH 0
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A(z) is the cross-sectional area of the duct which, for convenience, is as-
sumed to be locally constant at the two ends.

At the supersonic inflow at z =0, the entire state vector U(0) is specified.
At the subsonic outflow at =1, the static pressure is specified. Integration
of Equation (1) over the domain gives

0

1 LdA

[AF]y = | %de:(p>, (3)
0

where the ‘drag’ D (the force exerted by the sidewall on the fluid) is defined
as

1
Dz/ pﬁdx. (4)
o dx

The first and third components of Equation (3) together with the one out-
flow boundary condition totally specify the three components of U(1) given
that U (0) has already been specified. The second component of Equation (3)
then defines D uniquely as a function of the boundary conditions indepen-
dent of the precise variation of p(z) or A(x) between the end points. This is
the key in determining the accuracy with which the discretisation approx-

imates the quantity
1
/ pdz
0

which represents the lift in 2D and 3D Euler calculations for lifting bodies.

The full details of the numerical analysis are presented in Reference
(Gil96), but the outline approach is as follows. The analysis considers steady
discrete equations of the following conservative form

Aji12F 112 — Aj1 o Fj1y2 — (Aj+1/2 - Aj—1/2) P; =0, (5)

on a computational grid with uniform mesh spacing h.

The three components of the discrete solution at the inflow are specified
as boundary conditions. Because the discretisation is conservative, mass and
energy conservation together with the specification of the static pressure at
the outflow fully determine the three components of the discrete solution
at the outflow as well. Momentum conservation then implies that Dy, the
discrete equivalent of the ‘drag’, is obtained exactly.

The drag integral can be split into two pieces, a ‘shock’ piece from a
region of width O(h) spanning the shock, and a ‘smooth’ piece from the
regions on either side of the shock in which the flow is smooth.

In the smooth flow regions, the solution error is O(h™) where m is the
order of the truncation error. The corresponding errors in the ‘smooth’
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pieces of the discrete drag and lift are also O(h™). Since the combined

drag integral is exact, the error in the shock piece of the discrete drag

must be equal and opposite, and so is O(h™). Reference (Gil96) presents

an asymptotic analysis which shows that, as a consequence, the error in

the ‘shock’ piece of the discrete lift integral is O(h?). Provided m > 2, this

means that the total error in the discrete lift integral is also O(h?).
Writing the total lift error as

Ly — L = C,h?, (6)

there is nothing in the analysis to suggest that C} should asymptote to a
constant as h — 0. The proven second order accuracy only requires that
C}, be bounded, leaving the possibility that C}, may depend on the location
of the shock within the shock cell (e.g. whether the shock is at a grid node
or halfway between two nodes).

2.2. NUMERICAL RESULTS

Numerical results were obtained using a discretisation in which the numer-
ical smoothing is a blend of second and fourth difference terms. The duct
geometry and boundary conditions were chosen so that the peak Mach num-
ber on the upstream side of the shock was 1.3. The steady-state discrete
solutions were obtained by a fully-converged Runge-Kutta time-marching
procedure. Figure 1 shows the Mach number distribution for the solution
near the shock using a uniform grid of 64 points.

To investigate the effect of mesh resolution, a sequence of grids was used,
with the number of grid points ranging from 64 to 192. For each grid, the
influence of the shock position relative to the grid nodes was investigated by
performing a number of calculations with the grid displaced by an amount
dz in the range 0 < dz < h. Figure 2a) shows the errors in the computed
lift. The ‘error bar’ indicates the range of values obtained depending on the
position of the shock relative to the grid. Figure 2b) plots the magnitude of
these error bars L}"** — Lhmi". Note that in both figures the quantities are
plotted against h2, not h. The linear behaviour in Figure 2b) corresponds
to the second order ‘shock’ component of the error, as predicted by the
numerical analysis, with C} being a function of the shock position. Figure
2a) also shows an almost linear behaviour for small values of h, but for larger
values the error increases more rapidly, due to the ‘smooth’ component of
the error which is O(h?). Figure 2a) also illustrates the possibility for non-
monotonic convergence as h is refined; for sufficiently small values of h there
are some points within the error bar which show an overprediction of the
lift, while others show an underprediction.

