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Multilevel quasi-Monte Carlo path simulation

Michael B. Giles and Ben J. Waterhouse

Abstract. This paper reviews the multilevel Monte Carlo path simulation method for estimating
option prices in computational finance, and extends it by combining it with quasi-Monte Carlo in-
tegration using a randomised rank-1 lattice rule. Using the Milstein discretisation of the stochastic
differential equation, it is demonstrated that the combination has much lower computational cost
than either one on its own for evaluating European, Asian, lookback, barrier and digital options.
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1 Introduction

Giles [5, 6] has recently introduced a multilevel Monte Carlo path simulation method
for the pricing of financial options. This improves the computational efficiency of
Monte Carlo path simulation by combining results using different numbers of timesteps.
This can be viewed as a generalisation of the two-level method of Kebaier [10] and is
also similar in approach to Heinrich’s multilevel method for parametric integration
[9]. The first paper [6] (which was the second to appear in print due toa publication
backlog) introduced the multilevel Monte Carlo method and proved that it can lower
the computational complexity of path-dependent Monte Carlo evaluations.It also pre-
sented numerical results using the simplest Euler-Maruyama discretisation. The second
paper [5] demonstrated that the computational cost can be further reduced by using the
Milstein discretisation. This has the same weak order of convergence butan improved
first order strong convergence, and it is the strong order of convergence which is central
to the efficiency of the multilevel method.

In this paper we review the key ideas and introduce a new ingredient, the use of
quasi-Monte Carlo (QMC) integration based on a randomised rank-1 latticerule which
further reduces the computational cost. To set the scene, we considera scalar SDE with
general drift and volatility terms,

dS(t) = a(S, t) dt + b(S, t) dW (t), 0 < t < T, (1.1)
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with given initial dataS0. In the case of European and digital options, we are interested
in the expected value of a function of the terminal state,f(S(T )), but in the case of
Asian, lookback and barrier options the valuation depends on the entire path S(t), 0<
t<T .

Using a simple Monte Carlo method with a numerical discretisation with first or-
der weak convergence, to achieve a r. m. s. error ofǫ would requireO(ǫ−2) indepen-
dent paths, each withO(ǫ−1) timesteps, giving a computational complexity which is
O(ǫ−3). With the Euler-Maruyama discretisation the multilevel method reduces the
cost toO(ǫ−2(log ǫ)2) for a European option with a payoff with a uniform Lipschitz
bound [6], while the use of the Milstein discretisation further reduces the cost toO(ǫ−2)
for a larger class of options, including Asian, lookback, barrier and digital options [5].
The paper begins by reviewing the multilevel approach, first with the Eulerpath dis-
cretisation and then with the superior Milstein discretisation. QMC methods based on
rank-1 lattice rules are then introduced, with particular attention to Brownian Bridge
construction and the use of randomisation to obtain confidence intervals. The combined
multilevel QMC algorithm is presented and the following section provides numerical
results for a range of options.

2 Multilevel Monte Carlo method

Consider Monte Carlo path simulations with different timestepshl = 2−l T , l =
0, 1, . . . , L. Thus on the coarsest level,l=0, the simulations use just 1 timestep, while
on the finest level,l=L, the simulations use2L timesteps. For a given Brownian path
W (t), let P denote the payoff, and let̂Pl denote its approximation using a numerical
discretisation with timestephl. Because of the linearity of the expectation operator, it
is clearly true that

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]. (2.1)

This expresses the expectation on the finest level as being equal to the expectation on
the coarsest level plus a sum of corrections which give the differencein expectation
between simulations using different numbers of timesteps. The idea behind the mul-
tilevel method is to independently estimate each of the expectations on the right-hand
side in a way which minimises the overall variance for a given computational cost.

