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Multilevel quasi-Monte Carlo path simulation

Michael B. Giles and Ben J. Waterhouse

Abstract. This paper reviews the multilevel Monte Carlo path simulation method for etitigna
option prices in computational finance, and extends it by combining it witlsigMonte Carlo in-

tegration using a randomised rank-1 lattice rule. Using the Milstein discretisattithe stochastic
differential equation, it is demonstrated that the combination has much kmweputational cost
than either one on its own for evaluating European, Asian, lookbackeband digital options.
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1 Introduction

Giles [5, 6] has recently introduced a multilevel Monte Carlo path simulaticinaoe
for the pricing of financial options. This improves the computational iefficy of
Monte Carlo path simulation by combining results using different numbeirmesteps.
This can be viewed as a generalisation of the two-level method of Kelddipapd is
also similar in approach to Heinrich’s multilevel method for parametric it
[9]. The first paper [6] (which was the second to appear in print dwegablication
backlog) introduced the multilevel Monte Carlo method and proved thahilaaer
the computational complexity of path-dependent Monte Carlo evaluatioaiso pre-
sented numerical results using the simplest Euler-Maruyama discratisatie second
paper [5] demonstrated that the computational cost can be furtheraedby using the
Milstein discretisation. This has the same weak order of convergeneaboiproved
first order strong convergence, and it is the strong order of cgamnee which is central
to the efficiency of the multilevel method.

In this paper we review the key ideas and introduce a new ingredient, ¢hefus
guasi-Monte Carlo (QMC) integration based on a randomised rank-1 laitecevhich
further reduces the computational cost. To set the scene, we coasiciear SDE with
general drift and volatility terms,

dS(t) = a(S,t)dt + b(S,t) AW (t), 0<t<T, (1.1)
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with given initial dataS,. In the case of European and digital options, we are interested
in the expected value of a function of the terminal states (7)), but in the case of
Asian, lookback and barrier options the valuation depends on the entiireS @&, 0 <
t<T.

Using a simple Monte Carlo method with a numerical discretisation with first or-
der weak convergence, to achieve ar. m. s. errerwbuld requireO(e~2) indepen-
dent paths, each wittb(¢~!) timesteps, giving a computational complexity which is
O(e=3). With the Euler-Maruyama discretisation the multilevel method reduces the
cost toO(e~2(log €)?) for a European option with a payoff with a uniform Lipschitz
bound [6], while the use of the Milstein discretisation further reduces tsieaO (e ~2)
for a larger class of options, including Asian, lookback, barrier andadigptions [5].

The paper begins by reviewing the multilevel approach, first with the Eagr dis-
cretisation and then with the superior Milstein discretisation. QMC methodsl lnese
rank-1 lattice rules are then introduced, with particular attention to Browniaig®
construction and the use of randomisation to obtain confidence interves.ombined
multilevel QMC algorithm is presented and the following section provides nigale
results for a range of options.

2 Multilevel Monte Carlo method

Consider Monte Carlo path simulations with different timesteps= 2='T, | =
0,1,..., L. Thus on the coarsest levék: 0, the simulations use just 1 timestep, while
on the finest levell,= L, the simulations usg” timesteps. For a given Brownian path
W (t), let P denote the payoff, and lgt, denote its approximation using a numerical
discretisation with timestep,. Because of the linearity of the expectation operator, it
is clearly true that

L
E[P.] = E[Po] + Y E[P—P1]. (2.1)
=1

This expresses the expectation on the finest level as being equal topinetagion on
the coarsest level plus a sum of corrections which give the differenegpectation
between simulations using different numbers of timesteps. The ideadodt@mul-
tilevel method is to independently estimate each of the expectations on théaigdht-
side in a way which minimises the overall variance for a given computdtomrsa

Let Y, be an estimator fdE[ 7] usingN, samples, and &f; for >0 be an estimator

for E[ﬁl —131,1] using N, paths. The simplest estimator is a meampfindependent
samples, which fot> 0 is

N; ) o
Ni=N Y (RP-BY,). (22)
1=1

The key point here is that the quant@i)—ﬁ(f)l comes from two discrete approxima-
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tions with different timesteps but the same Brownian path. The varianbésaimple
estimator isV[?l] = N;lvl whereV; is the variance of a single sample. Combining
this with independent estimators for each of the other levels, the varidrnice com-
bined estimatob"} , Y; is Y./, N, 'V;, while its computational cost is proportional
to >/, N; bt Treating theN; as continuous variables, the variance is minimised for
a fixed computational cost by choosing to be proportional ta/V; h;.