The result that the lift is determined with second order accuracy for the
model quasi-1D problem is surprising and counter-intuitive. If one performs
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Figure 1. Mach number distribution near the shock

numerical integration of the analytic solution at the discrete grid points
using the trapezoidal method, the integration error is O(h) since the value
of the trapezoidal integral will be independent of the precise location of
the shock within the shock cell. A similar argument applies to the use of
any other numerical integration scheme. Since the asymptotic analysis and
numerical evidence show that the discrete lift is O(h?), there must be an
equal but opposite error which is also O(h). This can only be due to a O(1)
difference between the analytic solution and the discrete solution at the
grid points near the shock.

2.3. RELEVANCE TO 2D/3D APPLICATIONS

There is obviously a question about the relevance of the quasi-1D model
problem to the 2D and 3D computations which are of real engineering
interest. Unpublished grid refinement studies by Jameson show a variety
of behaviour for different test cases. Almost all show convergence in lift
and drag to be faster than first order. A substantial fraction, but not the
majority, show clear second order convergence with the error proportional
to h%. The majority show very rapid convergence which does not appear to
be proportional to h™ for any value of m; in many cases the convergence is
not even monotonic. These results are consistent with the quasi-1D analysis.
However, extending the rigorous numerical analysis from the quasi-1D duct
problem to a 2D airfoil problem may prove to be very difficult.
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Figure 2. Errors and variation in computed lift
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3. Stability of aerothermal analysis

This research was motivated by interest in numerical procedures for com-
bined aerothermal analysis, coupling a thermal diffusion analysis of the
heat flux in a solid turbine blade with a Navier-Stokes computation of the
surrounding fluid.

One approach to the numerical approximation of this situation would
be the use of a single consistent fully-coupled discretisation modelling both
the solid and the fluid, plus the boundary conditions at the interfaces
(MMHC89).

However, in practice, a simpler approach is to link two separate codes
modelling the solid and fluid, exchanging information at the interface be-
tween the two (AWP94; CTB94; HV95; BLpB95). Both CFD codes and
thermal analysis codes usually have the capability to specify either the
temperature or the heat flux at boundaries. A natural choice therefore for
coupling these codes is to specify the surface temperature at the interface
in one code, taking the value from the other code, and specify the boundary
heat flux in the second code, taking its value from the first code (AWP94;
CTBY94). A concern was whether there is any possibility that the coupling
procedure could introduce a spurious numerical instability. Therefore, the
numerical stability of a model 1D problem was analysed.

3.1. MODEL PROBLEM

As indicated in Figure 3, the 1D model problem has a solid in the
region £ <0, and a fluid in £ >0. In the solid, the evolution of the unsteady
temperature is governed by the diffusion equation

T g T

C—E__awa q:_k— %7 (7)

in which T'(z,t) is the temperature, ¢(z,t) is the heat flux, and ¢ and k_
are the heat capacity and conductivity, respectively, which are taken to be

uniform.
J=0

Figure 3. 1D geometry for aerothermal analysis

solid fluid
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In the fluid, the convection velocity is neglected, and so the Navier-
Stokes equations reduce to a thermal diffusion equation of the same form,
but with uniform heat capacity ¢, and conductivity k..

At £=0, the interface conditions are that T and ¢ must be continuous.
The boundary conditions as x — +oo are that ¢ — 0.

3.2. STABILITY ANALYSIS

Using a computational grid with uniform spacing Az for the fluid, and
uniform spacing Az_ for the solid, explicit Forward Euler central space
differencing of the diffusion equation gives the algorithm

Az 1) )y Kkt ) (n) | m(n)

A @ eT) = S ). @

on either side of the interface, i.e. for j#0.
This can be re-expressed as

(17 =Ty) = du (T 2T 4 T)), A0, )
where LA
+ AL

d:t = CiAQZi- (10)

Standard Fourier analysis shows that this is stable provided d+ < 1.

