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Abstract This paper, based on two main papers [2, 3] which contains the full details
of the literature review, numerical analysis and numerical experiments, aims to give
an overview of the adaptive Euler-Maruyama method for SDEs with non-globally
Lipschitz drift in a concise structure without any proof. It shows that if the timestep is
bounded appropriately, then over a finite time interval the numerical approximation
is stable, and the expected number of timesteps is finite. Furthermore, the order of
strong convergence is the same as usual, i.e. order 1

2 for SDEs with a non-uniform
globally Lipschitz volatility, and order 1 for Langevin SDEs with unit volatility and
a drift with sufficient smoothness. For a class of ergodic SDEs, we also show that the
bound for the moments and the strong error of the numerical solution are uniform
in T, which allow us to introduce the adaptive multilevel Monte Carlo method to
compute the expectations with respect to the invariant measure. The analysis is
supported by numerical experiments.

1 Introduction

In this paper we consider an m-dimensional stochastic differential equation (SDE)
driven by a d-dimensional Brownian motion:

dXt = f (Xt)dt +g(Xt)dWt , (1)

with a fixed initial value x0. The standard theory assumes the drift f : Rm→Rm and
the volatility g :Rm→Rm×d are both globally Lipschitz. Under this assumption, there
is well-established theory on the existence and uniqueness of strong solutions, and
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the numerical approximation X̂t obtained from the Euler-Maruyama discretization

X̂(n+1)h = X̂nh + f (X̂nh)h+g(X̂nh)∆W n

using a uniform timestep of size h with Brownian increments ∆Wn, plus a suitable
interpolation within each timestep, is known [19] to have a strong error which is
O(h1/2) so that for any T, p > 0,

E
[

sup
0≤t≤T

‖X̂t−Xt‖p
]
= O(hp/2).

The interest in this paper is in other cases in which g is again globally Lipschitz,
but f is only locally Lipschitz. If, for some α,β ≥ 0, f also satisfies the one-sided
growth condition

〈x, f (x)〉 ≤ α‖x‖2 +β ,

where 〈·, ·〉 denotes an inner product, then it is again possible to prove the existence
and uniqueness of strong solutions (see Theorems 2.3.5 and 2.4.1 in [20]). Further-
more (see Lemma 3.2 in [10]), these solutions are stable in the sense that for any
T, p > 0, E

[
sup0≤t≤T ‖Xt‖p

]
< ∞. The problem is that the numerical approximation

given by the uniform timestep Euler-Maruyama discretization may not be stable.
Indeed, for the SDE

dXt =−X3
t dt +dWt , (2)

it has been proved [13] that for any T >0 and p≥2, limh→0E
[
‖X̂T‖p

]
= ∞.

This behaviour has led to research on numerical methods which achieve strong
convergence for these SDEs with a non-globally Lipschitz drift, see [2, 10, 12, 14,
21, 22, 26, 32] and the references therein.

The other motivation for this paper is the analysis of a class of ergodic SDEs
which exponentially converge to some invariant measure π, for example, the FENE
model in [1]. Evaluating the expectation of some function ϕ(x) with respect to that
invariant measure π is of great interest in mathematical biology, physics and Bayesian
inference in statistics:

π(ϕ),
∫

ϕ(x)dπ(x) = lim
t→∞

E [ϕ(Xt)] ,

which drives us to consider the stability and strong convergence of the algorithm in
the infinite time interval. Different approaches to computing the expectation include
numerical solution of the Fokker-Planck equation, see [30] and the reference therein,
and ergodic numerical solutions, see [9, 17, 23, 25, 27, 29, 31]. We assume that the
SDEs have a locally Lipschitz drift f : Rm→Rm satisfying the dissipative condition:
for some α,β > 0,