In the particular case of an Euler discretisation, providési t) andb(S, t) satisfy
certain conditions [2, 11, 21] thered®h'/?) strong convergence. From this it follows
thatV[f’l — P] = O(hy) for a European option with a Lipschitz continuous payoff.
Hence for the simple estimator (2.2), the single sample vari&eeO(h,;), and the
optimal choice forlV; is asymptotically proportional th;. SettingN; = O(e=2L h;),
the variance of the combined estimaidris O(e2). If L is chosen such that =
loge~!/log 2+ O(1), ase— 0, thenhy, = 2=~ = O(e), and so the bias err@{P, — P]
is O(e) due to standard results on weak convergence. Consequently, we ®lnt@izn
square error which i®)(e?), with a computational complexity which 8(e=2L?) =
O(e2(loge€)?).

This analysis is generalised in the following theorem [6]:

Theorem 2.1 Let P denote a functional of the solution of stochastic differential equa-
tion (1.1) for a given Brownian path/(¢), and let P, denote the corresponding ap-
proximation using a numerical discretisation with timestep= M ' T.

If there exist independent estimatd?gs based onN;, Monte Carlo samples, and
positive constants > %, 3, c1,co, c3 Such that
) |ELP—Pl| < c1hp
R E[P], 1=0
iy ElY,] = L
E[-Pl - -Plfl]v >0
iii) V[V <o N7 MR
iv) C;, the computational complexity &f, is bounded by

Cy <c3 Ny bt

then there exists a positive constapsuch that for any < e¢~! there are valueg. and
N, for which the multilevel estimator

L
v=> 7,
1=0

has a mean-square-error with bound

)

MSE=E [(? - E[P])g] <
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with a computational complexity with bound

Cy4 672, ﬂ > ].,
C << cye?(loge)?, pB=1,

cae270=R/e g« <1,

Proof. See [6]. a

3 Milstein discretisation

The theorem proves that the best order of complexity is achieved ussiogptisations
with 8 > 1. To achieve this for a scalar SDE, we use the Milstein discretisation of
equation (1.1) which is

~ ~ , Oby, 5
In the above equation, the subscripis used to denote the timestep index, andb,
andob,,/0S are evaluated &, t,,.

All of the numerical results to be presented are for the case of georBetrienian
motion for which the SDE is

dS(t) =rSdt+oSdW(t), 0<t<T.

By switching to the new variabl& =log S, it is possible to construct numerical ap-
proximations which are exact, but here we directly simulate the geometierian
motion using the Milstein method as an indication of the behaviour with more lcomp
cated models, for example those with a local volatility functg@s, ¢).

The Milstein discretisation defines the numerical approximation at the thdorees
t,. Within the time intervalt,,, 1] we use a constant coefficient Brownian interpo-
lation conditional on the two end values,

§(t) = §n + A (§n+1 _§n) + bn (W(t> - W, — A (Wn-i-l_Wn)) ) (32)
where Ly
A= ™
tn—‘—l - tn

For the fine path, standard results on i) the expected average value,disthieution
of the minimum, and iii) the probability of crossing a certain value, will be used
obtain the valueP, for Asian, lookback and barrier options, respectively.
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Exactly the same approach could also be used on the coarse path with helhs
timesteps to obtainﬁ,l. However, this would not give an estimatﬁrwith variance
convergence ratgé > 1. To achieve the better convergence rate, we first use the value
of the underlying Brownian motiomV'(¢) at the midpoint (which has already been
sampled and used for the fine path calculation) to define an interpolatedintidp

~

Sn-&-f = %(S\n-i-l +§n) + by, (Wn+% - %(Wn-kl +Wn)) . (33)

2

-

We can then use the Brownian interpolation (with volatility) on each of the half-
intervalst,, ¢, , 1] and[t, 1, t,+1] Which each correspond to one of the timesteps on
the fine path. A key point in this construction is that we have not altered {heceed
value for P,_;, averaged over all underlying Brownian patigt), compared to its
evaluation on level —1 on which it corresponds to the finer path; see [5] for further
discussion of this important point.