At the interface, we choose to enforce continuity of temperature and
heat flux by using the solid surface temperature as the boundary condition
for the fluid, and using the fluid surface heat flux as the boundary condition

for the solid. To be precise, the calculation of T1(n+1) in the fluid uses the

temperature To(n) from the solid, and the temperature TO(nH) in the solid

is calculated from

c_Az_
2At

i . | A —
(Té +1)_T0( )) L K(TO( ) _mpl 1)), (11)

with the fluid surface heat flux being evaluated by a first order one-sided
difference (HV95),

_ ks

W= Ay

(1" —TM). (12)

It is more convenient to consolidate these last two equations into the
following equation,

Tén-q-l) _ TO(n) 94 (Tén) _ TE?) + 2rdy (Tl(") _ Tén)) , (13)
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in which r is the ratio of the thermal capacities of the computational cells
on either side of the interface,

_ C+Al’+

r .
c_Ax_

(14)

The interface stability analysis uses the well-established theory of Go-
dunov and Ryabenkii (GR64; RM67), in which the task is to investigate
the existence of separable normal modes of the form

T = 2 ;. (15)

The discretisation is unstable if the difference equation admits such solu-
tions which satisfy the far-field boundary conditions, f; — 0 as j — Foo,
and have |z| > 1, giving exponential growth in time. The form of the solu-
tion is very similar to that of Fourier modes, except that the amplitude of
the spatial oscillation decays exponentially away from the interface.

For this application the normal mode must be of the form

z”/@z, 1 <0
o (16)
anii_, 7>0
The difference equations, Equation (9) and Equation (13), are satisfied
provided the three variables z, x_, k. satisfy the following equations.
z = 1+d (k —2+k"")
z = 1+2d_(kZ' 1)+ 2rd; (ks —1) (17)
Zz = 1+d+(h}+—2+h};1)

Solving the first of these equations to obtain x~! gives

1—2 4d_

-1

—1- 144/1— . 1
- 2d_ ( 1—z) (18)

To satisfy the far-field boundary conditions as j — —oo it is necessary to
choose the negative square root when the argument is real and positive;
when it is complex, the choice of root is defined by the requirement that
|/£1| < 1. Solving the third of the equations similarly to obtain s, and
substituting these into the second equation gives the following nonlinear

equation for z.
4d 4d,
1—1_z — r(l— 1—1_z) =0 (19)
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There is no simple closed form solution to this, giving z as an explicit
function of the parameters d_,d,,r, but analysis of this equation reveals
that |z| < 1 if, and only if,

V1—2d_ (20)
1—/1-2d,

The full details are presented in (Gil95b).

This analysis is supported by the numerical results presented in Figure
4. The computations use the finite domain —2000 < j < 2000, initial
conditions TJ0 =—1 for <0 and T]O =1 for 7 >0 and boundary conditions

T(T;)ooo = -1, T2(ggo =1. d_ and dy are both taken to be %, for which the

analysis above predicts the coupled system to be stable only for r<1.

Figure 4 shows two sets of results with T](n) plotted every 25 iterations.
In a), =0.99 and the solution appears to be stable, with a slowly decaying
interface transient, while in b), r=1.01 and the solution is clearly unstable.

Reference (Gil95b) also analyses the stability of two other algorithms.
One is a hybrid algorithm in which the fluid is discretised using the same
explicit algorithm, but the solid is discretised using an implicit algorithm.
The other uses an implicit discretisation for both the solid and the fluid,
but an explicit updating of the boundary conditions for each. For both
of these algorithms, the analysis reveals that the stability depends on the
parameters r, d_ and d, with the coupling being unstable when r>>1 and
stable when r < 1.

In practice, typical values for ¢+ and Az usually result in » < 1, and so
the coupled fluid /structural calculations will be stable. This is based on the
assumption that the fluid takes its surface temperature from the solid, and
the solid takes its surface heat flux from the fluid. If the roles are reversed,
specifying the heat flux into the fluid and the surface temperature of the
solid, then the above analysis remains valid with the fluid in £ <0 and the
solid in 2> 0. In this case, > 1, and so the coupling would be unstable.

r <

3.3. CONCLUSIONS

The stability analysis shows the viability of a loosely-coupled approach to
computing the temperature and heat flux in coupled fluid /structure inter-
actions. The key point to achieving numerical stability is the use of Dirichlet
boundary conditions for the fluid calculation and Neumann boundary con-
ditions for the structural calculation. Although the analysis is performed
for a 1D model diffusion equation, this conclusion should remain valid for
the real engineering calculations in which the 3D diffusion equation is used
to model the heat flux in the structure and the 3D Navier-Stokes equations
are used to model the behaviour of the fluid.
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Figure 4. Aerothermal coupling with results every 25 iterations
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4. Accuracy of aeroelastic coupling

