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Abstract

We show that multigrid ideas can be used to reduce the computa-
tional complexity of estimating an expected value arising from a stochas-
tic differential equation using Monte Carlo path simulations. In the
simplest case of a Lipschitz payoff and an Euler discretisation, the com-
putational cost to achieve an accuracy of O(ε) is reduced from O(ε−3) to
O(ε−2(log ε)2). The analysis is supported by numerical results showing
significant computational savings.

1 Introduction

In Monte Carlo path simulations which are used extensively in computational
finance, one is interested in the expected value of a quantity which is a func-
tional of the solution to a stochastic differential equation. To be specific,
suppose we have a multi-dimensional SDE with general drift and volatility
terms,

dS(t) = a(S, t) dt + b(S, t) dW (t), 0 < t < T, (1)

and given initial data S0 we want to compute the expected value of f(S(T ))
where f(S) is a scalar function with a uniform Lipschitz bound, i.e. there exists
a constant c such that

|f(U) − f(V )| ≤ c ‖U − V ‖ , ∀ U, V. (2)

A simple Euler discretisation of this SDE with timestep h is

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn) ∆Wn,

and the simplest estimate for E[f(ST )] is the mean of the payoff values f(ŜT/h),
from N independent path simulations,

Ŷ = N−1

N∑

i=1

f(Ŝ
(i)
T/h).
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It is well established that, provided a(S, t) and b(S, t) satisfy certain condi-

tions [1, 15, 20], the expected mean-square-error (MSE) in the estimate Ŷ is
asymptotically of the form

MSE ≈ c1N
−1 + c2h

2,

where c1, c2 are positive constants. The first term corresponds to the variance
in Ŷ due to the Monte Carlo sampling, and the second term is the square of
the O(h) bias introduced by the Euler discretisation.

To make the MSE O(ε2), so that the r.m.s. error is O(ε), requires that N =
O(ε−2) and h=O(ε), and hence the computational complexity (cost) is O(ε−3)
[4]. The main theorem in this paper proves that the computational complexity
for this simple case can be reduced to O (ε−2(log ε)2) through the use of a
multilevel method which reduces the variance, leaving unchanged the bias due
to the Euler discretisation. The multilevel method is very easy to implement
and can be combined, in principle, with other variance reduction methods such
as stratified sampling [7] and quasi Monte Carlo methods [16, 17, 19] to obtain
even greater savings.

The method extends the recent work of Kebaier [14] who proved that the
computational cost of the simple problem described above can be reduced to
O(ε−2.5) through the appropriate combination of results obtained using two
levels of timestep, h and O(h1/2). This is closely related to a more generally
applicable approach of quasi control variates analysed by Emsermann and
Simon [5].

Our technique generalises Kebaier’s approach to multiple levels, using a
geometric sequence of different timesteps hl = M−l T, l = 0, 1, . . . , L, for
integer M ≥ 2, with the smallest timestep hL corresponding to the original h
which determines the size of the Euler discretisation bias. This idea of using
a geometric sequence of timesteps comes from the multigrid method for the
iterative solution of linear systems of equations arising from the discretisation
of elliptic partial differential equations [2, 21]. The multigrid method uses
a geometric sequence of grids, each typically twice as fine in each direction
as its predecessor. If one were to use only the finest grid, the discretisation
error would be very small, but the computational cost of a Jacobi or Gauss-
Seidel iteration would be very large. On a much coarser grid, the accuracy
is much less, but the cost is also much less. Multigrid solves the equations
on the finest grid, by computing corrections using all of the grids, thereby
achieving the fine grid accuracy at a much lower cost. This is a very simplified
explanation of multigrid, but it is the same essential idea which will be used
here, retaining the accuracy/bias associated with the smallest timestep, but
using calculations with larger timesteps to reduce the variance in a way that
minimises the overall computational complexity.
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A similar multilevel Monte Carlo idea has been used by Heinrich [9] for
parametric integration, in which one is interested in evaluating a quantity
I(λ) which is defined as a multi-dimensional integral of a function which has
a parametric dependence on λ. Although the details of the method are quite
different from Monte Carlo path simulation, the analysis of the computational
complexity is quite similar.

The paper begins with the introduction of the new multilevel method and
an outline of its asymptotic accuracy and computational complexity for the
simple problem described above. The main theorem and its proof are then
presented. This establishes the computational complexity for a broad cat-
egory of applications and numerical discretisations with certain properties.
The applicability of the theorem to the Euler discretisation is a consequence
of its well-established weak and strong convergence properties. The paper
then discusses some refinements to the method and its implementation, and
the effects of different payoff functions and numerical discretisations. Finally,
numerical results are presented to provide support for the theoretical analysis,
and directions for further research are outlined.