〈x, f (x)〉 ≤ −α‖x‖2 +β , (3)

and a bounded and non-degenerate volatility g : Rm→Rm×d .
In this paper, we propose instead to use the standard explicit Euler-Maruyama

method, but with an adaptive timestep hn which is a function of the current approxi-
mate solution X̂tn . Adaptive timesteps have been used in previous research to improve
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the accuracy of numerical approximations, see [4, 11, 15, 16, 17, 18, 24, 28] and the
references therein. The idea of using an adaptive timestep in this paper comes from
considering the divergence of the uniform timestep method for the SDE (2). When
there is no noise, the requirement for the explicit Euler approximation of the corre-
sponding ODE to have a stable monotonic decay is that its timestep satisfies h< X̂−2

tn .
An intuitive explanation for the instability of the uniform timestep Euler-Maruyama
approximation of the SDE is that there is always a very small probability of a large
Brownian increment ∆W n which pushes the approximation X̂tn+1 into the region
h>2 X̂−2

tn+1
leading to an oscillatory super-exponential growth. Using an adaptive

timestep avoids this problem.
For the ergodic SDEs, by setting a suitable condition for h, we can show that,

instead of an exponential bound, the numerical solution has a uniform bound with
respect to T for both moments and the strong error. Then, multi-level Monte Carlo
(MLMC) methodology [5, 6] is employed and non-nested timestepping is used to
construct an adaptive MLMC [7]. Following the idea of Glynn and Rhee [8] to
estimate the invariant measure of some Markov chains, we introduce an adaptive
MLMC algorithm for the infinite time interval, in which each level ` has a different
time interval length T`, to achieve a better computational performance.

The rest of the paper is organized as follows. The adaptive algorithm is presented
and the main theorems both in finite time interval and infinite time interval are stated
in Section 2. Section 3 introduces the MLMC schemes, and the relevant numerical
experiments are provided in section 4. Finally, section 5 concludes.

In this paper we consider both the finite time interval [0,T ] with T > 0 be a
fixed positive real number and the infinite time interval [0,∞). Let (Ω ,F ,P) be a
probability space with normal filtration (Ft)t∈[0,∞) for section 2 and (Ft)t∈(−∞,0]
for section 3 corresponding to a d-dimensional standard Brownian motion Wt =
(W (1),W (2), . . . ,W (d))T

t . We denote the vector norm by ‖v‖ , (|v1|2 + |v2|2 + . . .+

|vm|2)
1
2 , the inner product of vectors v and w by 〈v,w〉, v1w1 + v2w2 + . . .+ vmwm,

for any v,w ∈ Rm and the Frobenius matrix norm by ‖A‖ ,
√

∑i, j A2
i, j for all A ∈

Rm×d .

2 Adaptive algorithm and theoretical results

2.1 Adaptive Euler-Maruyama method

The adaptive Euler-Maruyama discretization is

tn+1 = tn +hn, X̂tn+1 = X̂tn + f (X̂tn)hn +g(X̂tn)∆W n,

where hn , h(X̂tn) and ∆W n ,Wtn+1−Wtn , and there is fixed initial data t0=0, X̂0=x0.
One key point in the analysis is to prove that tn increases without bound as n

increases. More specifically, the analysis proves that for any T >0, almost surely for
each path there is an N such that tN≥T .
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We use the notation t , max{tn : tn≤ t}, nt , max{n : tn≤ t} for the nearest time
point before time t, and its index.

We define the piecewise constant interpolant process X̄t = X̂t and also define the
standard continuous interpolant [19] as

X̂t = X̂t + f (X̂t)(t−t)+g(X̂t)(Wt−Wt),

so that X̂t is the solution of the SDE

dX̂t = f (X̂t)dt +g(X̂t)dWt = f (X̄t)dt +g(X̄t)dWt . (4)

In the following two subsections, we state the key results on stability and strong
convergence in both finite and infinite time intervals, and related results on the
number of timesteps, introducing various assumptions as required for each. All the
proofs are in [2] and [3].

2.2 Finite Time Interval
2.2.1 Stability

Assumption 1 (Local Lipschitz and linear growth) f and g are both locally Lips-
chitz, so that for any R>0 there is a constant CR such that

‖ f (x)− f (y)‖+‖g(x)−g(y)‖ ≤CR ‖x−y‖

for all x,y ∈Rm with ‖x‖,‖y‖ ≤ R. Furthermore, there exist constants α,β ≥ 0 such
that for all x ∈ Rm, f satisfies the one-sided linear growth condition:

〈x, f (x)〉 ≤ α‖x‖2 +β , (5)

and g satisfies the linear growth condition:

‖g(x)‖2 ≤ α‖x‖2 +β . (6)

Together, (5) and (6) imply the monotone condition 〈x, f (x)〉+ 1
2‖g(x)‖

2 ≤
3
2 (α‖x‖

2+β ), which is a key assumption in the analysis of Mao & Szpruch [22] and
Mao [21] for SDEs with volatilities which are not globally Lipschitz. However, in
our analysis we choose to use this slightly stronger assumption, which provides the
basis for the following lemma on the stability of the SDE solution.