Let Ŷ0 be an estimator forE[P̂0] usingN0 samples, and let̂Yl for l>0 be an estimator
for E[P̂l−P̂l−1] usingNl paths. The simplest estimator is a mean ofNl independent
samples, which forl>0 is

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
. (2.2)

The key point here is that the quantitŷP
(i)
l −P̂

(i)
l−1 comes from two discrete approxima-
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tions with different timesteps but the same Brownian path. The variance ofthis simple
estimator isV[Ŷl] = N−1

l Vl whereVl is the variance of a single sample. Combining
this with independent estimators for each of the other levels, the variance of the com-
bined estimator

∑L
l=0 Ŷl is

∑L
l=0 N−1

l Vl, while its computational cost is proportional
to

∑L
l=0 Nl h

−1
l . Treating theNl as continuous variables, the variance is minimised for

a fixed computational cost by choosingNl to be proportional to
√

Vl hl.

In the particular case of an Euler discretisation, provideda(S, t) andb(S, t) satisfy
certain conditions [2, 11, 21] there isO(h1/2) strong convergence. From this it follows
that V[P̂l −P ] = O(hl) for a European option with a Lipschitz continuous payoff.
Hence for the simple estimator (2.2), the single sample varianceVl is O(hl), and the
optimal choice forNl is asymptotically proportional tohl. SettingNl = O(ǫ−2Lhl),
the variance of the combined estimatorŶ is O(ǫ2). If L is chosen such thatL =

log ǫ−1/ log 2 + O(1), asǫ→0, thenhL = 2−L = O(ǫ), and so the bias errorE[P̂L−P ]
is O(ǫ) due to standard results on weak convergence. Consequently, we obtaina mean
square error which isO(ǫ2), with a computational complexity which isO(ǫ−2L2) =
O(ǫ−2(log ǫ)2).

This analysis is generalised in the following theorem [6]:

Theorem 2.1 LetP denote a functional of the solution of stochastic differential equa-
tion (1.1) for a given Brownian pathW (t), and letP̂l denote the corresponding ap-
proximation using a numerical discretisation with timestephl = M−l T .

If there exist independent estimatorŝYl based onNl Monte Carlo samples, and
positive constantsα≥ 1

2 , β, c1, c2, c3 such that

i)
∣∣∣E[P̂l−P ]

∣∣∣ ≤ c1 hα
l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V[Ŷl] ≤ c2 N−1
l hβ

l

iv) Cl, the computational complexity of̂Yl, is bounded by

Cl ≤ c3 Nl h
−1
l ,

then there exists a positive constantc4 such that for anyǫ<e−1 there are valuesL and
Nl for which the multilevel estimator

Ŷ =

L∑

l=0

Ŷl,

has a mean-square-error with bound

MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ǫ2
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with a computational complexityC with bound

C ≤






c4 ǫ−2, β > 1,

c4 ǫ−2(log ǫ)2, β = 1,

c4 ǫ−2−(1−β)/α, 0 < β < 1.

Proof. See [6].

3 Milstein discretisation

The theorem proves that the best order of complexity is achieved using discretisations
with β > 1. To achieve this for a scalar SDE, we use the Milstein discretisation of
equation (1.1) which is

Ŝn+1 = Ŝn + an h + bn ∆Wn + 1
2

∂bn

∂S
bn

(
(∆Wn)2 − h

)
. (3.1)

In the above equation, the subscriptn is used to denote the timestep index, andan, bn

and∂bn/∂S are evaluated at̂Sn, tn.

All of the numerical results to be presented are for the case of geometricBrownian
motion for which the SDE is

dS(t) = r S dt + σ S dW (t), 0 < t < T.

By switching to the new variableX = log S, it is possible to construct numerical ap-
proximations which are exact, but here we directly simulate the geometric Brownian
motion using the Milstein method as an indication of the behaviour with more compli-
cated models, for example those with a local volatility functionσ(S, t).

The Milstein discretisation defines the numerical approximation at the discrete times
tn. Within the time interval[tn, tn+1] we use a constant coefficient Brownian interpo-
lation conditional on the two end values,

Ŝ(t) = Ŝn + λ (Ŝn+1−Ŝn) + bn

(
W (t) − Wn − λ (Wn+1−Wn)

)
, (3.2)

where

λ =
t − tn

tn+1 − tn
.