2 Multilevel Monte Carlo method

Consider Monte Carlo path simulations with different timesteps hl = M−l T ,
l = 0, 1, . . . , L. For a given Brownian path W (t), let P denote the payoff

f(S(T )), and let Ŝl,M l and P̂l denote the approximations to S(T ) and P using
a numerical discretisation with timestep hl.

It is clearly true that

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1].

The multilevel method independently estimates each of the expectations on
the right-hand side in a way which minimises the computational complexity.

Let Ŷ0 be an estimator for E[P̂0] using N0 samples, and let Ŷl for l >0 be

an estimator for E[P̂l−P̂l−1] using Nl paths. The simplest estimator that one
might use is a mean of Nl independent samples, which for l>0 is

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
. (3)

The key point here is that the quantity P̂
(i)
l − P̂

(i)
l−1 comes from two discrete

approximations with different timesteps but the same Brownian path. This
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is easily implemented by first constructing the Brownian increments for the
simulation of the discrete path leading to the evaluation of P̂

(i)
l , and then

summing them in groups of size M to give the discrete Brownian increments for
the evaluation of P̂

(i)
l−1. The variance of this simple estimator is V [Ŷl] = N−1

l Vl

where Vl is the variance of a single sample. The same inverse dependence on
Nl would apply in the case of a more sophisticated estimator using stratified
sampling or a zero-mean control variate to reduce the variance.

The variance of the combined estimator Ŷ =
L∑

l=0

Ŷl is

V [Ŷ ] =
L∑

l=0

N−1
l Vl.

The computational cost, if one ignores the asymptotically negligible cost of
the final payoff evaluation, is proportional to

L∑

l=0

Nl h
−1
l .

Treating the Nl as continuous variables, the variance is minimised for a fixed
computational cost by choosing Nl to be proportional to

√
Vl hl. This calcu-

lation of an optimal number of samples Nl is similar to the approach used in
optimal stratified sampling [7], except that in this case we also include the
effect of the different computational cost of the samples on different levels.

The above analysis holds for any value of L. We now assume that L�1,
and consider the behaviour of Vl as l → ∞. In the particular case of the
Euler discretisation and the Lipschitz payoff function, provided a(S, t) and
b(S, t) satisfy certain conditions [1, 15, 20], there is O(h) weak convergence
and O(h1/2) strong convergence. Hence, as l → ∞,

E[P̂l − P ] = O(hl), (4)

and
E[ ‖Ŝl,M l − S(T )‖2 ] = O(hl). (5)

From the Lipschitz property (2), it follows that

V [P̂l−P ] ≤ E[ (P̂l−P )2 ] ≤ c2 E[ ‖Ŝl,M l − S(T )‖2 ].

Combining this with (5) gives V [P̂l−P ] = O(hl). Furthermore,

(P̂l−P̂l−1) = (P̂l−P ) − (P̂l−1−P )

=⇒ V [P̂l−P̂l−1] ≤
(
(V [P̂l−P ])1/2 + (V [P̂l−1−P ])1/2

)2

.
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Hence, for the simple estimator (3), the single sample variance Vl is O(hl),
and the optimal choice for Nl is asymptotically proportional to hl. Setting
Nl = O(ε−2Lhl), the variance of the combined estimator Ŷ is O(ε2).

If L is now chosen such that

L =
log ε−1

log M
+ O(1),

as ε→0, then hL = M−L = O(ε), and so the bias error E[P̂L −P ] is O(ε), due
to (4). Consequently, we obtain a MSE which is O(ε2), with a computational
complexity which is O(ε−2L2) = O(ε−2(log ε)2).

3 Complexity theorem

The main theorem is worded quite generally so that it can be applied to a
variety of financial models with output functionals which are not necessarily
Lipschitz functions of the terminal state but may instead be a discontinuous
function of the terminal state, or even path-dependent as in the case of barrier
and lookback options. The theorem also does not specify which numerical
approximation is used. Instead, it proves a result concerning the computa-
tional complexity of the multilevel method conditional on certain features of
the underlying numerical approximation and the multilevel estimators. This
approach is similar to that used by Duffie and Glynn [4].

Theorem 3.1 Let P denote a functional of the solution of stochastic differ-
ential equation (1) for a given Brownian path W (t), and let P̂l denote the
corresponding approximation using a numerical discretisation with timestep
hl = M−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo samples,
and positive constants α≥ 1

2
, β, c1, c2, c3 such that

i) E[P̂l − P ] ≤ c1 hα
l

ii) E[Ŷl] =

{
E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V [Ŷl] ≤ c2 N−1
l hβ

l

iv) Cl, the computational complexity of Ŷl, is bounded by

Cl ≤ c3 Nl h
−1
l ,
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then there exists a positive constant c4 such that for any ε < e−1 there are
values L and Nl for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷl,

has a mean-square-error with bound

MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤





c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.