Lemma 1 (SDE stability). If the SDE satisfies Assumption 1, then for all p>0

E
[

sup
0≤t≤T

‖Xt‖p
]
< ∞.

We now specify the critical assumption about the adaptive timestep.
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Assumption 2 (Adaptive timestep) The adaptive timestep function h : Rm → R+

is continuous and strictly positive, and there exist constants α,β > 0 such that for
all x ∈ Rm, h(x) satisfies the inequality

〈x, f (x)〉+ 1
2 h(x)‖ f (x)‖2 ≤ α‖x‖2 +β . (7)

Note that if another timestep function hδ (x) is smaller than h(x), then hδ (x) also
satisfies the Assumption 2. Note also that the form of (7), which is motivated by the
requirements of the proof of the next theorem, is very similar to (5). Indeed, if (7) is
satisfied then (5) is also true for the same values of α and β .

Theorem 1 (Finite time stability). If the SDE satisfies Assumption 1, and the
timestep function h satisfies Assumption 2, then T is almost surely attainable (i.e. for
ω ∈ Ω , P(∃N(ω)< ∞ s.t. tN(ω)≥T ) = 1) and for all p>0 there exists a constant
Cp,T which depends solely on p, T and the constants α,β in Assumption 2, such that

E
[

sup
0≤t≤T

‖X̂t‖p
]
<Cp,T .

2.2.2 Strong convergence

Standard strong convergence analysis for an approximation with a uniform timestep
h considers the limit h→0. This clearly needs to be modified when using an adaptive
timestep, and we will instead consider a timestep function hδ (x) controlled by a
scalar parameter 0<δ ≤1, and consider the limit δ→0.

Given a timestep function h(x) which satisfies Assumption 2, ensuring stability as
analysed in the previous section, there are two quite natural ways in which we might
introduce δ to define hδ (x):

hδ (x) = δ min(T,h(x)), hδ (x) = min(δ T,h(x)).

The first refines the timestep everywhere, while the latter concentrates the compu-
tational effort on reducing the maximum timestep, with h(x) introduced to ensure
stability when ‖X̂t‖ is large.

In our analysis, we will cover both possibilities by making the following assump-
tion.

Assumption 3 The timestep function hδ , satisfies the inequality

δ min(T,h(x))≤ hδ (x)≤min(δ T,h(x)), (8)

and h satisfies Assumption 2.

Given this assumption, we obtain the following theorem:

Theorem 2 (Strong convergence). If the SDE satisfies Assumption 1, and the
timestep function hδ satisfies Assumption 3, then for all p>0
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lim
δ→0

E
[

sup
0≤t≤T

‖X̂t−Xt‖p
]
= 0.

To prove an order of strong convergence requires new assumptions on f and g:

Assumption 4 (Lipschitz properties) There exists a constant α >0 such that for
all x,y ∈ Rm, f satisfies the one-sided Lipschitz condition:

〈x−y, f (x)− f (y)〉 ≤ 1
2 α‖x−y‖2, (9)

and g satisfies the Lipschitz condition:

‖g(x)−g(y)‖2 ≤ 1
2 α‖x−y‖2. (10)

In addition, f satisfies the polynomial growth Lipschitz condition

‖ f (x)− f (y)‖ ≤ (γ (‖x‖q+‖y‖q)+µ) ‖x−y‖, (11)

for some γ,µ,q > 0.

Note that setting y=0 gives

〈x, f (x)〉 ≤ 1
2 α‖x‖2 + 〈x, f (0)〉 ≤ α‖x‖2 + 1

2 α
−1‖ f (0)‖2,

‖g(x)‖2 ≤ 2‖g(x)−g(0)‖2 +2‖g(0)‖2 ≤ α‖x‖2 +2‖g(0)‖2.

Hence, Assumption 4 implies Assumption 1, with the same α and an appropriate β .

Theorem 3 (Strong convergence order). If the SDE satisfies Assumption 4, and the
timestep function hδ satisfies Assumption 3, then for all p>0 there exists a constant
Cp,T such that

E
[

sup
0≤t≤T

‖X̂t−Xt‖p
]
≤Cp,T δ

p/2.