The possible flutter of aircraft wings and turbomachinery blades can now
be investigated by the simultaneous solution of the coupled 3D nonlinear
p-d.e.’s describing the unsteady aerodynamics and structural dynamics of
the application (Gur90a; Gur90b; MI95; NH92). However, such calcula-
tions are computationally demanding, preventing extensive investigations
of some of the underlying algorithmic issues. One issue is whether the cou-
pling procedure may introduce a spurious Godunov—Ryabenkii numerical
instability, unrelated to the real flutter instabilities which are the focus
of engineering attention. Another is the accuracy of the resulting coupled
analysis, particularly when there are very few timesteps per period of os-
cillation.

To investigate these issues, a model 1D problem was constructed, and
a number of different discretisations were analysed and tested numerically
(Gil95c¢).

4.1. MODEL PROBLEM

As illustrated in Figure 5, the 1D model problem consists of a wall
oscillating about =0, and a semi-infinite fluid in x> 0.

Neglecting all viscous effects, the fluid dynamics is modelled by the
inviscid acoustic equations expressed as a coupled system of first order
differential equations for the pressure, p, and velocity, u,

o ([ p 0 pc\ 0 < P )

— — = 0. 21

8t<U>+<%0 Ox \ u (21)
Here p and c are the density and speed of sound, respectively, of the undis-
turbed fluid.

The dynamics of the wall’s motion are modelled by a simple mass-spring
system subject to the external unsteady aerodynamic pressure.

M &y + mw2z, = —p(0,1). (22)

>

Figure 5. 1D geometry for aeroelastic analysis
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Here m represents the mass per unit area and w, is the natural frequency
of oscillation in the absence of any aerodynamic coupling.

There is also a kinematic compatibility condition, requiring that the
velocity of the wall must match that of the fluid.

G (1) = u(0, ). (23)

In the far-field, the boundary condition is the radiation condition, that
all waves should be outgoing, travelling away from the oscillating wall.
This simple model problem admits an eigenmode solution of the form

Loy (t) = X eiwt,
p(z,t) = P eiwlt—z/c) (24)
u(z,t) = U ei“’(t_‘”/c),

where
wi:\/l—dQ +id ~ 1+id— 1d2, (25)
o
d
. = (26)
2mw,

The positive imaginary component of w indicates the amplitude of the wall’s
oscillation is decaying exponentially; this is because the wall’s kinetic and
potential energy is being converted into radiating acoustic energy of the
fluid.

d is the non-dimensional damping factor which plays a critical role in
the aeroelastic analysis. In engineering applications, it is usually in the
range 0.005 — 0.02 for turbomachinery flutter, and in the range 0.05 — 0.2
got aircraft wing flutter.

4.2. NUMERICAL ANALYSIS

Using first order upwinding for the CFD, with either explicit or implicit
time differencing, the discrete equivalent of the far-field radiation condi-
tion leads to the conclusion that the discrete characteristic variables cor-
responding to the incoming acoustic mode are all zero. As a consequence,
the pressure and velocity at the wall node, 7 =0, are related by

Py = peug”. (27)
A central difference approximation to the wall dynamics gives

Aﬂt? (wg“"l) — 2x,(;‘) + 331(;’_1)) + mwgazg’) = —pgn). (28)



APPLIED NUMERICAL ANALYSIS 15

The final discrete equation is the kinematic compatibility condition. A
simple first order approximation of this is

o (#0 —al) = . (29)
An eigenmode of the form
oM = X2,
M = P2, (30)
u(()n) = U2",

is a solution if, and only if, z satisfies the equation
2—2+427" 4 (wpAt)? = —2dwyAt(1—27"). (31)

It can be shown that, for 0 <d< 1, the roots of this quadratic equation
have magnitude less than unity provided

woAt < VA +d? —d < 2. (32)

Thus, there is no numerical instability provided there are more than 3
timesteps per period of natural oscillation of the wall.