Proof Using the notation dxe to denote the unique integer n satisfying the inequal-
ities x ≤ n < x+1, we start by choosing L to be

L =

⌈
log(

√
2 c1 Tα ε−1)

α log M

⌉
,

so that
1√
2
M−αε < c1 hα

L ≤ 1√
2
ε, (6)

and hence, because of properties i) and ii),

(
E[Ŷ ] − E[P ]

)2
≤ 1

2 ε2.

This 1
2ε2 upper bound on the square of the bias error, together with the 1

2ε2 upper
bound on the variance of the estimator to be proved later, gives an ε2 upper bound
on the estimator MSE.

Also,
L∑

l=0

h−1
l = h−1

L

L∑

l=0

M−l <
M

M−1
h−1

L

using the standard result for a geometric series, and

h−1
L < M

(
ε√
2 c1

)−1/α

.

due to the first inequality in (6). These two inequalities, combined with the obser-
vation that ε−1/α ≤ ε−2 for α≥ 1

2 and ε < e−1, give the following result which will
be used later,

L∑

l=0

h−1
l <

M2

M−1

(√
2 c1

)1/α
ε−2. (7)
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We now need to consider the different possible values for β.

a) If β=1, we set Nl =
⌈
2 ε−2 (L+1) c2 hl

⌉
so that

V [Ŷ ] =
L∑

l=0

V [Ŷl] ≤
L∑

l=0

c2 N−1
l hl ≤ 1

2 ε2,

which is the required upper bound on the variance of the estimator.

To bound the computational complexity C we begin with an upper bound on L

given by

L ≤ log ε−1

α log M
+

log(
√

2 c1 Tα)

α log M
+ 1.

Given that 1< log ε−1 for ε<e−1, it follows that

L+1 ≤ c5 log ε−1,

where

c5 =
1

α log M
+ max

(
0,

log(
√

2 c1 Tα)

α log M

)
+ 2.

Upper bounds for Nl are given by

Nl ≤ 2ε−2 (L+1) c2 hl + 1.

Hence the computational complexity is bounded by

C ≤ c3

L∑

l=0

Nl h
−1
l ≤ c3

(
2 ε−2(L+1)2 c2 +

L∑

l=0

h−1
l

)

Using the upper bound for L+1 and inequality (7), and the fact that 1< log ε−1 for
ε<e−1, it follows that C ≤ c4 ε−2(log ε)2 where

c4 = 2 c3 c2
5 c2 + c3

M2

M−1

(√
2 c1

)1/α
.

b) For β>1, setting

Nl =

⌈
2 ε−2 c2 T (β−1)/2

(
1−M−(β−1)/2

)−1
h

(β+1)/2
l

⌉
,

then
L∑

l=0

V [Ŷl] ≤ 1
2 ε2 T−(β−1)/2

(
1−M−(β−1)/2

) L∑

l=0

h
(β−1)/2
l .

Using the standard result for a geometric series,

L∑

l=0

h
(β−1)/2
l = T (β−1)/2

L∑

l=0

(
M−(β−1)/2

)l

< T (β−1)/2
(
1−M−(β−1)/2

)−1
, (8)
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and hence we obtain an 1
2 ε2 upper bound on the variance of the estimator.

Using the Nl upper bound

Nl < 2 ε−2 c2 T (β−1)/2
(
1−M−(β−1)/2

)−1
h

(β+1)/2
l + 1,

the computational complexity is bounded by

C ≤ c3

(
2 ε−2 c2 T (β−1)/2

(
1−M−(β−1)/2

)−1
L∑

l=0

h
(β−1)/2
l +

L∑

l=0

h−1
l

)
.

Using inequalities (7) and (8) gives C ≤ c4 ε−2 where

c4 = 2 c3 c2 T β−1
(
1−M−(β−1)/2

)−2
+ c3

M2

M−1

(√
2 c1

)1/α
.

c) For β<1, setting

Nl =

⌈
2 ε−2c2 h

−(1−β)/2
L

(
1−M−(1−β)/2

)−1
h

(β+1)/2
l

⌉
,

then
L∑

l=0

V [Ŷl] < 1
2 ε2 h

(1−β)/2
L

(
1−M−(1−β)/2

) L∑

l=0

h
−(1−β)/2
l .

Since

L∑

l=0

h
−(1−β)/2
l = h

−(1−β)/2
L

L∑

l=0

(
M−(1−β)/2

)l

< h
−(1−β)/2
L

(
1−M−(1−β)/2

)−1
, (9)

we again obtain an 1
2 ε2 upper bound on the variance of the estimator.

Using the Nl upper bound

Nl < 2 ε−2 c2 h
−(1−β)/2
L

(
1−M−(1−β)/2

)−1
h

(β+1)/2
l + 1,

the computational complexity is bounded by

C ≤ c3

(
2 ε−2 c2 h

−(1−β)/2
L

(
1−M−(1−β)/2

)−1
L∑

l=0

h
−(1−β)/2
l +

L∑

l=0

h−1
l

)
.

