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Summary. In this paper we show that the Milstein scheme can be used to improve
the convergence of the multilevel Monte Carlo method for scalar stochastic differ-
ential equations. Numerical results for Asian, lookback, barrier and digital options
demonstrate that the computational cost to achieve a root-mean-square error of ε is
reduced to O(ε−2). This is achieved through a careful construction of the multilevel
estimator which computes the difference in expected payoff when using different
numbers of timesteps.

1 Introduction

In many financial engineering applications, one is interested in the expected
value of a financial option whose payoff depends upon the solution of a stochas-
tic differential equation. To be specific, we consider an SDE with general drift
and volatility terms,

dS(t) = a(S, t) dt + b(S, t) dW (t), 0 < t < T, (1)

with given initial data S0. In the case of European and digital options, we are
interested in the expected value of a function of the terminal state, f(S(T )),
but in the case of Asian, lookback and barrier options the valuation depends
on the entire path S(t), 0<t<T .

Using a simple Monte Carlo method with a numerical discretisation with
first order weak convergence, to achieve a root-mean-square error of O(ε)
would require O(ε−2) independent paths, each with O(ε−1) timesteps, giving
a computational complexity which is O(ε−3). We have recently introduced a
new multilevel approach [Gil06] which reduces the cost to O(ε−2(log ε)2) when
using an Euler path discretisation for a European option with a payoff with a
uniform Lipschitz bound. This multilevel approach is related to the two-level
method of Kebaier [Keb05], and is similar to the multi-level method proposed
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by Speight [Spe05] based on the quasi control variate method of Emsermann
and Simon [ES02]. There are also strong similarities to Heinrich’s multilevel
approach for parametric integration [Hei01].

In the previous work, it was also proved that the computational cost can
be further reduced to O(ε−2) for numerical discretisations with certain mul-
tilevel convergence properties. The objective of this paper is to demonstrate
that this improved complexity is attainable for scalar SDEs with a variety
of exotic options through using the Milstein path discretisation. For Euro-
pean options with a Lipschitz continuous payoff, it can be proved that this
an immediate consequence of the improved strong order of convergence of the
Milstein discretisation compared to the simpler Euler discretisation. However,
for Asian, lookback, barrier and digital options, special numerical treatments
have to be introduced, and that is the focus of the paper. Furthermore, no a
priori convergence proofs have yet been constructed for these cases and so the
paper relies on numerical demonstration of the effectiveness of the algorithms
that have been developed.

The paper begins by reviewing the multilevel approach, and the theorem
which describes its computational cost given certain properties of the numer-
ical discretisation. The next section discusses the Milstein discretisation and
the challenges of achieving higher order variance convergence within the mul-
tilevel method. Asian, lookback, barrier and digital options are all considered,
and O(ε−2) computational cost is demonstrated for each through the use of
Brownian interpolation to approximate the behaviour of paths within each
timestep.

The final section indicates the direction of future research, including the
need for a priori convergence analysis, the challenges of extending this work
to multi-dimensional SDEs, and the use of quasi-Monte Carlo methods for
further reduction of the computational complexity.

2 Multilevel Monte Carlo method

Consider Monte Carlo path simulations with different timesteps hl = 2−l T ,
l = 0, 1, . . . , L. Thus on the coarsest level, l = 0, the simulations use just 1
timestep, while on the finest level, l = L, the simulations use 2L timesteps.
For a given Brownian path W (t), let P denote the payoff, and let P̂l denote
its approximation using a numerical discretisation with timestep hl. Because
of the linearity of the expectation operator, it is clearly true that

E[P̂L] = E[P̂0] +

L∑

l=1

E[P̂l−P̂l−1]. (2)

This expresses the expectation on the finest level as being equal to the expec-
tation on the coarsest level plus a sum of corrections which give the difference
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in expectation between simulations using different numbers of timesteps. The
idea behind the multilevel method is to independently estimate each of the
expectations on the right-hand side in a way which minimises the overall
variance for a given computational cost.