To bound the expected number of timesteps, we require an assumption on how
quickly h(x) can approach zero as ‖x‖→ ∞.

Assumption 5 (Timestep lower bound) There exist constants ξ ,ζ ,q>0, such that
the adaptive timestep function satisfies the inequality

h(x)≥ (ξ‖x‖q +ζ )−1 .

Lemma 2 (Number of timesteps). If the SDE satisfies Assumption 1, and the
timestep function hδ (x) satisfies Assumption 3, with h(x) satisfying Assumptions
2 and Assumption 5, then for all p>0 there exists a constant cp,T such that

E [(NT −1)p]≤ cp,T δ
−p.

where NT is again the number of timesteps required by a path approximation.
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The conclusion from Theorem 3 and Lemma 2 is that

E
[

sup
0≤t≤T

‖X̂t−Xt‖p
]1/p

≤C1/p
p,T c1/2

1,T (E [NT ])
−1/2,

which corresponds to order 1
2 strong convergence when comparing the accuracy to

the expected cost.
First order strong convergence is achievable for Langevin SDEs in which m=d

and g is the identity matrix Im, but this requires stronger assumptions on the drift f .

Assumption 6 (Enhanced Lipschitz properties) f satisfies the Assumption 4 and
in addition, f is differentiable, and f and ∇ f satisfy the polynomial growth Lipschitz
condition

‖ f (x)− f (y)‖+‖∇ f (x)−∇ f (y)‖ ≤ (γ (‖x‖q+‖y‖q)+µ)‖x−y‖, (12)

for some γ,µ,q > 0.

We now state the theorem on improved strong convergence.

Theorem 4 (Strong convergence for Langevin SDEs). If m=d, g≡ Im, f satisfies
Assumption 6, and the timestep function hδ satisfies Assumption 3, then for all
T, p ∈ (0,∞) there exists a constant Cp,T such that

E
[

sup
0≤t≤T

‖X̂t−Xt‖p
]
≤Cp,T δ

p.

Comment: first order strong convergence can also be achieved for a general
g(x) by using an adaptive timestep Milstein discretization, provided ∇g satisfies an
additional Lipschitz condition. However, this numerical approach is only practical in
cases in which the commutativity condition is satisfied and therefore there is no need
to simulate the Lévy areas which the Milstein method otherwise requires [19].

2.3 Infinite Time Interval
Now, we focus on a class of ergodic SDEs and show that the moment bounds and
strong error bound is uniform in T which is a stronger result than for the finite time
interval.

2.3.1 Stability

Assumption 7 (Dissipative condition) f and g satisfy the Assumption 1 and there
exist constants α,β > 0 such that for all x ∈Rm, f satisfies the dissipative one-sided
linear growth condition:

〈x, f (x)〉 ≤ −α‖x‖2 +β , (13)

and g is globally bounded and non-degenerate:

‖g(x)‖2 ≤ β . (14)
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Theorem 4.4 in [23] and Theorem 6.1 in [25] show that this Assumption en-
sures the existence and uniqueness of the invariant measure. We can also prove the
following uniform moment bound for the SDE solution.

Lemma 3 (SDE stability in infinite time interval). If the SDE satisfies Assumption
7 with X0 = x0, then for all p ∈ (0,∞), there is a constant Cp which only depends on
x0 and p such that, ∀ t ≥ 0,

E [‖Xt‖p]≤Cp.

We now specify the critical assumption about the adaptive timestep for infinite
time interval.

Assumption 8 (Adaptive timestep for infinite time interval) The adaptive timestep
function h : Rm→ (0,hmax] is continuous and bounded, with 0 < hmax < ∞, and there
exist constants α,β > 0 such that for all x ∈ Rm, h satisfies the inequality

〈x, f (x)〉+ 1
2 h(x)‖ f (x)‖2 ≤−α‖x‖2 +β . (15)

Note that if another timestep function hδ (x) is smaller than h(x), then hδ (x) also
satisfies this Assumption. Note also that the form of (15), which is motivated by the
requirements of the proof of the next theorem, is very similar to (13). Indeed, if (15)
is satisfied then (13) is also true for the same values of α and β . Compared with the
condition in the finite time analysis, we need additionally to bound h properly to
achieve the uniform bound.