Using inequality (9) gives

h
−(1−β)/2
L

(
1−M−(1−β)/2

)−1
L∑

l=0

h
−(1−β)/2
l < h

−(1−β)
L

(
1−M−(1−β)/2

)−2
.
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The first inequality in (6) gives

h
−(1−β)
L <

(√
2 c1

)(1−β)/α
M1−β ε−(1−β)/α.

Combining the above two inequalities, and also using inequality (7) and the fact
that ε−2 < ε−2−(1−β)/α for ε<e−1, gives C ≤ c4 ε−2−(1−β)/α where

c4 = 2 c3 c2

(√
2 c1

)(1−β)/α
M1−β

(
1−M−(1−β)/2

)−2
+ c3

M2

M−1

(√
2 c1

)1/α
.

�

The theorem and proof show the importance of the parameter β which
defines the convergence of the variance Vl as l→∞. In this limit, the optimal
Nl is proportional to

√
Vl hl = O(h

(β+1)/2
l ), and hence the computational effort

Nlh
−1
l is proportional to O(h

(β−1)/2
l ). This shows that for β >1 the computa-

tional effort is primarily expended on the coarsest levels, for β<1 it is on the
finest levels, and for β =1 it is roughly evenly spread across all levels.

In applying the theorem in different contexts, there will often be existing
literature on weak convergence which will establish the correct exponent α
for condition i). Constructing estimators with properties ii) and iv) is also
straightforward. The main challenge will be in determining and proving the
appropriate exponent β for iii). An even bigger challenge might be to develop
better estimators with a higher value for β.

In the case of the Euler discretisation with a Lipschitz payoff, there is
existing literature on the conditions on a(S, t) and b(S, t) for O(h) weak con-
vergence and O(h1/2) strong convergence [1, 15, 20], which in turn gives β =1
as explained earlier.

The convergence is degraded if the payoff function f(S(T )) has a discon-
tinuity. In this case, for a given timestep hl, a fraction of the paths of size
O(h

1/2
l ) will have a final Ŝl,M l which is O(h

1/2
l ) from the discontinuity. With

the Euler discretisation, this fraction of the paths have an O(1) probability of

P̂l−P̂l−1 being O(1), due to Ŝl,M l and Ŝl−1,M l−1 being on opposite sides of the

discontinuity, and therefore Vl = O(h
1/2
l ) and β = 1

2
. Because the weak order

of convergence is still O(hl) [1] so α = 1, the overall complexity is O(ε−2.5),
which is still better than the O(ε−3) complexity of the standard Monte Carlo
method with an Euler discretisation. Further improvement may be possible
through the use of adaptive sampling techniques which increase the sampling
of those paths with large values for P̂l−P̂l−1 [8, 13, 18].

If the Euler discretisation is replaced by Milstein’s method for a scalar
SDE, its O(h) strong convergence results in Vl = O(h2

l ) for a Lipschitz payoff.
Current research is investigating how to achieve a similar improvement in
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the convergence rate for lookback, barrier and digital options, based on the
appropriate use of Brownian interpolation [7], as well as the extension to multi-
dimensional SDEs.

4 Extensions

4.1 Optimal M

The analysis so far has not specified the value of the integer M , which is the
factor by which the timestep is refined at each level. In the multigrid method
for the iterative solution of discretisations of elliptic PDEs, it is usually optimal
to use M = 2, but that is not necessarily the case with the multilevel Monte
Carlo method introduced in this paper.

For the simple Euler discretisation with a Lipschitz payoff, V [P̂l−P ] ≈ c0 hl

asymptotically, for some positive constant c0. This corresponds to the case
β =1 in Theorem 3.1. From the identity

(P̂l−P̂l−1) = (P̂l−P ) − (P̂l−1−P )

we obtain, asymptotically, the upper and lower bounds
(√

M − 1
)2

c0 hl ≤ V [P̂l−P̂l−1] ≤
(√

M + 1
)2

c0 hl,

2 4 6 8 10 12 14 16
1.8

2

2.2

2.4

2.6

2.8

3

3.2

M

f(
M

)

f(M) = (M−M−1) / (log M)2

Figure 1: A plot of the function (M−M−1)/(log M)2
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with the two extremes corresponding to perfect correlation and anti-correlation
between P̂l−P and P̂l−1−P .

Suppose now that the value of V [P̂l−P̂l−1] is given approximately by the
geometric mean of the two bounds,

V [P̂l−P̂l−1] ≈ (M−1) c0 hl,

which corresponds to c2 = (M−1)c0 in Theorem 3.1. This results in

Nl ≈ 2ε−2(L+1) (M−1) c0 hl.

and so the computational cost of evaluating Ŷl is proportional to

Nl (h
−1
l +h−1

l−1) = Nl h
−1
l (1+M−1) ≈ 2 ε−2(L+1) (M−M−1) c0.