4  Quasi-Monte Carlo method

QMC methods approximate an integral on a high-dimensional hypergitbean V-
point equal-weight quadrature rule of the form

1N—l
de ~ — i)-
/H fle)de= 5 3 Sl

This is the same form which is used in the Monte Carlo method. Howevegrrath
than choosing thé-dimensional pointg:; uniformly from the unit cube, as is the case
with the Monte Carlo method, QMC methods choose the points in some detéieninis
manner.

Sobol sequences [20] and digital nets [16] are two popular choices of QM@0
which have been previously used for financial applications [8, 14hitnpaper we use
arank-1 lattice rule [19] in which the points have the particularly simple cocisbn

wherez is ad-dimensional vector with integer components and the notgtignde-
notes taking the fractional part of each component of the argumetliaregarding
the integer part so that; lies within the half-open unit cube.

For Monte Carlo integration it is well known that the error@$N~—'/2). In one
dimension, the lattice rule is equivalent to a rectangle rule and can aahigve!)
convergence of the error, for a sufficiently smooth integrand. Fgefadimensions,
it may be shown that for integrands with sufficient smoothness and diorewhich
become progressively less important, there exist lattice rules for wreatrtbr decays
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atO(N—1+¢) for all e > 0, see [12]. Unfortunately, many integrands in mathematical
finance applications do not have the required smoothness and so weiegply the
theory to claim theD(N ~1*¢) convergence. However, experimentation suggests that
this rate can in fact be achieved for many finance problems [13].

Two key aspects of the implementation of QMC methods are randomisatithen
factorisation of the covariance matrix. If we neglect for the moment iberetisation
errors which arise from finite timesteps, the standard Monte Carlo methsdhle
attractive feature that it provides both an unbiased estimate of the dealtedand a
confidence interval for that estimate. The QMC method lacks this featuiiedan be
regained by re-defining th&" point to be

ac,-:{]i[z + A}.

For a given offset vectaA € [0, 1)¢, this defines a set df points, for which one can
compute the average

N 1 N-—1
Y = N ; flas).

If we now treatA as a random variable then the expected valu¥ g equal to the
desired integral, and therefotéis an unbiased estimator. By choosing a number of
different random offseta\,..., A, (¢ = 32 is used in this paper) and computing a
separatéAfj for each, one can construct a confidence interval in the usual way.

For a scalar SDE with timesteps, the dimensionality of the problentlis- n,
and the factorisation of the covariance matrix concerns the questionvdiést to map
the different dimensions of the hypercube to theWiener increments in the Milstein
discretisation. The expected value of a financial product whose vatletgsmined by
an asset whose dynamics are described by (1.1), discretised at timeg, is given
by the integral

/ exp (—% wTZflm)
R (2m)4/2 \/det &3

Herep(x) is the payoff function and thé-dimensional matrix:; ; =min(¢;, t;) is the
covariance matrix for the elements @fwhich are the underlying Wiener path values
W,,. Taking a matrix4 such thatd A” = %, and making the substitutions= A y and
y=®!(2) where®! is the inverse of the cumulative Normal distribution function
taken componentwise, this can be reformulated as an integral overitizeibe

exp(—3y"y) 1
/de(Ay) T endr dy = /[071“17(14‘1) () d=.

For Monte Carlo integration the choice of the matdxmakes no difference, but
for QMC integration it is very important [3, 8, 14]. While any choice Afuch that
A AT = ¥ is suitable, there are three established ways in which the matmday be
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chosen. FirstlyA may be chosen to be the Cholesky factobbfThis is the simplest
method and corresponds to taking #& component oft; to defineA1V,, through

AW, = Vh & ().

This would correctly map a unifori, 1] distribution forz,, into a Normal distribution
for AW,, with zero mean and varianée This method is often referred to as the stan-
dard construction and is usually used for Monte Carlo integration due tantipdicity

of its construction.

A second way in whicld may be chosen is to use a Brownian Bridge construction
[3, 8]. Under this method, the first componentois used to defin&/ (T'), the second
component defined’(7'/2) (conditional on the first), the third and fourth components
defineW (7'/4) andW (37'/4) (conditional on the first two), and so on. Note that in the
standard and Brownian Bridge constructions, the matris not explicitly used, but
rather implicitly used in the recursive construction.