For the fine path, standard results on i) the expected average value, ii) thedistribution
of the minimum, and iii) the probability of crossing a certain value, will be usedto
obtain the valuêPl for Asian, lookback and barrier options, respectively.
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Exactly the same approach could also be used on the coarse path with half as many
timesteps to obtain̂Pl−1. However, this would not give an estimatorŶl with variance
convergence rateβ > 1. To achieve the better convergence rate, we first use the value
of the underlying Brownian motionW (t) at the midpoint (which has already been
sampled and used for the fine path calculation) to define an interpolated midpoint

Ŝn+ 1
2

= 1
2 (Ŝn+1+Ŝn) + bn

(
Wn+ 1

2
− 1

2 (Wn+1+Wn)
)

. (3.3)

We can then use the Brownian interpolation (with volatilitybn) on each of the half-
intervals[tn, tn+ 1

2
] and[tn+ 1

2
, tn+1] which each correspond to one of the timesteps on

the fine path. A key point in this construction is that we have not altered the expected
value for P̂l−1, averaged over all underlying Brownian pathsW (t), compared to its
evaluation on levell−1 on which it corresponds to the finer path; see [5] for further
discussion of this important point.

4 Quasi-Monte Carlo method

QMC methods approximate an integral on a high-dimensional hypercubewith anN -
point equal-weight quadrature rule of the form

∫

[0,1]d
f(x) dx ≈ 1

N

N−1∑

i=0

f(xi).

This is the same form which is used in the Monte Carlo method. However, rather
than choosing thed-dimensional pointsxi uniformly from the unit cube, as is the case
with the Monte Carlo method, QMC methods choose the points in some deterministic
manner.

Sobol′ sequences [20] and digital nets [16] are two popular choices of QMC points,
which have been previously used for financial applications [8, 14]. Inthis paper we use
a rank-1 lattice rule [19] in which the points have the particularly simple construction

xi =

{
i

N
z

}
,

wherez is ad-dimensional vector with integer components and the notation{ · } de-
notes taking the fractional part of each component of the argument and disregarding
the integer part so thatxi lies within the half-open unit cube.

For Monte Carlo integration it is well known that the error isO(N−1/2). In one
dimension, the lattice rule is equivalent to a rectangle rule and can achieveO(N−1)
convergence of the error, for a sufficiently smooth integrand. For larger dimensions,
it may be shown that for integrands with sufficient smoothness and dimensions which
become progressively less important, there exist lattice rules for which the error decays
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at O(N−1+ε) for all ε > 0, see [12]. Unfortunately, many integrands in mathematical
finance applications do not have the required smoothness and so we maynot apply the
theory to claim theO(N−1+ε) convergence. However, experimentation suggests that
this rate can in fact be achieved for many finance problems [13].

Two key aspects of the implementation of QMC methods are randomisation and the
factorisation of the covariance matrix. If we neglect for the moment the discretisation
errors which arise from finite timesteps, the standard Monte Carlo method has the
attractive feature that it provides both an unbiased estimate of the desiredvalue and a
confidence interval for that estimate. The QMC method lacks this feature but it can be
regained by re-defining theith point to be

xi =

{
i

N
z + ∆

}
.

For a given offset vector∆ ∈ [0, 1)d, this defines a set ofN points, for which one can
compute the average

Ŷ =
1

N

N−1∑

i=0

f(xi).

If we now treat∆ as a random variable then the expected value ofŶ is equal to the
desired integral, and thereforêY is an unbiased estimator. By choosing a number of
different random offsets∆1, . . . ,∆q (q = 32 is used in this paper) and computing a
separatêYj for each, one can construct a confidence interval in the usual way.

For a scalar SDE withnT timesteps, the dimensionality of the problem isd = nT ,
and the factorisation of the covariance matrix concerns the question of how best to map
the different dimensions of the hypercube to thenT Wiener increments in the Milstein
discretisation. The expected value of a financial product whose value isdetermined by
an asset whose dynamics are described by (1.1), discretised at timestn =nh, is given
by the integral

∫

Rd

p(x)
exp

(
− 1

2 x
T Σ−1

x
)

(2π)d/2
√

det Σ
dx.