Since L = O(log ε−1/ log M), summing the costs of all levels, we conclude that
asymptotically, as ε→0, the total computational cost is roughly proportional
to

2 ε−2(log ε)2 f(M),

where

f(M) =
M−M−1

(log M)2
.

This function is illustrated in Figure 1. Its minimum near M =7 is about half
the value at M =2, giving twice the computational efficiency. The numerical
results presented later are all obtained using M = 4. This gives most of the
benefits of a larger value of M , but at the same time M is small enough to give
a reasonable number of levels from which to estimate the bias, as explained in
the next section.

4.2 Bias estimation and Richardson extrapolation

In the multilevel method, the estimates for the correction E[P̂l−P̂l−1] at each
level give information which can be used to estimate the remaining bias. In
particular, for the Euler discretisation with a Lipschitz payoff, asymptotically,
as l→∞

E[P−P̂l] ≈ c1hl,

for some constant c1 and hence

E[P̂l−P̂l−1] ≈ (M−1) c1hl ≈ (M−1) E[P−P̂l].

This information can be used in one of two ways. The first is to use it as
an approximate bound on the remaining bias, so that to obtain a bias which
has magnitude less than ε/

√
2 one increases the value for L until
∣∣∣ŶL

∣∣∣ < 1√
2
(M−1) ε.
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Being more cautious, the condition which we use in the numerical results
presented later is

max
{

M−1
∣∣∣ŶL−1

∣∣∣ ,
∣∣∣ŶL

∣∣∣
}

< 1√
2
(M−1) ε. (10)

This ensures that the remaining error based on an extrapolation from either
of the two finest timesteps is within the desired range. This modification is
designed to avoid possible problems due to a change in sign of the correction,
E[P̂l−P̂l−1], on successive refinement levels.

An alternative approach is to use Richardson extrapolation to eliminate
the leading order bias. Since E[P−P̂L] ≈ (M−1)−1E[P̂L−P̂L−1], by changing
the combined estimator to

(
L∑

l=0

Ŷl

)
+ (M−1)−1ŶL =

M

M−1

{
Ŷ0 +

L∑

l=1

(
Ŷl − M−1Ŷl−1

)}
,

the leading order bias is eliminated and the remaining bias is o(hL), usually

either O(h
3/2
L ) or O(h2

L). The advantage of re-writing the new combined esti-
mator in the form shown above on the right-hand-side, is that one can monitor
the convergence of the terms Ŷl −M−1Ŷl−1 to decide when the remaining bias
is sufficiently small, in exactly the same way as described previously for Ŷl.
Assuming the remaining bias is O(h2

L), the appropriate convergence test is

∣∣∣ŶL − M−1ŶL−1

∣∣∣ < 1√
2
(M2−1) ε. (11)

5 Numerical algorithm

Putting together the elements already discussed, the multilevel algorithm used
for the numerical tests is as follows:

1. start with L=0

2. estimate VL using an initial NL =104 samples

3. define optimal Nl, l = 0, . . . , L using Eqn. (12)

4. evaluate extra samples at each level as needed for new Nl

5. if L≥2, test for convergence using Eqn. (10) or Eqn. (11)

6. if L<2 or not converged, set L := L+1 and go to 2.
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The equation for the optimal Nl is

Nl =

⌈
2 ε−2

√
Vl hl

(
L∑

l=0

√
Vl/hl

)⌉
. (12)

This makes the estimated variance of the combined multilevel estimator less
than 1

2
ε2, while Equation (10) tries to ensure that the bias is less than 1√

2
ε.

Together, they should give a MSE which is less than ε2, with ε being a user-
specified r.m.s. accuracy.

In step 4, the optimal Nl from step 3 is compared to the number of samples
already calculated at that level. If the optimal Nl is larger, then the appropri-
ate number of additional samples are calculated. The estimate for Vl is then
updated, and this improved estimate is used if step 3 is re-visited.

It is important to note that this algorithm is heuristic; it is not guaran-
teed to achieve a MSE error which is O(ε2). The main theorem in Section
3 does provide a guarantee, but the conditions of the theorem assume a pri-
ori knowledge of the constants c1 and c2 governing the weak convergence and
the variance convergence as h → 0. These two constants are in effect being
estimated in the numerical algorithm described above.

The accuracy of the variance estimate at each level depends on the size of
the initial sample set. If this initial sample size were made proportional to ε−p

for some exponent 0 < p < 2−1/α, then as ε→ 0 it could be proved that the
variance estimate will converge to the true value with probability 1, without
an increase in the order of the computational complexity.