Theorem 5 (Stability in infinite interval). If the SDE satisfies Assumption 7, and
the timestep function h satisfies Assumption 8, then for all p ∈ (0,∞) there exists a
constant Cp which depends solely on p, x0, hmax and the constants α,β in Assumption
8 such that, ∀t ≥ 0,

E
[
‖X̂t‖p

]
<Cp, E [‖X̄t‖p]<Cp.

2.3.2 Strong convergence

To prove an order of strong convergence requires new assumptions on f and g:

Assumption 9 (Contractive Lipschitz properties) f and g satisfy Assumption 4
and for some fixed p∗ ∈ (1,∞), there exist constants λ >0 such that for all x,y ∈ Rm,
f and g satisfy the contractive Lipschitz condition:

〈x−y, f (x)− f (y)〉+ p∗−1
2
‖g(x)−g(y)‖2≤−λ ‖x−y‖2, (16)

Note that this Assumption ensures that two solutions to this SDE starting from
different places but driven by the same Brownian increment, will come together
exponentially, as shown in the following lemma.
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Lemma 4 (SDE contractivity). If the SDE satisfies Assumption 9 and for some fixed
p∗ ∈ (1,∞), then for p ∈ (0, p∗] any two solutions to the SDE: Xt and Yt , driven by
the same Brownian motion but starting from x0 and y0, where x0 6= y0, satisfy that,
∀ t > 0,

E [‖Xt −Yt‖p]≤ e−λ pt E [‖X0−Y0‖p] .

This lemma means the error made on previous time steps will decay exponentially
and then we can prove a uniform bound for the strong error.

Theorem 6 (Strong convergence order in infinite time interval). If the SDE sat-
isfies Assumption 9, and the timestep function hδ satisfies Assumption 3 with h
satisfying Assumption 8, then for all p ∈ (0, p∗] there exists a constant Cp such that,
∀t ≥ 0,

E
[
‖X̂t−Xt‖p

]
≤Cp δ

p/2.

For the infinite time interval, we can show that the expected number of timesteps
per path is linear in T, which is the same as for uniform timesteps.

Lemma 5 (Number of timesteps). If the SDE satisfies Assumption 9, and the
timestep function hδ satisfies Assumption 3, with h(x) satisfying Assumption 5 and
Assumption 8, then for all T, p ∈ (0,∞) there exists a constant cp such that

E [(NT −1)p]≤ cp T p
δ
−p.

where NT is again the number of timesteps required by a path approximation.

First order strong convergence is also achievable for Langevin SDEs in which
m=d and g is the identity matrix Im, but this requires stronger assumptions on the
drift f .

Assumption 10 (Enhanced contractive Lipschitz properties) f satisfies Assump-
tion 9 and in addition, f is differentiable, and f and ∇ f satisfy the polynomial growth
Lipschitz condition 12.

Theorem 7 (Strong convergence for Langevin SDEs in infinite time interval). If
m= d, g ≡ Im, f satisfies Assumption 10, and the timestep function hδ satisfies
Assumption 3 and 8, then for all p ∈ (0,∞) there exists a constant Cp such that,
∀ t ≥ 0,

E
[
‖X̂t−Xt‖p

]
≤Cp δ

p.

3 Multi-Level Monte Carlo in infinite time interval

We are interested in the problem of approximating:

π(ϕ) := Eπ ϕ =
∫
Rm

ϕ(x)π(dx), ϕ ∈ L1(π),
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where π is the invariant measure of the SDE (1). Numerically, we can approximate
this quantity by simulating E [ϕ(XT )] for a sufficiently large T. In the following
subsections, we will introduce our adaptive multilevel Monte Carlo algorithm and its
numerical analysis.

3.1 Algorithm
To estimate E [ϕ(XT )] , the simplest Monte Carlo estimator is

1
N

N

∑
n=1

ϕ(X̂ (n)
T ),

where X̂ (n)
T is the terminal value of the nth numerical path in the time interval [0,T ]

using a suitable adaptive function hδ . It can be extended to Multilevel Monte Carlo
by using non-nested timesteps [7]. Consider the identity

E [ϕL] = E [ϕ0]+
L

∑
`=1

E [ϕ`−ϕ`−1] , (17)

where ϕ` := ϕ(X̂ `
T ) with X̂ `

T being the numerical estimator of XT , which uses adaptive
function hδ with δ =M−` for some positive integer M > 1. Then the standard MLMC
estimator is the following telescoping sum:

1
N0

N0

∑
n=1

ϕ(X̂ (n,0)
T )+

L

∑
`=1

{
1
N`

N`

∑
n=1

(
ϕ(X̂ (n,`)

T )−ϕ(X̂ (n,`−1)
T )

)}
,

where X̂ (n,`)
T is the terminal value of the nth numerical path in the time interval [0,T ]

using a suitable adaptive function hδ with δ = M−`.
Unlike the standard MLMC with fixed time interval [0,T ], we now allow different

levels to have a different length of time interval T`, satisfying 0< T0 < T1 < ... < T` <
... < TL = T, which means that as level ` increases, we obtain a better approximation
not only by using smaller timesteps but also by simulating a longer time interval.
However, the difficulty is how to construct a good coupling on each level ` since the
fine path and coarse path have different lengths of time interval T` and T`−1.

Following the idea of Glynn and Rhee [8] to estimate the invariant measure
of some Markov chains, we perform the coupling by starting a level ` fine path
simulation at time t f

0 = −T` and a coarse path simulation at time tc
0 = −T`−1 and

terminating both paths at t = 0. Since the drift f and volatility g do not depend
explicitly on time t, the distribution of the numerical solution simulated on the time
interval [−T`,0] is the same as one simulated on [0,T`]. The key point here is that
the fine path and coarse path share the same driving Brownian motion during the
overlap time interval [−T`−1,0]. Owing to the result of Lemma 4, two solutions to
the SDE satisfying Assumption 9, starting from different initial points and driven
by the same Brownian motion will converge exponentially. Therefore, the fact that
different levels terminate at the same time is crucial to the variance reduction of the
multilevel scheme.
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Our new multilevel scheme still has the identity (17) but with ϕ` = ϕ(X̂ `
0) with

X̂ `
0 being the terminal value of the numerical path approximation on the time interval

[−T`,0] using adaptive function hδ with δ = M−`. The corresponding new MLMC
estimator is

Ŷ ,
1

N0

N0

∑
n=1

ϕ(X̂ (n,0)
0 )+

L

∑
`=1

{
1
N`

N`

∑
n=1

(
ϕ(X̂ (n,`)

0 )−ϕ(X̂ (n,`−1)
0 )

)}
, (18)

where X̂ (n,`)
0 is the terminal value of the nth numerical path through time interval

[−T`,0] using adaptive function hδ with δ = M−`. Algorithm 1 outlines the detailed
implementation of a single adaptive MLMC sample using a non-nested adaptive
timestep on level ` with M = 2.

Algorithm 1: Outline of the algorithm for a single adaptive MLMC sample for
scalar SDE on level ` in time interval [−T`,0].

t :=−T`; tc :=−T`−1; t f :=−T`;
hc := 0; h f := 0;
∆W c := 0; ∆W f := 0;
X̂c = x0; X̂ f = x0;
while t < 0 do

told := t;
t := min(tc, t f );
∆W := N(0, t− told);
∆W c := ∆W c +∆W ;
if t =−T`−1 then

∆W c := 0;
end
∆W f := ∆W f +∆W ;
if t = tc then

update coarse path X̂c using hc and ∆W c;
compute new adapted coarse path timestep hc = h2δ (X̂c);
hc := min(hc,−tc);
tc := tc +hc;
∆W c := 0;

end
if t = t f then

update fine path X̂ f using h f and ∆W f ;
compute new adapted fine path timestep h f = hδ (X̂ f );
h f := min(h f ,−t f );
t f := t f +h f ;
∆W f := 0;

end
end
Result: X̂ f − X̂c
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3.2 Numerical analysis

First, we state the exponential convergence to the invariant measure of the original
SDEs, which can help us to measure the approximation error caused by truncating
the infinite time interval.

Lemma 6 (Exponential convergence). If the SDE satisfies Assumption 7 and As-
sumption 9, and ϕ satisfies the Lipschitz condition: there exists a constant κ > 0
such that

‖ϕ(x)−ϕ(y)‖ ≤ κ‖x− y‖, (19)

then there exists a constant µ > 0 depending on x0, κ and C1 in Lemma 3 such that

|E [ϕ(Xt)−π(ϕ)]| ≤ µ e−λ t . (20)

With this, we can bound the variance of the MLMC correction for each level.