The final way is known as the “Principal Components Analysis” (PCAhoe. In
this methodA is chosen to be the matrix witif”* column equal ta/\,, v,, where),, is
then'” largest eigenvalue of andw,, is the corresponding eigenvector [8].

Several authors [3, 14, 8] have found the Brownian Bridge and P@&teuctions
to be much better for some problems, although it is known that there @lokeprs from
mathematical finance for which the standard construction performé imetter than
the Brownian Bridge, see [18]. In our numerical experiments we usdtbwnian
Bridge construction, since for our applications it consistently outpeahma standard
construction.

The final implementation issue is the choice of the generating vectde use
a vector using the construction algorithm of Diek al [4]. This particular type of
lattice rule is said to bextensiblesince it can be used as a sequence with differing
values of N. The construction algorithm is particularly efficient due to the fast FFT
implementation technique of Nuyens and Cools [17].

5 Multilevel QMC algorithm

At level [ in the multilevel formulation}V; is defined to be the number of QMC points,
andY; is the computed average &f (for i = 0) or P,— P,_, (for I > 0) over the 32
sets ofV; QMC lattice points, each set having a different random offset. An uabdias
estimate of its varianc®; is computed in the usual way from the differing values for
the 32 averages.

On the assumption that there is first order weak convergence, thénregiaias at
the finest leveE[P— Py ] is approximately equal t&7,. Being more cautious (to allow
for the possibility that; changes sign asincreases before settling into its first order
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asymptotic convergence) we estimate the magnitude of the bias using
[7l}

The mean square error is the sum of the combined var@*fgg V; plus the square
of the biasi[P—P, ]. We choose to make each of these smaller tAan, so that overall
we achieve a user-specified RMS accuracy. athe variance is reduced by increasing
the number of lattice points on each level, while the bias is reduced by iiugeths
level of path refinement (i.e. increasiiig,.

Given this outline strategy, the multilevel QMC algorithm proceeds as follows:

max {% ‘YL_l

1. start withL=0

2. getan initial estimate fdry using 32 random offsets and, = 1
L
3. whilez Vi > €2/2, doubleN; on the level with largest; / (2! N;)
=0
4. if L<2 or the bias estimate is greater tha/2, setL := L+1 and go to step 2

Step 3 is based on the fact that doubliNgwill eliminate most of the variancg
at a cost proportional to the product of the number of times?épsid the number of
lattice pointsN;. The choice of level aims to maximise the reduction in variance per
unit cost.

6 Numerical results

6.1 European call option

The European call option we consider has the discounted payoff
P = exp(—rT) (S(T) - K)*,

where the notatioz)* denotesnax(0, z). Figure 6.1 shows the numerical results for
parameter$(0)=1, K=1,T=1,r=0.05, c=0.2.

The solid lines in the top left plot show the behaviour of the variahcevhile the
dashed lines show the variancefb,# 131_1. The four sets of calculations use different
numbers of lattice points. The calculations with just one lattice point cornespm
standard Monte Carlo. The calculations with 16, 256 and 4094 lattice poinistble
variance of the average over the set of lattice points multiplied by the nuohkstice
points; for standard Monte Carlo this quantity would be independent ofuithibar of
points, and therefore this is a fair basis of comparison which accountsdaost of
4096 points being 4096 times greater than a single point. The solid line relsos s
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Figure 6.1 European call option

that the QMC method on its own is very effective in reducing the varianogeoed
to the standard Monte Carlo method. The dashed line results show thatjimcon
tion with the multilevel approach the QMC is effective at reducing the vaeamcthe
coarsest levels, but the benefits diminish on the finer levels. This is lpsobacause
the multilevel approach itself extracts much of the low-dimensional coimehe inte-
grand, so that on the finer levels the correction is predominantly highrdiioeal and
so the QMC approach is less effective. However, most of the compuoghtiost of
the multilevel method is on the coarsest levels, and so we will see that th@ration
does reduce the overall cost significantly.

The top right plot shows thai[ﬁl —]31_1] is approximatelyO(h;), corresponding to
the expected first order weak convergence. Each line in the bottomde&tpws the
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values forN;,l = 0,..., L, with the values decreasing with levehs expected. It can
also be seen that the value fbythe maximum level of timestep refinement, increases
as the value for decreases, requiring a lower bias error.