The weakness in the heuristic algorithm lies in the bias estimation, and it
does not appear to be easily resolved. Suppose the numerical algorithm de-
termines that L levels are required. If p(S) represents the probability density
function for the final state S(T ) defined by the SDE, and pl(S), l =0, 1, . . . L
are the corresponding probability densities for the level l numerical approxima-
tions, then in general p(S) and the pl(S) are likely to be linearly independent,
and so

p(S) = g(S) +
L∑

l=0

al pl(S),

for some set of coefficients al and a non-zero function g(S) which is orthogonal
to the pl(S). If we consider g(S) to be an increment to the payoff function,
then its numerical expectation on each level is zero, since

Epl
[g] =

∫
g(S) pl(S) dS = 0,
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while its true expectation is

Ep[g] =

∫
g(S) p(S) dS =

∫
g2(S) dS > 0.

Hence, by adding an arbitrary amount of g(S) to the payoff, we obtain an
arbitrary perturbation of the true expected payoff, but the heuristic algorithm
will on average terminate at the same level L with the same expected value.

This is a fundamental problem which also applies to the standard Monte
Carlo algorithm. In practice, it may require additional a priori knowledge or
experience to choose an appropriate minimum value for L to achieve a given
accuracy. Being cautious, one is likely to use a value for L which is larger
than required in most cases. In this case, the use of the multilevel method will
yield significant additional benefits. For the standard Monte Carlo method,
the computational cost is proportional to ML, the number of timesteps on the
finest level, whereas for the multilevel method with the Euler discretisation
and a Lipschitz payoff the cost is proportional to L2. Thus the computational
cost of being cautious in the choice of L is much less severe for the multilevel
algorithm than for the standard Monte Carlo.

Even better would be a multilevel application with a variance convergence
rate β>1; for this the computational cost is approximately independent of L,
suggesting that one could use a value for L which is much larger than necessary.
If there is a known value for L which is guaranteed to give a bias which is much
less than ε, then it may be possible to define a numerical algorithm which will
provably achieve a MSE error of ε2 at a cost which is O(ε−2); this will be an
area for future research.

In reporting the numerical results later, we define the computational cost
as the total number of timesteps performed on all levels,

C = N0 +
L∑

l=1

Nl (M
l+M l−1).

The term M l+M l−1 reflects the fact that each sample at level l > 0 requires
the computation of one fine path with M l timesteps and one coarse path with
M l−1 timesteps.

The computational costs are compared to those of the standard Monte
Carlo method, which is calculated as

C∗ =
L∑

l=0

N∗
l M l,

where N ∗
l = 2 ε−2 V [Pl] so that the variance of the estimator is 1

2
ε2 as with

the multilevel method. The summation over the grid levels corresponds to an
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application of the standard Monte Carlo algorithm on each grid level to enable
the estimation of the bias in order to apply the same heuristic termination
criterion as the multilevel method.

Results are also shown for Richardson extrapolation in conjunction with
both the multilevel and standard Monte Carlo methods. The costs for these
are defined in the same way; the difference is in the choice of L, and the
definition of the extrapolated estimator which has a slightly different variance.

6 Numerical results

6.1 Geometric Brownian motion

Figures 2-5 present results for a simple geometric Brownian motion,

dS = r S dt + σ S dW, 0 < t < 1,

with S(0)=1, r=0.05 and σ=0.2, and four different payoff options.

By switching to the new variable X = log S it is possible to construct a
numerical approximation which is exact, but here we directly simulate the
geometric Brownian motion using the Euler discretisation as an indication
of the behaviour with more complex models, for example those with a local
volatility function σ(S, t).

6.1.1 European option

The results in Figure 2 are for the European call option for which the dis-
counted payoff function is

P = exp(−r) max(0, S(1)−1).

The top left plot shows the behaviour of the variance of both P̂l and P̂l−P̂l−1.
The quantity which is plotted is the logarithm base M (M =4 for all numerical
results in this paper) versus the grid level. The reason for this choice is that
a slope of −1 corresponds to a variance which is exactly proportional to M−l,
which in turn is proportional to hl. The slope of the line for P̂l−P̂l−1 is indeed
approximately −1, indicating that Vl = V [P̂l−P̂l−1] = O(h). For l = 4, Vl is

more than 1000 times smaller than the variance V [P̂l] of the standard Monte
Carlo method with the same timestep.

The top right plot shows the mean value and correction at each level.
These two plots are both based on results from 4 × 106 paths. The slope of

15



0 1 2 3 4
−10

−8

−6

−4

−2

0

l

lo
g M

 v
ar

ia
nc

e

P
l

P
l
− P

l−1

0 1 2 3 4
−12

−10

−8

−6

−4

−2

0

l
lo

g M
 |m

ea
n|

P
l

P
l
− P

l−1

Y
l
−Y

l−1
/M

0 1 2 3 4

10
4

10
6

10
8

10
10

l

N
l

ε=0.00005
ε=0.0001
ε=0.0002
ε=0.0005
ε=0.001

10
−4

10
−3

10
−2

10
−1

10
0

10
1

ε

ε2  C
os

t

Std MC
Std MC ext
MLMC
MLMC ext

Figure 2: Geometric Brownian motion with European option (value ≈ 0.10).

approximately −1 again implies an O(h) convergence of E[P̂l−P̂l−1]. Even at

l=3, the relative error E[P−P̂l]/E[P ] is less than 10−3. Also plotted is a line
for the multilevel method with Richardson extrapolation, showing significantly
faster weak convergence.