Lemma 7 (Variance of MLMC corrections for bounded volatility). If ϕ satisfies
the Lipschitz condition (19), the SDE satisfies Assumption 9 and the timestep function
hδ satisfies Assumption 3 with δ =M−` for each level, then for each level `, there exist
constants c1 and c2 such that the variance of correction V` := V

[
ϕ(X̂ `

0)−ϕ(X̂ `−1
0 )

]
satisfies

V` ≤ c1 M−`+ c2 e−2λT`−1 . (21)

Note that if we set T` =
logM

2λ
(`+1), then V` ≤ (c1 +c2)M−`, which has the same

magnitude order as the standard MLMC. In some cases, λ needs to be estimated
numerically through Lemma 6. N` can be optimized following the same approach in
the MLMC theorem in [6].

Theorem 8 (MLMC for infinite time interval). If ϕ satisfies the Lipschitz condition
(19), the SDE satisfies Assumption 9 and the timestep function hδ satisfies Assumption
3 with δ = M−` for each level, then by choosing suitable T`, N` for each level `, there
exists a constant c3 such that the MLMC estimator (18) has a mean square error
(MSE) with bound

E
[
(Ŷ −π(ϕ))2

]
≤ ε

2,

and a computational cost C with bound

E [C]≤ c3 ε
−2| logε|3.

For Langevin SDEs, the computational cost can be reduced to O(ε−2).

Theorem 9 (Langevin SDEs). If ϕ satisfies the Lipschitz condition (19), and for the
SDE, m=d, g≡ Im, f satisfies Assumption 10, and the timestep function hδ satisfies
Assumption 3 with δ = M−` for each level, then for each level `, there exist constants
c1 and c2 such that
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Vl ≤ c1 M−2`+ c2 e−2λT`−1 . (22)

By choosing suitable T` =
logM

λ
(`+1) and N` for each level ` in the MLMC estimator

(18) such that it achieves the MSE bound ε2, there exists a constant c3 such that

E [C]≤ c3 ε
−2.

Note that the choice of T` for Langevin equation is different from the one for
SDEs with bounded volatility. In other words, the strong convergence result and the
contractive convergence rate λ determine T`.

4 Examples and Numerical Results

In this section we first discuss some example SDEs with non-globally Lipschitz drift,
then present the numerical result for finite time interval and its extension to infinite
time interval.

For scalar SDEs, the drift is often of the form

f (x)≈−csign(x) |x|q, as |x| → ∞ (23)

for some constants c>0, q>1. Therefore, as |x|→∞, the maximum stable timestep
satisfying Assumption 2 corresponds to 〈x, f (x)〉+ 1

2 h(x) | f (x)|2 ≈ 0 and hence
h(x)≈ 2|x|/| f (x)| ≈ 2c−1|x|1−q. A suitable choice for h(x) and hδ (x) is therefore

h(x) = min
(
T,c−1|x|1−q) , hδ (x) = δ h(x). (24)

For example, the Ginzburg-Landau equation, which describes a phase transition from
the theory of superconductivity [13, 19], is

dXt =
(
(η + 1

2 σ
2)Xt −λX3

t
)

dt +σXt dWt ,

where η ≥ 0, λ ,σ > 0. The drift and volatility satisfy Assumptions 1 and 4, and
therefore all of the theory is applicable, with a suitable choice for hδ (x), based on
(23) and (24), being

hδ (x) = δ min
(
T,λ−1x−2) .

For multi-dimensional SDEs, there are two cases of particular interest. For SDEs
with a drift which, for some β >0 and sufficiently large ‖x‖, satisfies the condition

〈x, f (x)〉 ≤ −β ‖x‖‖ f (x)‖,

one can take 〈x, f (x)〉+ 1
2 h(x) | f (x)|2 ≈ 0 and therefore a suitable definition of h(x)

for large ‖x‖ is
h(x) = min(T,‖x‖/‖ f (x)‖).