Let Ŷ0 be an estimator for E[P̂0] using N0 samples, and let Ŷl for l > 0

be an estimator for E[P̂l−P̂l−1] using Nl paths. The simplest estimator is a
mean of Nl independent samples, which for l>0 is

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
. (3)

The key point here is that the quantity P̂
(i)
l −P̂

(i)
l−1 comes from two discrete

approximations with different timesteps but the same Brownian path. The
variance of this simple estimator is V [Ŷl] = N−1

l Vl where Vl is the variance of
a single sample. Combining this with independent estimators for each of the
other levels, the variance of the combined estimator Ŷ =

∑L
l=0 Ŷl is V [Ŷ ] =∑L

l=0 N−1
l Vl, while its computational cost is proportional to

∑L
l=0 Nl h

−1
l .

Treating the Nl as continuous variables, the variance is minimised for a fixed

computational cost by choosing Nl to be proportional to
√

Vl hl.

In the particular case of an Euler discretisation, provided a(S, t) and b(S, t)
satisfy certain conditions [BT95, KP92, TT90] there is O(h1/2) strong conver-

gence. From this it follows that V [P̂l−P ] = O(hl) for a European option with
a Lipschitz continuous payoff. Hence for the simple estimator (3), the single
sample variance Vl is O(hl), and the optimal choice for Nl is asymptotically
proportional to hl. Setting Nl = O(ε−2Lhl), the variance of the combined

estimator Ŷ is O(ε2). If L is chosen such that L = log ε−1/ log 2 + O(1),

as ε → 0, then hL = 2−L = O(ε), and so the bias error E[P̂L−P ] is O(ε)
due to standard results on weak convergence. Consequently, we obtain a
Mean Square Error which is O(ε2), with a computational complexity which is
O(ε−2L2) = O(ε−2(log ε)2).

This analysis is generalised in the following theorem:

Theorem 1. Let P denote a functional of the solution of stochastic differ-
ential equation (1) for a given Brownian path W (t), and let P̂l denote the
corresponding approximation using a numerical discretisation with timestep
hl = M−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo samples,
and positive constants α≥ 1

2 , β, c1, c2, c3 such that

i) E[P̂l − P ] ≤ c1 hα
l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0
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iii)V [Ŷl] ≤ c2 N−1
l hβ

l

iv) Cl, the computational complexity of Ŷl, is bounded by

Cl ≤ c3 Nl h
−1
l ,

then there exists a positive constant c4 such that for any ε < e−1 there are
values L and Nl for which the multilevel estimator

Ŷ =

L∑

l=0

Ŷl,

has a mean-square-error with bound

MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤





c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.

Proof. See [Gil06].

The remainder of this paper addresses the use of the Milstein scheme
[Gla04, KP92] to construct estimators with variance convergence rates β > 1,
resulting in an O(ε−2) complexity bound. Provided certain conditions are
satisfied [KP92], the Milstein scheme gives O(h) strong convergence. In the
case of a Lipschitz continuous European payoff, this immediately leads to
the result that Vl = O(h2

l ), corresponding to β = 2. Numerical results which
are not presented here demonstrate this convergence rate, and the associated
O(ε−2) complexity

This paper addresses the tougher challenges of Asian, lookback, barrier and
digital options. These cases require some ingenuity to construct estimators for
which β > 1. Unfortunately, there is no accompanying theoretical analysis as
yet, and so the paper relies on numerical demonstration of their effectiveness.

3 Milstein discretisation

For a scalar SDE, the Milstein discretisation of equation (1) is

Ŝn+1 = Ŝn + a h + b∆Wn + 1
2

∂b

∂S
b (∆Wn)2. (4)
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In the above equation, the subscript n is used to denote the timestep index,
and a, b and ∂b/∂S are evaluated at Ŝn, tn.

All of the numerical results to be presented are for the case of geometric
Brownian motion for which the SDE is

dS(t) = r S dt + σ S dW (t), 0 < t < T.

By switching to the new variable X = log S, it is possible to construct nu-
merical approximations which are exact, but here we directly simulate the
geometric Brownian motion using the Milstein method as an indication of
the behaviour with more complicated models, for example those with a local
volatility function σ(S, t).

3.1 Estimator construction

In all of the cases to be presented, we simulate the paths using the Milstein
method. The refinement factor is M = 2, so each level has twice as many
timesteps as the previous level. The difference between the applications is in
how we use the computed discrete path data to estimate E[P̂l−P̂l−1].