To determine the accuracy of the discretisation, we let z = ™2t and
performing a Taylor series expansion in both d and wyAt to obtain

wi ~ 1+id — 1d* + Ldwo At +id*wo At + 2 (wo At)* + O(d, (woAt)*). (33)
0

This shows that the first order error in the coupling produces a first order
error in both the real and imaginary components of the complex frequency,
corresponding to the frequency and damping rate of the coupled oscillation.

The accuracy of this analysis is shown in Figure 6. Numerical calcu-
lations were performed for w,At = 0.02,0.05,0.1,0.2 (corresponding ap-
proximately to 300, 120, 60, 30 timesteps per period) and values of d in the
range 0.005 — 0.1. Each calculation was performed for 10,000 iterations, and
from the results the frequency and damping rate were deduced. These are
presented as solid lines in the two parts of Figure 6, while the dashed lines
show the predictions from the asymptotic analysis above. The agreement
is excellent over the whole parameter range studied.

For a typical flutter frequency and a timestep limited by the explicit
CFL stability restriction %‘; <1 for a typical grid resolution, wyAt will be
in the range 1072 — 1072, In this case, the errors in both the frequency and
the damping are negligible compared to other errors such as modelling ap-
proximations and uncertainty about structural damping factors. However,
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when using implicit methods (Jam91; RBY93), the timestep is no longer
limited by the CFL condition and wyAt will typically be O(10~1). In this
case the first order coupling is no longer sufficiently accurate.

Reference (Gil95¢) contains analyses of three alternative discretisations
of the compatibility equation, all of which are second order. The best of
the three is the implicit discretisation

1 _ n
AL (sz(f”H) — 1)) =u", (34)

which can be implemented using a predictor/corrector procedure. Some
alternative discretisations of the wall dynamic equations are also analysed
and tested numerically. This includes the very accurate state-transition
algorithm used by Rausch et al (RBY93).

4.3. CONCLUSIONS

One conclusion from all of the analyses and comparisons with numerical
experiments is that the asymptotic numerical analysis is very accurate in
predicting the accuracy of the coupled aeroelastic damping and frequency
when there are at least 30 timesteps per period and the non-dimensional
damping parameter d is in the range 0.005 — 0.1.

If an explicit CFD algorithm is used for the aerodynamic equations, then
for typical flutter frequencies and aerodynamic grid resolution the number
of timesteps per period will so large that any algorithm for the discretisation
of the structural dynamics and the kinematic boundary condition will be
sufficiently accurate provided it is at least second order accurate for the
uncoupled vibration.

If, on the other hand, an implicit CFD algorithm is used for the aero-
dynamic equations, then it is possible that there may be as few as 30
timesteps per period. In this case it is necessary to use a discretisation which
is second-order accurate for both the uncoupled and coupled systems. For
turbomachinery applications with extremely low levels of structural and
aerodynamic damping, it is also best to avoid the use of the many standard
structural dynamics algorithms which cause spurious numerical damping
of the uncoupled wall dynamics.

Although the real 3D aeroelastic applications (which can exhibit un-
stable flutter) are quite different to this model problem (which is always
stable) it is thought these conclusions remain valid for the engineering appli-
cations of interest. Further discussion of this point is presented in Reference
(Gil95c¢).
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Figure 6. Aeroelastic damping and frequency using first order coupling algorithm

(solid lines — numerical computation; dashed lines — numerical analysis)
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5. Stability of N-S discretisation
5.1. INTRODUCTION

Inviscid flow calculations are now being performed almost routinely on
unstructured grids for complete aircraft geometries (WHMM93; PPM93;
RBY93; CG95). Many researchers are now working on the development of
more accurate and more efficient Navier-Stokes discretisations, and these
calculations will also become routine in the next five years.

This raises the problem of determining the timestep stability limit for
explicit time-marching methods. Because the grid is unstructured, standard
Fourier analysis is not applicable. The CFL theorem still applies, giving an
upper bound for the maximum stable timestep and an rough estimate of
the actual stability limit. However, it could be that these timestep stability
limits are unnecessarily restrictive leading to a large increase in computa-
tional cost. This is likely to be particularly true for 3D computations, for
which it is much harder to avoid poorly shaped computational cells.