Herep(x) is the payoff function and thed-dimensional matrixΣi,j =min(ti, tj) is the
covariance matrix for the elements ofx which are the underlying Wiener path values
Wn. Taking a matrixA such thatAAT = Σ, and making the substitutionsx=Ay and
y = Φ−1(z) whereΦ−1 is the inverse of the cumulative Normal distribution function
taken componentwise, this can be reformulated as an integral over the unit cube

∫

Rd

p(Ay)
exp

(
− 1

2y
T
y
)

(2π)d/2
dy =

∫

[0,1]d
p(AΦ−1(z)) dz.

For Monte Carlo integration the choice of the matrixA makes no difference, but
for QMC integration it is very important [3, 8, 14]. While any choice ofA such that
AAT = Σ is suitable, there are three established ways in which the matrixA may be
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chosen. Firstly,A may be chosen to be the Cholesky factor ofΣ. This is the simplest
method and corresponds to taking thenth component ofxi to define∆Wn through

∆Wn =
√

h Φ−1(xi,n).

This would correctly map a uniform[0, 1] distribution forxn into a Normal distribution
for ∆Wn with zero mean and varianceh. This method is often referred to as the stan-
dard construction and is usually used for Monte Carlo integration due to the simplicity
of its construction.

A second way in whichA may be chosen is to use a Brownian Bridge construction
[3, 8]. Under this method, the first component ofx is used to defineW (T ), the second
component definesW (T/2) (conditional on the first), the third and fourth components
defineW (T/4) andW (3T/4) (conditional on the first two), and so on. Note that in the
standard and Brownian Bridge constructions, the matrixA is not explicitly used, but
rather implicitly used in the recursive construction.

The final way is known as the “Principal Components Analysis” (PCA) method. In
this methodA is chosen to be the matrix withnth column equal to

√
λnvn whereλn is

thenth largest eigenvalue ofΣ andvn is the corresponding eigenvector [8].

Several authors [3, 14, 8] have found the Brownian Bridge and PCA constructions
to be much better for some problems, although it is known that there are problems from
mathematical finance for which the standard construction performs much better than
the Brownian Bridge, see [18]. In our numerical experiments we use the Brownian
Bridge construction, since for our applications it consistently outperforms the standard
construction.

The final implementation issue is the choice of the generating vectorz. We use
a vector using the construction algorithm of Dicket al [4]. This particular type of
lattice rule is said to beextensiblesince it can be used as a sequence with differing
values ofN . The construction algorithm is particularly efficient due to the fast FFT
implementation technique of Nuyens and Cools [17].

5 Multilevel QMC algorithm

At level l in the multilevel formulation,Nl is defined to be the number of QMC points,
and Ŷl is the computed average of̂Pl (for l = 0) or P̂l− P̂l−1 (for l > 0) over the 32
sets ofNl QMC lattice points, each set having a different random offset. An unbiased
estimate of its varianceVl is computed in the usual way from the differing values for
the 32 averages.

On the assumption that there is first order weak convergence, the remaining bias at
the finest levelE[P−P̂L] is approximately equal tôYL. Being more cautious (to allow
for the possibility that̂Yl changes sign asl increases before settling into its first order
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asymptotic convergence) we estimate the magnitude of the bias using

max
{

1
2

∣∣∣ŶL−1

∣∣∣ ,
∣∣∣ŶL

∣∣∣
}

.

The mean square error is the sum of the combined variance
∑L

l=0 Vl plus the square
of the biasE[P−P̂L]. We choose to make each of these smaller thanǫ2/2, so that overall
we achieve a user-specified RMS accuracy ofǫ. The variance is reduced by increasing
the number of lattice points on each level, while the bias is reduced by increasing the
level of path refinement (i.e. increasingL).