In each case, the estimator for E[P̂l− P̂l−1] is an average of values from
Nl independent path simulations. For each Brownian input, the value which
is computed is of the form P̂ f

l − P̂ c
l−1. Here P̂ f

l is a fine-path estimate using

timestep h=2−lT , and P̂ c
l−1 is the corresponding coarse-path estimate using

timestep h=2−(l−1)T . To ensure that the identity (2) is correctly respected,
to avoid the introduction of an undesired bias, we require that

E[P̂ f
l ] = E[P̂ c

l ]. (5)

This means that the definitions of P̂l when estimating E[P̂l−P̂l−1] and E[P̂l+1−
P̂l] must have the same expectation.

In the simplest case of a European option, this can be achieved very simply
by defining P̂ f

l and P̂ c
l to be the same; this is the approach which was used

for all applications in the previous work using the Euler discretisation [Gil06].
However, for more challenging applications such as Asian, lookback, barrier
and digital options, the definition of P̂ c

l will involve information from the

discrete simulation of P̂ f
l+1, which is not available in computing P̂ f

l . The reason
for doing this is to reduce the variance of the estimator, but it must be shown
that equality (5) is satisfied. This will be achieved in each case through a
construction based on a simple Brownian motion approximation.
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3.2 Asian option

The Asian option we consider has the discounted payoff

P = exp(−rT ) max
(
0, S−K

)
,

where

S = T−1

∫ T

0

S(t) dt.

The simplest approximation of S, which was used in previous work [Gil06],
is

Ŝ = T−1
nT −1∑

0

1
2 h (Ŝn+Ŝn+1),

where nT =T/h is the number of timesteps. This corresponds to a piecewise
linear approximation to S(t) but improved accuracy can be achieved by ap-
proximating the behaviour within a timestep as simple Brownian motion, with
constant drift and volatility, conditional on the computed values Ŝn. Taking
bn to be the constant volatility within the time interval [tn, tn+1], standard
Brownian Bridge results (see section 3.1 in [Gla04]) give

∫ tn+1

tn

S(t) dt = 1
2h(S(tn) + S(tn+1)) + bn∆In,

where ∆In, defined as

∆In =

∫ tn+1

tn

(W (t) − W (tn)) dt − 1
2 h∆W,

is a N(0, h3/12) Normal random variable, independent of ∆W . Using bn =

b(Ŝn, tn), this gives the fine-path approximation

S = T−1
nT −1∑

0

(
1
2 h (Ŝn+Ŝn+1) + bn∆In

)
.

The coarse path approximation is the same except that the values for ∆In

are derived from the fine path values, noting that

∫ tn+2h

tn

(W (t) − W (tn)) dt − h(W (tn+2h) − W (tn))

=

∫ tn+h

tn

(W (t) − W (tn)) dt − 1
2 h (W (tn+h) − W (tn))

+

∫ tn+2h

tn+h

(W (t) − W (tn+h)) dt − 1
2 h (W (tn+2h) − W (tn+h))

+ 1
2 h (W (tn+h) − W (tn)) − 1

2 h (W (tn+2h) − W (tn+h)) ,
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Fig. 1. Asian option

and hence
∆Ic = ∆If1 + ∆If2 + 1

2 h(∆W f1 − ∆W f2),

where ∆Ic is the value for the coarse timestep, and ∆If1 and ∆W f1 are the
values for the first fine timestep, and ∆If2 and ∆W f2 are the values for the
second fine timestep.

Figure 1 shows the numerical results for parameters S(0)=1, K =1, T =1,
r=0.05, σ=0.2. The top left plot shows the behaviour of the variance of both
P̂l and P̂l−P̂l−1. The slope of the latter is approaching a value approximately
equal to −2, indicating that Vl = O(h2

l ), corresponding to β = 2. On level
l=2, which has just 4 timesteps, Vl is already more than 1000 times smaller
than the variance V [P̂l] of the standard Monte Carlo method with the same
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timestep. The top right plot shows that E[P̂l−P̂l−1] is approximately O(hl),
corresponding to first order weak convergence, α=1. This is used to determine
the number of levels that are required to reduce the bias to an acceptable level
[Gil06].