The analysis discussed here, (Gil95a), uses recent theoretical develop-
ments in numerical analysis. A Galerkin spatial discretisation of the Navier-
Stokes equations leads to a coupled system of semi-discrete equations which
is solved using Runge-Kutta time-marching. The stability of this is analysed
using the concept of algebraic stability developed by Spijker and others. In
the case of the Euler equations, this leads to stability conditions which
are equivalent to those obtained by Giles using an energy analysis method
(RM67; Gil8T).

5.2. NAVIER-STOKES DISCRETISATION

The equations which are considered are a linearised form of the Navier-
Stokes equations, for perturbations from a steady-state which is uniform
apart from possible variations in the viscosity and conductivity. A periodic
domain is considered to avoid the complications of boundary conditions.
Changing from the usual conservation variables to symmetrising variables

U (GS78; AG81), it can be shown that the ‘energy’ /// |U||> dV is non-

increasing, and so the flow is stable.
Using a Galerkin spatial discretisation of the p.d.e. leads to a semi-
discrete system of equations of the form

dU
M~ =(C+D)U. (35)

The ‘mass’ matrix M and the diffusion matrix D are both symmetric, and
positive definite and positive semi-definite, respectively. Furthermore, the
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convection matrix C' is anti-symmetric. As a consequence of these proper-
ties, the semi-discrete ‘energy’ U7 MU is non-increasing and so the semi-
discrete solution is also stable.

5.3. STABILITY THEORY FOR RUNGE-KUTTA METHODS

Discretisation of the scalar o.d.e.

du

— = 36
=, (36)
using an explicit Runge-Kutta method with timestep k yields a difference

equation of the form
w™) = L) u™ (37)

where L(z) is a polynomial function of degree p

p
L(z) = amz™, (38)
m=0

with ag =a1 =1, ap #0. Discrete solutions of this difference equation on a
finite time interval 0 <t <ty will converge to the analytic solution as k— 0.
In addition, the discretisation is said to be absolutely stable for a particular
value of k if it does not allow exponentially growing solutions as t — oo;
this is satisfied provided Ak lies within the stability region S in the complex
plane defined by

S={z:|L(2)|<1}. (39)

Suppose now that a real square matrix A has a complete set of eigen-
vectors and can thus be diagonalised,

A=TAT™!, (40)

with A being the diagonal matrix of eigenvalues of A. The Runge-Kutta
discretisation of the coupled system of o.d.e.’s,

dU
= —A 41
- U, (41)
can be written as
Ut = L(kA) U™ = T L(kA) T U™, (42)
and hence
U™ =T (L(kA)" TP U©), (43)

The necessary and sufficient condition for absolute stability as n — oo,
requiring that there are no discrete solutions which grow exponentially
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with n, is therefore that |L(kA)| <1, or equivalently kX lies in S, for all
eigenvalues A of A. If this condition is satisfied, then using Ly vector and
matrix norms it follows that

W) < ITIHLED T T < w(T) U], (44)

where k(T) is the condition number of the eigenvector matrix 7'

If the matrix A is normal, meaning that it has an orthogonal set of
eigenvectors then the eigenvectors can be normalised so that x(T)=1. In
this case, |[U(™]| is a non-increasing function of n and ||U(™ ||? represents a
non-increasing ‘energy’ which could be used in an energy stability analysis.
If A is not normal, then the growth in ||| is bounded by the condition
number of the eigenvector matrix, x(7"). Unfortunately, this can be very
large indeed, allowing a very large transient growth in the solution even
when for each eigenvalue kX lies strictly inside the stability region S and so
U™ || must eventually decay exponentially. This problem can be particu-
larly acute when the matrix A comes from the spatial discretisation of a
p-d.e. in which case there is then a family of discretisations arising from a
sequence of computational grids of decreasing mesh spacing h. It is possible
in such circumstances for the sequence of condition numbers (T') to grow
exponentially, with an exponent inversely proportional to the mesh spacing
(RT92).