Given this outline strategy, the multilevel QMC algorithm proceeds as follows:

1. start withL=0

2. get an initial estimate forVL using 32 random offsets andNL = 1

3. while
L∑

l=0

Vl > ǫ2/2, doubleNl on the level with largestVl / (2lNl)

4. if L<2 or the bias estimate is greater thanǫ/
√

2, setL := L+1 and go to step 2

Step 3 is based on the fact that doublingNl will eliminate most of the varianceVl

at a cost proportional to the product of the number of timesteps2l and the number of
lattice pointsNl. The choice of levell aims to maximise the reduction in variance per
unit cost.

6 Numerical results

6.1 European call option

The European call option we consider has the discounted payoff

P = exp(−rT ) (S(T ) − K)+,

where the notation(x)+ denotesmax(0, x). Figure 6.1 shows the numerical results for
parametersS(0)=1, K =1, T =1, r=0.05, σ=0.2.

The solid lines in the top left plot show the behaviour of the varianceP̂l, while the
dashed lines show the variance ofP̂l−P̂l−1. The four sets of calculations use different
numbers of lattice points. The calculations with just one lattice point correspond to
standard Monte Carlo. The calculations with 16, 256 and 4094 lattice points show the
variance of the average over the set of lattice points multiplied by the numberof lattice
points; for standard Monte Carlo this quantity would be independent of the number of
points, and therefore this is a fair basis of comparison which accounts for the cost of
4096 points being 4096 times greater than a single point. The solid line results show
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Figure 6.1European call option

that the QMC method on its own is very effective in reducing the variance compared
to the standard Monte Carlo method. The dashed line results show that in conjunc-
tion with the multilevel approach the QMC is effective at reducing the variance on the
coarsest levels, but the benefits diminish on the finer levels. This is probably because
the multilevel approach itself extracts much of the low-dimensional contentin the inte-
grand, so that on the finer levels the correction is predominantly high-dimensional and
so the QMC approach is less effective. However, most of the computational cost of
the multilevel method is on the coarsest levels, and so we will see that the combination
does reduce the overall cost significantly.

The top right plot shows thatE[P̂l−P̂l−1] is approximatelyO(hl), corresponding to
the expected first order weak convergence. Each line in the bottom left plot shows the
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values forNl, l = 0, . . . , L, with the values decreasing with levell as expected. It can
also be seen that the value forL, the maximum level of timestep refinement, increases
as the value forǫ decreases, requiring a lower bias error.

The bottom right plot shows the variation withǫ of ǫ2 C where the computational
complexityC is defined as

C = 32
∑

l

2lNl,

which is the total number of fine grid timesteps on all levels. One line shows the
results for the multilevel QMC method and the other shows the corresponding cost of a
standard QMC simulation of the same accuracy, i.e. the same bias error corresponding
to the same value forL, and the same variance. It can be seen thatǫ2C is roughly
constant for the standard QMC method, and this is at a level which is comparable to
that achieved previously using the multilevel method on its own. However, combining
the multilevel method with QMC gives additional savings of factor 20-100, with the
computational cost being approximately proportional toǫ−1. This is the best one could
hope for using QMC since in the best cases its error is inversely proportional to the
number of points, and hence, at best, inversely proportional to the computational cost.

6.2 Asian option

The Asian option we consider has the discounted payoff

P = exp(−rT ) max
(
0, S−K

)
,

where

S = T−1

∫ T

0

S(t) dt.

On the fine path, integrating (3.2) and using standard Brownian Bridge results (see
section 3.1 in [8]) gives

Ŝ = T−1
nT −1∑

0

(
1
2 h (Ŝn+Ŝn+1) + bn∆In

)
,

where

∆In =

∫ tn+1

tn

(W (t) − W (tn)) dt − 1
2 h∆W

is aN(0, h3/12) Normal random variable, independent of∆W . The coarse path ap-
proximation is similar except that the values for∆In are derived from the fine path
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Figure 6.2Asian option

values, noting that

∫ tn+2h

tn

(W (t) − W (tn)) dt − h(W (tn+2h) − W (tn))

=

∫ tn+h

tn

(W (t) − W (tn)) dt − 1
2 h (W (tn+h) − W (tn))

+

∫ tn+2h

tn+h

(W (t) − W (tn+h)) dt − 1
2 h (W (tn+2h) − W (tn+h))

+ 1
2 h (W (tn+h) − W (tn)) − 1

2 h (W (tn+2h) − W (tn+h)) ,
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and hence
∆Ic = ∆If1 + ∆If2 + 1

2 h(∆W f1 − ∆W f2),

where∆Ic is the value for the coarse timestep, and∆If1 and∆W f1 are the values for
the first fine timestep, and∆If2 and∆W f2 are the values for the second fine timestep.