The bottom two plots have results from five multilevel calculations for
different values of ε. Each line in the bottom left plot shows the values for
Nl, l = 0, . . . , L, with the values decreasing with l because of the decrease in
both Vl and hl. It can also be seen that the value for L, the maximum level of
timestep refinement, increases as the value for ε decreases, requiring a lower
bias error. The bottom right plot shows the variation with ε of ε2 C where the
computational complexity C is defined as

C =
∑

l

2lNl,

which is the total number of fine grid timesteps on all levels. One line shows the
results for the multilevel calculation and the other shows the corresponding
cost of a standard Monte Carlo simulation of the same accuracy, i.e. the same
bias error corresponding to the same value for L, and the same variance. It can
be seen that ε2C is almost constant for the multilevel method, as expected,
whereas for the standard Monte Carlo method it is approximately proportional
to ε−1. For the most accurate case, ε=5×10−5, the multilevel method is more
than 100 times more efficient than the standard method.

3.3 Lookback option

The lookback option we consider has the discounted payoff

P = exp(−rT )

(
S(T ) − min

0<t<T
S(t)

)
.

In previous work [Gil06], the minimum value of S(t) over the path was ap-
proximated numerically by

Ŝmin = min
n

(
Ŝn − β∗bn

√
h
)

.

Here bn is the volatility in the nth timestep, and β∗ ≈ 0.5826 is a constant
which corrects the O(h1/2) leading order error due to the discrete sampling of
the path, and thereby restores O(h) weak convergence [BGK97]. However, us-
ing this approximation, the difference between the computed minimum values

and fine and coarse paths is O(h
1/2
l ), and hence the variance Vl is O(hl), cor-

responding to β =1. In the previous work, this was acceptable because β =1
is the best that can be achieved in general with the Euler path discretisation
which was used, but in this work we aim to achieve an improved convergence
rate using the Milstein scheme.
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To achieve this, we again approximate the behaviour within a timestep
as simple Brownian motion, with constant drift and volatility, conditional on
the computed values Ŝn. For the time interval [tn, tn+1], standard Brownian
Interpolation results (see section 6.4 in [Gla04]) give the minimum of Brownian
motion, conditional on the end values, as

Ŝn,min = 1
2

(
Ŝn + Ŝn+1 −

√(
Ŝn+1−Ŝn

)2

− 2 b2
n h log Un

)
, (6)

where bn is the constant volatility and Un is a uniform random variable on
[0, 1].

The fine-path value P̂ f
l is defined in this way using bn = b(Ŝn, tn), and

then taking the minimum over all timesteps to obtain the global minimum.
However, for the coarse-path value P̂ c

l−1, we do something different. Again
assuming simple Brownian motion conditional on the end-points, the value at
the midpoint of the time interval [tn, tn+1] is given by

Ŝn+1/2 = 1
2

(
Ŝn + Ŝn+1 − bnDn

)
, (7)

where

Dn = Wn+1 − 2Wn+1/2 + Wn =
(
Wn+1−Wn+1/2

)
−
(
Wn+1/2−Wn

)
,

is a N(0, h) random variable which corresponds to a difference in the con-
secutive Brownian increments of a finer path with timestep h/2. Given this
midpoint value, the minimum value over the full timestep is the smaller of the
minima for each of the two half-timesteps,

Ŝn,min = min

{
1
2

(
Ŝn + Ŝn+1/2 −

√(
Ŝn+1/2−Ŝn

)2

− b2
n h log U1,n

)
,

1
2

(
Ŝn+1/2 + Ŝn+1 −

√(
Ŝn+1−Ŝn+1/2

)2

− b2
n h log U2,n

)}
.

(8)

In computing P̂ c
l−1, we use the values for Dn, U1,n and U2,n that come from the

fine-path simulation for P̂ f
l . Dn is the difference of the Brownian increments

for the two fine-path timesteps, and U1,n and U2,n are the uniform random
variables used to compute the minima for the two fine-path timesteps. Since
these all have the correct probability distribution, it follows that the expected
values of (6) and (8) are identical, and therefore equality (5) is satisfied.