For SDEs with a drift which does not satisfy the condition, but for which ‖ f (x)‖→∞

as ‖x‖→ ∞, an alternative choice for large ‖x‖ is to use
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14 Wei Fang and Michael B. Giles

h(x) = min(T,γ ‖x‖2/‖ f (x)‖2), (25)

for some γ > 0. For example, the Stochastic Lorenz equation, which is a three-
dimensional system modelling convection rolls in the atmosphere [12], is

dX (1)
t =

(
α1X (2)

t −α1X (1)
t

)
dt +β1X (1)

t dW (1)
t

dX (2)
t =

(
α2X (1)

t −X (2)
t −X (1)

t X (3)
t

)
dt +β2X (2)

t dW (2)
t

dX (3)
t =

(
X (1)

t X (2)
t −α3X (3)

t

)
dt +β3X (3)

t dW (3)
t

where α1,α2,α3,β1,β2,β3 > 0. The diffusion coefficient is globally Lipschitz, and
since 〈x, f (x)〉 consists solely of quadratic terms, the drift satisfies the one-sided
linear growth condition. Noting that ‖ f‖2 ≈ x2

1(x
2
2 + x2

3) < ‖x‖4 as ‖x‖ → ∞, an
appropriate maximum timestep is h(x) = min(T,γ‖x‖−2), for any γ >0. However,
the drift does not satisfy the one-sided Lipschitz condition, and therefore the theory
on the order of strong convergence is not applicable.

All the adaptive functions above satisfy the Assumptions 2 and 5. Other example
applications include the stochastic Verhulst equation and a large class of Langevin
equations.
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Fig. 1 Numerical results for finite time interval

The testcase taken from [14] is

dXt =−Xt −X3
t dt + dWt , x0 = 1,

with T =1. The three methods tested are the Tamed Euler scheme, the implicit Euler
scheme, and the new Euler scheme with adaptive timestep. We can set hmax =
1, M = 2 and choose the adaptive function h, hδ to be
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h(x) =
max(1, |x|)

max(1, |x+ x3|)
, hδ (x) = 2−`h(x).

Figure 1 shows the the root-mean-square error plotted against the average timestep.
The plot on the left shows the error in the terminal time, while the plot on the right
shows the error in the maximum magnitude of the solution. The error in each case is
computed by comparing the numerical solution to a second solution with a timestep,
or δ , which is 2 times smaller.

When looking at the error in the final solution, all 3 methods have similar accuracy
with 1

2 order strong convergence. However, as reported in [14], the cost of the implicit
method per timestep is much higher. The plot of the error in the maximum magnitude
shows that the new method is slightly more accurate, presumably because it uses
smaller timesteps when the solution is large. The plot was included to show that
comparisons between numerical methods depend on the choice of accuracy measure
being used.

Next, we extend it to adaptive MLMC for the infinite time interval, since it also
satisfies the dissipative condition (5) and the contractive condition (16). Our interest
is to compute π(ϕ) where ϕ(x) = ‖x‖ satisfies a Lipschitz condition.

First we need to determine T` for each level. By differentiating drift f we know
λ ≥ 1 and choose λ to be 1 in our numerical scheme to simulate a sufficiently long
time interval and control the truncation error. Then we choose

T` = log2(`+1).

The variance result (22) for the Langevin equation is illustrated in Figure 2. The
exponential part dominates the variance at the beginning, so the variance decays
exponentially. As time increase, the M−2` term becomes the major part of the variance
and the variance stops decreasing.

For level 10, we have T10 = 7.62 and the variance already stopped decreasing since
T = 5 as shown in the Figure 2, which shows that the setting of T` is sufficient. Then,
all the convergence results are the same as the standard MLMC and our algorithm
works well. For more detail, see [3].

5 Conclusion
The central conclusion from this paper is that by using an adaptive timestep it is
possible to make the Euler-Maruyama approximation stable for SDEs with a globally
Lipschitz volatility and a drift which is not globally Lipschitz but is locally Lipschitz
and satisfies a one-sided linear growth condition. If the drift also satisfies a one-sided
Lipschitz condition then the order of strong convergence is 1

2 , when looking at the
accuracy versus the expected cost of each path. For the important class of Langevin
equations with unit volatility, the order of strong convergence is 1. For ergodic SDEs
satisfying the dissipative and contractive condition, we have shown that the moments
and strong error of the numerical solutions are bounded and independent of time T.
Moreover, we extend this adaptive scheme to MLMC for the infinite time interval by
allowing different lengths of time intervals and carefully coupling the fine path and
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Fig. 2 Variance of corrections on each level `

coarse path in each level `. All the schemes work well and numerical experiments
support the theoretical results.
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