Figure 6.2 shows the numerical results for parametersS(0) = 1, K = 1, T = 1,
r = 0.05, σ = 0.2. The top left plot shows the behaviour of the variance of bothP̂l

and P̂l − P̂l−1. The standard QMC method is effective at reducing the variance on
all levels, but with the multilevel estimator its effectiveness diminishes at the finer
levels. The bottom two plots again have results from five multilevel calculationsfor
different values ofǫ. It can be seen thatǫ2C is very roughly constant for the standard
QMC method (again at a level comparable to that achieved previously by the multilevel
method on its own [5]), whileǫ2C decreases significantly with decreasingǫ for the
combined multilevel QMC method.

6.3 Lookback option

The lookback option we consider has the discounted payoff

P = exp(−rT )

(
S(T ) − min

0<t<T
S(t)

)
.

For the fine path calculation on the time interval[tn, tn+1], a standard Brownian inter-
polation result (see section 6.4 in [8]) gives the minimum value as

Ŝf
n,min = 1

2

(
Ŝf

n + Ŝf
n+1 −

√(
Ŝf

n+1−Ŝf
n

)2

− 2 b2
n h log Un

)
, (6.1)

whereUn is a uniform random variable on[0, 1]. Taking the minimum over all timesteps
gives an approximation tomin0<t<T S(t) from whichP̂l is calculated.

For the coarse path calculation,P̂l−1 is defined similarly, except that for each timestep
the mid-point value is first constructed using (3.3), and then the minimum over the
timestep is given by

Ŝc
m,min = min

{
1
2

(
Ŝc

m + Ŝc
m+ 1

2

−
√(

Ŝc
m+ 1

2

−Ŝc
n

)2

− b2
m h log U2m−1

)
,

1
2

(
Ŝc

m+ 1
2

+ Ŝc
m+1 −

√(
Ŝc

m+1−Ŝc
m+ 1

2

)2

− b2
m h log U2m

)}
.

(6.2)

Note the re-use of the uniform random variablesU2m−1 andU2m from the two fine
timesteps corresponding to this coarse timestep; it is this which ensures thatthe min-
imum from the coarse path is very close to the minimum from the fine path, resulting
in a low variance for̂Pl−P̂l−1.
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Figure 6.3Lookback option

Figure 6.3 shows the results for parametersS(0) = 1, T = 1, r = 0.05, σ = 0.2. The
results are qualitatively similar to the previous two cases. There is almost noimprove-
ment from using QMC on the finer levels, but nevertheless there is a big reduction in
the overall cost compared to the multilevel method without QMC [5].

6.4 Barrier option

The barrier option which is considered is a down-and-out call for whichthe discounted
payoff is

P = exp(−rT ) (S(T ) − K)+ 1τ>T ,
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Figure 6.4Barrier option

where1τ>T is an indicator function taking value 1 if the argument is true, and zero
otherwise, and the barrier crossing timeτ is τ = inft>0 {S(t) < B}.