Figure 2 shows the numerical results for parameters S(0) = 1, T = 1, r =
0.05, σ=0.2. The top left plot shows that the variance is O(h2

l ), corresponding
to β = 2, while the top right plot shows that the mean correction is O(hl),
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Fig. 2. Lookback option

corresponding to first order weak convergence, α = 1. The bottom left plot
shows that more levels are required to reduce the discretisation bias to the
required level. Consequently, the savings relative to the standard Monte Carlo
treatment are greater, up to a factor of approximately 200 for ε=5×10−5. The
computational cost of the multilevel method is almost perfectly proportional
to ε−2.

3.4 Barrier option

The barrier option which is considered is a down-and-out call for which the
discounted payoff is
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P = exp(−rT ) (S(T ) − K)+ 1{τ >T},

where the notation (S(T )−K)+ denotes max(0, S(T )−K), 1(τ > T ) is an
indicator function taking value 1 if the argument is true, and zero otherwise,
and the crossing time τ is defined as

τ = inf
t>0

{S(t) < B} .

Following a standard approach for continuously monitored barrier cross-
ings (see section 6.4 in [Gla04]), for a particular Brownian path input sampled
discretely at uniform intervals h, the conditional expectation of the payoff can
be expressed as

exp(−rT ) (ŜnT
− K)+

nT −1∏

n=0

p̂n,

where nT = T/h is again the number of timesteps, and p̂n represents the
probability that the path did not cross the barrier during the nth timestep.
If we again approximate the motion within each timestep as simple Brownian
motion conditional on the endpoint values, then

p̂n = 1 − exp

(−2 (Sn−B)+(Sn+1−B)+

b2
n h

)
. (9)

This is the expression used to define the payoff P̂ f
l for the fine-path calculation,

with bn set equal to b(Ŝn, tn), as in the lookback calculation.

For the coarse path calculation, in which each timestep corresponds to two
fine-path timesteps, we again use equation (7) to construct a midpoint value

Ŝn+1/2. Given this value, the probability that the simple Brownian path does
not cross the barrier is

p̂n =

{
1 − exp

(−2 (Sn−B)+(Sn+1/2−B)+

b2
n h

)}

×
{

1 − exp

(−2 (Sn+1/2−B)+(Sn+1−B)+

b2
n h

)}
. (10)

The conditional expectation of (10) is equal to (9) and so equality (5) is
satisfied.

Figure 3 shows the numerical results for parameters S(0) = 1, K = 1,
B = 0.85, T = 1, r = 0.05, σ = 0.2. The top left plot shows that the variance
is approximately O(hβ

l ) for a value of β slightly less than 2. An explanation

for this is that a small O(h
1/2
l ) fraction of the paths have a minimum which

lies within O(h
1/2
l ) of the barrier, for which the product

∏
p̂n is neither close

to zero nor close to unity. The fine path and coarse path trajectories differ
by O(hl), due to the first order strong convergence of the Milstein scheme.
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Fig. 3. Barrier option

Since the p̂n have an O(h
−1/2
l ) derivative, this results in the difference between∏

p̂n for this small subset of coarse and fine paths being O(h
1/2
l ), giving a

contribution to the variance which is O(h
3/2
l ).

The top right plot shows that the mean correction is O(hl), corresponding
to first order weak convergence, α = 1. The bottom right plot shows that
the computational cost of the multilevel method is again almost perfectly
proportional to ε−2, and for ε=5×10−5 it is over 100 times more efficient that
the standard Monte Carlo method.
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3.5 Digital option

The digital option which is considered has the discounted payoff

P = exp(−rT ) 1{S(T ) > K}.

The standard numerical discretisation would be to simulate the path of
S(t) right up to the final time T . This is the approach adopted previously
for multilevel calculations using the Euler discretisation [Gil06]. In that case,

the variance Vl was O(h
1/2
l ), because O(h

1/2
l ) of the paths terminate within

O(h
1/2
l ) of the strike K, and for these paths there is an O(1) probability

that the coarse and fine paths will terminate on opposite sides of the strike,
giving an O(1) value for P̂l−P̂l−1. Using the same approach with the Milstein
method, there would be O(hl) of the paths terminating within O(hl) of the
strike K, for which there would be an O(1) probability that the coarse and
fine paths would terminate on opposite sides of the strike. This would result
in Vl being O(hl). This corresponds to β=1 and would give a computational
cost which is O(ε−2(log ε)2).