The bottom right plot shows the variation withof €2 C' where the computational
complexityC'is defined as

C=32) 2'N,
l

which is the total number of fine grid timesteps on all levels. One line shows the
results for the multilevel QMC method and the other shows the corresppaodst of a
standard QMC simulation of the same accuracy, i.e. the same bias emesmonding

to the same value fof, and the same variance. It can be seen ¢h@tis roughly
constant for the standard QMC method, and this is at a level which is cabipao

that achieved previously using the multilevel method on its own. Howewarbiing

the multilevel method with QMC gives additional savings of factor 20-10€¢h the
computational cost being approximately proportionalté. This is the best one could
hope for using QMC since in the best cases its error is inversely propattio the
number of points, and hence, at best, inversely proportional to thpuwational cost.

6.2 Asian option

The Asian option we consider has the discounted payoff
P = exp(—rT) max (O,E—K) ,

where
- T
S = T—l/ S(t) dt.
0

On the fine path, integrating (3.2) and using standard Brownian Bridgétse(see
section 3.1 in [8]) gives

npr—1

S=1"1Y (3h(Bu+5u1) + baAL,)
0

where

AT, = /tn“(W(t) ~W(t) dt — LhAW

n

is a N (0, h3/12) Normal random variable, independent&fV. The coarse path ap-
proximation is similar except that the values far,, are derived from the fine path
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Figure 6.2 Asian option

/ T - W)t~ W (o) W)

/mh(W(t) —W(t,) dt — L0 (W (ta+h) — W(t,))

(W(t) = W(tn+h)) dt — 3 h (W (t,+2h) — W(t,+h))

h (W(tn+2h) - W(tn+h)) )
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and hence
AI° = ATV + AT + L h(AWTT — AW T2,

whereA ¢ is the value for the coarse timestep, akfi’' andAW /! are the values for
the first fine timestep, antl7/2 and AW /2 are the values for the second fine timestep.

Figure 6.2 shows the numerical results for parametéfs =1, K =1, T =1,
r = 0.05, ¢ = 0.2. The top left plot shows the behaviour of the variance of bgth
and13l —131,1. The standard QMC method is effective at reducing the variance on
all levels, but with the multilevel estimator its effectiveness diminishes at tie fi
levels. The bottom two plots again have results from five multilevel calculafmms
different values ot. It can be seen thatC is very roughly constant for the standard
QMC method (again at a level comparable to that achieved previouslehyittilevel
method on its own [5]), while?C decreases significantly with decreasinfpr the
combined multilevel QMC method.

6.3 Lookback option

The lookback option we consider has the discounted payoff

P = exp(—rT) (S(T) — min S(t)).

0<t<T

For the fine path calculation on the time inter|, ¢,,1], a standard Brownian inter-
polation result (see section 6.4 in [8]) gives the minimum value as

~ ~ ~ ~ ~p\ 2
Sv{,min =3 (57{ + S£+1 - \/(SrfLH_S[L) —2b2 hlogU, ) , (6.1)
whereU,, is a uniform random variable df, 1]. Taking the minimum over all timesteps

gives an approximation tming«;«r S(t) from whichﬁl is calculated.

For the coarse path calculatiah,_; is defined similarly, except that for each timestep
the mid-point value is first constructed using (3.3), and then the minimen the
timestep is given by

—~ —~ —~ —~ ~\2
S, min = min {; (an +8 ) - \/(an+é —~85) = 2, hlog Uz ) ,

~ —~ —~ —~ 2
L (s;w 45, — \/(S;LH—S;JF;) — b2, hlog Unyy, ) } .
6.2)

Note the re-use of the uniform random variablés,_, andU,,, from the two fine
timesteps corresponding to this coarse timestep; it is this which ensurdékehain-
imum from the coarse path is very close to the minimum from the fine pathlfires
in a low variance fol?, — P,_;.
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Figure 6.3 Lookback option

Figure 6.3 shows the results for paramet&{@) =1, T=1, r=0.05, c =0.2. The
results are qualitatively similar to the previous two cases. There is almastpnove-
ment from using QMC on the finer levels, but nevertheless there is a digtien in
the overall cost compared to the multilevel method without QMC [5].

6.4 Barrier option

The barrier option which is considered is a down-and-out call for wtiieldiscounted
payoff is
P =exp(—rT) (S(T) — K)" 1o,
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Figure 6.4 Barrier option

wherel,-7 is an indicator function taking value 1 if the argument is true, and zero
otherwise, and the barrier crossing times r = inf;~( {S(t) < B}.