The bottom two plots have results from two sets of multilevel calculations,
with and without Richardson extrapolation, for five different values of ε. Each
line in the bottom left plot corresponds to one multilevel calculation and shows
the values for Nl, l = 0, . . . , L, with the values decreasing with l because of
the decrease in both Vl and hl. It can also be seen that the value for L, the
maximum level of timestep refinement, increases as the value for ε decreases.

The bottom right plot shows the variation of the computational complexity
C (as defined in the previous section) with the desired accuracy ε. The plot
is of ε2C versus ε, because we expect to see that ε2C is only very weakly
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dependent on ε for the multilevel method. Indeed, it can be seen that without
Richardson extrapolation ε2C is a very slowly increasing function of ε−1 for
the multilevel methods, in agreement with the theory which predicts it to be
asymptotically proportional to (log ε)2. For the standard Monte Carlo method,
theory predicts that ε2C should be proportional to the number of timesteps on
the finest level, which in turn is roughly proportional to ε−1 due to the weak
convergence property. This can be seen in the figure, with the “staircase”
effect corresponding to the fact that L = 2 for ε = 0.001, 0.0005 and L = 3 for
ε=0.0002, 0.0001, 0.0005.

With Richardson extrapolation, a priori theoretical analysis predicts that
ε2C for the standard Monte Carlo method should be approximately propor-
tional to ε−1/2. However, with extrapolation the numerical results require no
more than the minimum two levels of refinement to achieve the desired ac-
curacy, and so ε2C is found to be independent of ε for the range of ε in the
tests. Nevertheless, for the most accurate case with ε=5×10−5, the multilevel
method is still approximately 10 times more efficient than the standard Monte
Carlo method when using extrapolation, and more than 60 times more efficient
without extrapolation.

As a final check on the reliability of the heuristics in the multilevel numeri-
cal algorithm, ten sets of multilevel calculations have been performed for each
value of ε, and the root-mean-square-error (RMSE) is computed and compared
to the target accuracy of ε. For all cases, with and without Richardson extrap-
olation, the ratio RMSE/ε was found to be in the range 0.43–0.96, indicating
that the algorithm is correctly achieving the desired accuracy.

6.1.2 Asian option

Figure 3 has results for the Asian option payoff, P = exp(−r) max
(
0, S−1

)
,

where

S =

∫ 1

0

S(t) dt,

which is approximated numerically by

Sl =

Nl∑

n=1

1
2
(Ŝn+Ŝn−1) hl.

The O(hl) convergence of both Vl and E[Pl−Pl−1] is similar to the European
option case, but in this case the Richardson extrapolation does not seem to
have improved the order of weak convergence. Hence, the reliability of the bias
estimation and grid level termination must be questioned for the Richardson
extrapolation. Without extrapolation, the multilevel method is up to 30 times
more efficient than the standard Monte Carlo method.
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Figure 3: Geometric Brownian motion with Asian option (value ≈ 0.058).

6.1.3 Lookback option

The results in Figure 4 are for the lookback option

P = exp(−r)
(
S(1) − min

0<t<1
S(t)

)
.

The minimum value of S(t) over the path is approximated numerically by

Ŝmin,l =
(
min

n
Ŝn

)(
1 − β∗σ

√
hl

)
.

β∗ ≈ 0.5826 is a constant which corrects the O(h1/2) leading order error due to
the discrete sampling of the path, and thereby restores O(h) weak convergence
[3]. Richardson extrapolation clearly works well in this case, improving the
weak convergence to second order. This has a significant effect on the number
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Figure 4: Geometric Brownian motion with lookback option (value ≈ 0.17).

of grid levels required, so that the multilevel method gives savings of up to
factor 65 without extrapolation, but up to only 4 with extrapolation.

6.1.4 Digital option

The final payoff which is considered is a digital option, P =exp(−r) H(S(1)−1)
where H(x) is the Heaviside function. The results in Figure 5 show that

Vl = O(h
1/2
l ), instead of the O(hl) convergence of all of the previous options.

Because of this, much larger values for Nl on the finer refinement levels are
required to achieve comparable accuracy, and the efficiency gains of the multi-
level method are reduced accordingly. Richardson extrapolation is extremely
effective in this case, although the resulting order of weak convergence is un-
clear, but the multilevel method still offers some additional computational
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Figure 5: Geometric Brownian motion with digital option (value ≈ 0.53).

savings.