To achieve a better multilevel variance convergence rate, we instead
smooth the payoff using the technique of conditional expectation (see sec-
tion 7.2.3 in [Gla04]), terminating the path calculations one timestep before

reaching the terminal time T . If ŜnT −1 denotes the value at this time, then
if we approximate the motion thereafter as a simple Brownian motion with
constant drift anT −1 and volatility bnT −1, the probability that ŜnT

> K after
one further timestep is

p̂ = Φ

(
ŜnT −1+anT −1h − K

bnT −1

√
h

)
, (11)

where Φ is the cumulative Normal distribution.

For the fine-path payoff P̂ f
l we therefore use P̂ f

l = exp(−rT ) p̂, with

anT −1 = a(ŜnT −1, T − h) and bnT −1 = b(ŜnT −1, T − h). For the coarse-path
payoff, we note that given the Brownian increment ∆W for the first half of
the N th timestep, then the probability that ŜnT

> K is

p̂ = Φ

(
ŜnT −1+anT −1h+bnT −1∆W − K

bnT −1

√
h/2

)
. (12)

The value for ∆W is taken from the final timestep of the fine-path calculation,
which corresponds to the first half of the N th timestep in the coarse-path
calculation. The conditional expectation of (12) is equal to (11), and so again
equality (5) is satisfied.

Figure 4 shows the numerical results for parameters S(0)=1, K =1, T =1,
r = 0.05, σ = 0.2. The top left plot shows that the variance is approximately
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Fig. 4. Digital option

O(h
3/2
l ), corresponding to β = 1.5. The reason for this is similar to the ar-

gument for the barrier option. O(h
1/2
l ) of the paths have a minimum which

lies within O(h
1/2
l ) of the strike, for which the p̂ is neither close to zero nor

close to unity. The fine path and coarse path trajectories differ by O(hl), due
to the first order strong convergence of the Milstein scheme. Since p̂ has an

O(h
−1/2
l ) derivative, this results in the difference between p̂ for the coarse and

fine paths being O(h
1/2
l ), and that results in the variance being O(h

3/2
l ).

One strikingly different feature is that the variance of the level 0 estimator,
V0, is zero. This is because at level l = 0 there would usually be only one
timestep, and so here it is not simulated at all; one simply uses equation (11)
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to evaluate the payoff. This reduces the cost of the multilevel calculations even
more than usual, leading to a factor 1000 computational savings for ε=10−4.

4 Conclusions and future work

In this paper we have demonstrated numerically the ability of multilevel Monte
Carlo path simulation using the Milstein discretisation to achieve an ε RMS
error for a range of financial options at a computational cost which is O(ε−2).
This requires the use of Brownian interpolation within each timestep for Asian,
lookback and barrier options, and the use of conditional expectation to smooth
the payoff of digital options.

There are three major directions for future research. The first is the theo-
retical analysis of the algorithms presented in this paper, to prove that they
do indeed have variance convergence rates with β > 1. The analysis of earlier
algorithms for lookback, barrier and digital options based on the Euler dis-
cretisation [Gil06] is currently being developed; it is hoped this can then be
extended to the Milstein discretisation for scalar SDEs.

The second is the extension of the algorithms to multi-dimensional SDEs,
for which the Milstein discretisation usually requires the simulation of Lévy
areas [GL94, Gla04]. Current investigations indicate that this can be avoided
for European options with a Lipschitz payoff through the use of antithetic
variables. However, the extension to more difficult payoffs, such as the Asian,
lookback, barrier and digital options considered in this paper, looks more
challenging.

The third direction for future research is the use of quasi-Monte Carlo
methods. The analysis in section 2 showed that the optimal number of sam-
ples on level l is proportional to

√
Vlhl. If Vl = O(hβ

l ), then this number is

proportional to h
(β+1)/2
l . Since the cost of an individual sample is proportional

to the number of timesteps, and hence inversely proportional to hl, the com-

putational cost on level l is proportional to h
(β−1)/2
l . For β > 1, this shows

that the computational effort decreases geometrically as one moves to finer
levels of discretisation. Thus, when using the Milstein discretisation most of
the computational effort is expended on the coarsest levels of the multilevel
computation. For these low dimensional levels it is reasonable to expect that
quasi-Monte Carlo methods [KS05, Ecu04, Nie92] will be very much more
effective than the standard Monte Carlo methods used in this paper.
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