The stability of discretisations of systems of o.d.e.’s with non-normal
matrices has been a major research topic in the numerical analysis com-
munity in recent years (RT92; KW93; KLS87; L.S91; RT90; Red91; LN91;
vDK93). Ideally, one would hope to prove strong stability,

™) < y 1o, (45)

with v being a constant which is not only independent of n but is also a
uniform bound applying to all matrices in the family of spatial discretisa-
tions for different mesh spacings h but with the timestep & being a function
of h. However, at present, the conditions under which strong stability can
be proved are too restrictive to be useful in practical computations. In-
stead, attention has focussed on weaker definitions of stability which are
more easily achieved and are still useful for practical computations. One
is algebraic stability (RT92; KLS87; LS91) which allows a linear growth in
the transient solution of the form

[T < yn U, (46)

where <y is again a uniform constant. A sufficient condition for algebraic
stability is that
T(kA) C S, (47)
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where the numerical range 7(kA) is a subset of the complex domain defined
>y W*AW

o W;éo} (48)
in which W can be any non-zero complex vector of the required dimension
and W* is its Hermitian, the complex conjugate transpose. By considering
W to be an eigenvector of A, it can be seen that kA € 7(kA) for each
eigenvalue of A and so the requirement that 7(kA) C S is a tighter restriction
on the maximum allowable timestep than asymptotic stability.

In the Navier-Stokes application, the main part of the analysis lies in
bounding the range of the matrix M~'/2(C + D)M~'/2. The details are
presented in Reference (Gil95a). The approach is to determine a timestep
k such that 7(k M~Y2(C+D)M~'/?) c V C S, with the subset V being
either a rectangle or a half-circle. This leads to a sufficient condition for
stability for time-accurate computations. With appropriate modifications
to the matrix M, a sufficient stability limit for local timesteps for steady-
state computations is also derived.

(kA) = {k

5.4. NUMERICAL EXPERIMENTS

Figure 7 shows two sets of numerical experiments used to verify the stability
analysis and determine how close the predicted sufficient stability limit is
to the actual stability limit. The numerical tests used a tetrahedral grid
created from a 10x 10x 10 Cartesian grid by cutting each hexahedron into
six tetrahedra. Periodic boundary conditions were applied on all sides. In
each case, a set of calculations was performed for a range of values for the
CFL parameter r in increments of 0.25 starting from r=2.75.

In the inviscid test case the Mach number was 0.5, and there was a
grid stretching ratio of 10:1 in one direction. The algebraic stability theory
predicts stability for r <2.828. The numerical results shows stability up to
r =2 3.4 so the sufficient stability theory underpredicts the stability boundary
by approximately 15%.

In the viscous test case, the grid stretching ratio was increased to 100:1,
representative of a boundary layer grid. The cell Reynolds number was
chosen to be 1.0, making the viscous and inviscid terms equally important.
In this case the algebraic stability analysis predicts stability for r < 2.616.
The actual stability boundary is at r~3.9 so the theory underpredicts the
maximum stable timestep by approximately 33%.

5.5. CONCLUSIONS

The numerical experiments verify the usefulness of this algebraic stability
analysis. The sufficient stability limits given by the theory do indeed lead
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Inviscid test case

104.
r=+3.75
U]? 1
r=3.5
1001
) r=2.75 —3.25
0 100 200 300 400
Tteration
Viscous test case
104.
1U|? 1 r=4.0
1001
1 A r=2.75 — 3.75
0 100 200 300 400

Tteration

Figure 7. Numerical energy growth in two test cases

to stable computations, and they are not very much smaller than the ac-
tual stability limits determined experimentally. The ability to analyse the
stability of complex systems of equations such as the discrete Navier-Stokes
equations is very useful. The same method of analysis could also be used
to examine the stability of different forms of upwinding on unstructured
grids, or the stability of discrete boundary conditions on either structured

or unstructured grids.



APPLIED NUMERICAL ANALYSIS 23

6. Final comments

The four analyses in this paper have illustrated the application of both
well-established and very recent numerical analysis theory to problems of
immediate relevance to practical CFD computations. Referring back to the
list of challenges posed in the introduction, these analyses have dealt with
systems of equations, nonlinearity (1), boundary conditions and multidis-
ciplinary applications (2, 3), and high Reynolds number viscous flow and
unstructured grids (4).

As CFD researchers tackle increasingly difficult applications in the fu-
ture, it is my belief that, more and more, algorithm development will have to
be based on a firm foundation of numerical analysis of this kind, analysing
model problems which retain much of the complexity of the real computa-
tions.
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