The accuracy of the heuristic algorithm is again tested by performing ten
sets of multilevel calculations and comparing the RMSE error to the target
accuracy ε. The ratio is in the range 0.55–1.0 for all cases, with and without
extrapolation.

6.2 Heston stochastic volatility model

Figure 6 presents results for the same European call payoff considered previ-
ously, but this time based on the Heston stochastic volatility model [10],

dS = r S dt +
√

V S dW1, 0 < t < 1

dV = λ (σ2−V ) dt + ξ
√

V dW2,
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Figure 6: Heston model with European option (value ≈ 0.10).

with S(0) = 1, V (0) = 0.04, r = 0.05, σ = 0.2, λ = 5, ξ = 0.25, and correlation
ρ=−0.5 between dW1 and dW2.

The accuracy and variance are both improved by defining a new variable

W = eλt (V −σ2),

and applying the Euler discretisation to the SDEs for W and S which results
in the discrete equations

Ŝn+1 = Ŝn + r Ŝn h +

√
V̂ +

n Ŝn ∆W1,n

V̂n+1 = σ2 + e−λh

(
(V̂n−σ2) + ξ

√
V̂ +

n ∆W2,n

)
,

Note that the
√

V is replaced by
√

V + ≡
√

max(V, 0) but as h → 0 the
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probability of the discrete approximation to the volatility becoming negative
approaches zero, for the chosen values of λ, σ, ξ [12].

Because the volatility does not satisfy a global Lipschitz condition, there is
no existing theory to predict the order of weak and strong convergence. The
numerical results suggest the variance is decaying slightly slower than first
order, while the weak convergence appears slightly faster than first order. The
multilevel method without Richardson extrapolation gives savings of up to
factor 10 compared to the standard Monte Carlo method. Using a reference
value computed using the numerical method of Kahl and Jäckel [11], the ratio
of the RMSE error to the target accuracy ε is found to be in the range 0.49–
1.01.

The results with Richardson extrapolation are harder to interpret. The
order of weak convergence does not appear to be improved. The computational
cost is reduced, but this is due to the heuristic termination criterion which
assumes the remaining error after extrapolation is second order, which it is
not. Consequently, the ratio of the RMSE error to the target accuracy ε is
in the range 0.66–1.23, demonstrating that the termination criterion is not
reliable in combination with extrapolation for this application.

7 Concluding remarks

In this paper we have shown that a multilevel approach, using a geometric
sequence of timesteps, can reduce the order of complexity of Monte Carlo
path simulations. If we consider the generation of a discrete Brownian path
through a recursive Brownian Bridge construction, starting with the end points
W0 and WT at level 0, then computing the mid-point WT/2 at level 1, then the
interval mid-points WT/4,W3T/4 at level 2, and so on, then an interpretation

of the multilevel method is that the level l correction, E[P̂l−P̂l−1], corresponds
to the effect on the expected payoff due to the extra detail that is brought into
the Brownian Bridge construction at level l.

The numerical results for a range of model problems show that the mul-
tilevel algorithm is efficient and reliable in achieving the desired accuracy,
whereas the use of Richardson extrapolation is more problematic; in some
cases it works well but in other cases it fails to double the weak order of
convergence and hence does not achieve the target accuracy.

There are a number of areas for further research arising from this work.
One is the development of improved estimators giving a convergence order
β > 1. For scalar SDEs, the Milstein discretisation gives β = 2 for Lipschitz
payoffs, but more work is required to obtain improved convergence for look-
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back, barrier and digital options. The extension to multi-dimensional SDEs is
also challenging since, in most cases, the Milstein discretisation requires the
simulation of Lévy areas [6, 7].

A second area for research concerns the heuristic nature of the multilevel
numerical procedure. It would clearly be desirable to have a numerical proce-
dure which is guaranteed to give a MSE which is less than ε2. This may be
achievable by using estimators with β >1, so that one can use an excessively
large value for L without significant computational penalty, thereby avoiding
the problems with the bias estimation.

Thirdly, the multilevel method needs to be tested on much more complex
applications, more representative of the challenges faced in the finance commu-
nity. This includes payoffs which involve evaluations at multiple intermediate
times in addition to the value at maturity, and basket options which involve
high-dimensional SDE’s.

Finally, it may be possible to further reduce the computational complexity
by switching to quasi Monte Carlo methods such as Sobol sequences and lattice
rules [16, 17]. This is likely to be particularly effective in conjunction with
improved estimators with β > 1, because in this case the optimal Nl for the
true Monte Carlo sampling leads to the majority of the computational effort
being applied to extremely coarse paths. These are ideally suited to the use of
quasi Monte Carlo techniques, which may be able to lower the computational
cost towards O(ε−1) to achieve a MSE of ε2.
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