For the fine path simulation, following a standard approach for continuously moni-
tored barrier crossings (see section 6.4 in [8]), the conditional expectation of the payoff
can be expressed as

exp(−rT ) (Ŝf
nT

− K)+
nT −1∏

n=0

p̂n,

wherep̂n, the probability the interpolated path did not cross the barrier during thenth
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timestep, is equal to

p̂n = 1 − exp

(
−2 (Ŝf

n−B)+(Ŝf
n+1−B)+

b2
n h

)
. (6.3)

For the coarse path calculation, we again use equation (3.3) to constructa midpoint
value Ŝc

m+1/2 for each timestep. Given this value, the probability that the Brownian
interpolation path does not cross the barrier during themth coarse timestep is

p̂c
m =

{
1 − exp

(
−2 (Ŝc

m−B)+(Ŝc
m+1/2−B)+

b2
m h

)}

×
{

1 − exp

(
−2 (Ŝc

m+1/2−B)+(Ŝc
m+1−B)+

b2
m h

)}
. (6.4)

Figure 6.4 has the results for parametersS(0)=1, K =1, B =0.85, T =1, r=0.05,
σ = 0.2. The main features are similar, but the varianceVl decreases with level at a
slightly lower rate in this case [5] and consequentlyǫ2C for the combined multilevel
QMC method does not decrease quite as much asǫ is reduced compared to the previous
examples.

6.5 Digital option

The digital option which is considered has the discounted payoff

P = exp(−rT ) 1{S(T ) > K}.

To achieve a good multilevel variance convergence rate, we follow the same procedure
used previously [5], smoothing the payoff using the technique of conditional expecta-
tion (see section 7.2.3 in [8]) in which we terminate the path calculations one timestep
before reaching the terminal timeT . If Ŝf

nT −1 denotes the fine path value at this time,
then if we approximate the motion thereafter as a simple Brownian motion with con-
stant driftanT −1 and volatilitybnT −1, the probability that̂Sf

nT
> K after one further

timestep is

p̂f = Φ

(
Ŝf

nT −1+anT −1h − K

bnT −1

√
h

)
, (6.5)

whereΦ is the cumulative Normal distribution. For the fine-path payoffP̂ f
l we there-

fore useP̂ f
l =exp(−rT ) p̂f .

For the coarse-path payoff, we note that given the Brownian increment ∆W for the
first half of the last timestep, which is already known because it corresponds to the
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Figure 6.5Digital option

last of the computed timesteps in the fine path calculation, then the probability that
Ŝc

nT /2 > K is

p̂c = Φ

(
Ŝc

nT /2−1+anT −1h+bnT −1∆W − K

bnT −1

√
h/2

)
, (6.6)

whereanT /2−1 andbnT /2−1 are the drift and volatility based on̂Sc
nT /2−1.

Figure 6.5 has the results for parametersS(0) = 1, K = 1, T = 1, r = 0.05, σ = 0.2.
One strikingly different feature is that the variance of the level 0 estimator, V0, is zero.
This is because at levell=0 there would usually be only one timestep, and so here it is
not simulated at all; one simply uses equation (6.5) to evaluate the payoff.This essen-



Multilevel QMC 17

tially eliminates the cost of the level 0 calculation, which is where the QMC method
is usually most effective. Consequently, the cost of the combined multilevel QMC
method remains approximately proportional toǫ−2, and is only slightly lower than the
results obtained previously for the multilevel method without QMC [5]. However, we
still get a factor 5-10 computational savings compared to the standard QMC on its own.

7 Conclusions and future work

In this paper we have demonstrated the benefits of combining rank-1 latticerule quasi-
Monte Carlo integration with multilevel Monte Carlo path simulation. Together, the
computational cost is lower than using either one on its own.

There are two major directions for future research. The first is the extension of the
algorithms to multi-dimensional SDEs, for which the Milstein discretisation usually
requires the simulation of Ĺevy areas [8, 11]. Current investigations indicate that this
can be avoided for European options with a Lipschitz payoff through the use of anti-
thetic variables. However, the extension to more difficult payoffs, suchas the Asian,
lookback, barrier and digital options considered in this paper, looks more challenging
and the direct simulation of the Lévy areas may be necessary.

The second direction for future research is the numerical analysis of multilevel meth-
ods. Müller-Gronbach and Ritter [15], Giles, Higham and Mao [7] and Avikainen[1]
have obtained bounds on the convergence of the multilevel method using the Euler dis-
cretisation for different classes of output functional, but additional research is required
for the Milstein discretisation.
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