For the fine path simulation, following a standard approach for contilyousni-
tored barrier crossings (see section 6.4 in [8]), the conditional ¢éxfi@c of the payoff
can be expressed as

npy—1

exp(—rT) (85, — K)* ] pn
n=0

wherep,,, the probability the interpolated path did not cross the barrier during’the
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timestep, is equal to

—2(Sf—B)*(S/.,—B)*+
Pn=1—exp ( (5 l))2 2 ntl ) > . (6.3)

n

For the coarse path calculation, we again use equation (3.3) to corestmidpoint
value Sy, ,, for each timestep. Given this value, the probability that the Brownian
interpolation path does not cross the barrier duringtie coarse timestep is

N ~2(85,~B) (85,41, B)*
Dy = 1 —exp 2 h

m

y {1 ~exp (‘2( ﬁ1+1/2_b§)2(551+1_3)+> } ' (6.4)

Figure 6.4 has the results for parametg(8) =1, K =1, B=0.85, T=1, r=0.05,
o = 0.2. The main features are similar, but the variangaeecreases with level at a
slightly lower rate in this case [5] and consequently’ for the combined multilevel
QMC method does not decrease quite as muehsaeduced compared to the previous
examples.

6.5 Digital option

The digital option which is considered has the discounted payoff
P =exp(—rT) 1{S(T) > K}.

To achieve a good multilevel variance convergence rate, we follow the paocedure
used previously [5], smoothing the payoff using the technique of comditiexpecta-
tion (see section 7.2.3 in [8]) in which we terminate the path calculations oestim
before reaching the terminal time If §£T71 denotes the fine path value at this time,
then if we approximate the motion thereafter as a simple Brownian motion with co
stant drifta,,,._1 and volatilityb,,,._1, the probability tha@:T > K after one further

timestep is
S wr1h — K
Z’)‘f — P anlJ'_a r—1 ’ (65)
bnT—l\/E

where® is the cumulative Normal distribution. For the fine-path paﬁﬁfwe there-
fore useP/ =exp(—rT) p*.

For the coarse-path payoff, we note that given the Brownian increthBnfor the
first half of the last timestep, which is already known because it carreispto the
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Figure 6.5 Digital option

last of the computed timesteps in the fine path calculation, then the probability tha
Shpse > Kis

n

- Se a1t ng thtby, 1AW — K
P by —1\/1/2 ’

(6.6)

wherea,,, o1 andb,, »_; are the drift and volatility based off. ,, ;.

Figure 6.5 has the results for paramet&(8) =1, K =1, T=1, »r=0.05, 0 =0.2.
One strikingly different feature is that the variance of the level O estimegors zero.
This is because at levée: 0 there would usually be only one timestep, and so here itis
not simulated at all; one simply uses equation (6.5) to evaluate the payidgfessen-
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tially eliminates the cost of the level O calculation, which is where the QMC method
is usually most effective. Consequently, the cost of the combined melti@wC
method remains approximately proportionaktd, and is only slightly lower than the
results obtained previously for the multilevel method without QMC [5]. Havewe

still get a factor 5-10 computational savings compared to the standaf@i @its own.

7 Conclusions and future work

In this paper we have demonstrated the benefits of combining rank-1 laifécguasi-
Monte Carlo integration with multilevel Monte Carlo path simulation. Together, the
computational cost is lower than using either one on its own.

There are two major directions for future research. The first is thengixte of the
algorithms to multi-dimensional SDEs, for which the Milstein discretisation liysua
requires the simulation ofévy areas [8, 11]. Current investigations indicate that this
can be avoided for European options with a Lipschitz payoff through skeotianti-
thetic variables. However, the extension to more difficult payoffs, siscthe Asian,
lookback, barrier and digital options considered in this paper, looke rlwallenging
and the direct simulation of thegvy areas may be necessary.

The second direction for future research is the numerical analysialtfewel meth-
ods. Miller-Gronbach and Ritter [15], Giles, Higham and Mao [7] and Avikaifign
have obtained bounds on the convergence of the multilevel method usi&wkr dis-
cretisation for different classes of output functional, but additiorsgaech is required
for the Milstein discretisation.
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