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Abstract. This paper introduces a new idea, using adjoint error analysis to ob-
tain approximate values for integral quantities, such as lift and drag, which are
twice the order of accuracy of the flow solution. The theory is presented for both
linear and nonlinear applications and numerical results confirm the effectiveness
of the technique for the one-dimensional Poisson equation and the quasi-1D Euler
equations.

1 Introduction

In engineering applications of CFD, there are usually a few integral quanti-
ties of primary concern, such as lift and drag on an aircraft, total mass flux
through a turbomachine, or total heat flux into a turbine blade. The rest of
the flow solution is often needed only for qualitative purposes, for example
to see if there is a bad flow separation. In this paper we show how the or-
der of accuracy of an important integral quantity can be greatly improved,
usually doubled, compared to the accuracy of the flow solution on which the
estimate is based. This is accomplished through an error analysis using an
approximate solution to the adjoint flow equations. These are the same ad-
joint equations that are solved to efficiently obtain the linear sensitivity of an
objective function in design optimisation [Jameson (95), Jameson (97), An-
derson (97), Elliott (97)], but in the present context, the adjoint variables
reveal the contributions of flow solution approximation errors to the error
in the computed integral. Correcting the leading order error produces a cor-
rected value for the integral which is much more accurate.

This idea is closely related to the a priori and a posteriori analysis of
the superconvergence of integral functionals arising from finite element com-
putations in a variety of applications [Babuska (84), Barrett (87), Becker
(96), Paraschivoiu (97), Giles (97b), Siili (97), Monk (98)]. However, with
these methods the superconvergence arises naturally from Galerkin orthogo-
nality without the addition of a correction term. Previous work by the present
authors on doubling the order of accuracy of quasi-1D lift estimates obtained
from a first order upwind method [Giles (98)] was based on a discrete trunca-
tion error viewpoint [Giles (97¢)]. The new approach uses an analytic view-
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point which leads to a much simpler implementation when using more ac-
curate discretisations. We are not aware of other work on the use of adjoint
solutions to improve the accuracy of integral quantities through the evalua-
tion of a correction term.

The paper begins by presenting the linear theory and numerical results for
the one-dimensional Poisson equation. The nonlinear theory is then presented
and applied to the quasi-1D Euler equations. Results are given for subsonic
flow and transonic flow, with and without shocks. These demonstrate the
effectiveness of the approach, and the paper concludes with a discussion of
the challenges to be overcome in extending the technique to multi-dimensional
applications.

2 Linear theory

Let u be the solution of the linear differential equation
Lu=f,

on the domain (2, subject to homogeneous boundary conditions for which the
problem is well-posed. The adjoint differential operator L* and associated
homogeneous boundary conditions are defined by the identity

(v, Lu) = (L*v,u),

for all u, v satisfying the respective boundary conditions. Here the notation
(.,.) denotes an integral inner product over the domain f2.

If we are concerned with the value of the functional J=(g,u), where g is
a given function defined on (2, an equivalent dual formulation of the problem
is to evaluate the functional J= (v, f), where v satisfies the adjoint equation

L*v =g,

subject to the homogeneous adjoint boundary conditions. The equivalence of
the two forms of the problem follows immediately from the definition of the
adjoint operator.

(v, ) = (v, Lu) = (L*v,u) = (g, u)-

Suppose that up and v, are approximations to u and v, respectively,
and satisfy the homogeneous boundary conditions. The subscript h denotes
that the approximate solutions are derived by interpolating the results of a
numerical computation using a grid with average spacing h. The functions
frn and gy are defined by

Lup = fn, L*vp = gn.

It is assumed that u;, and v, are sufficiently smooth that f, and g, lie in
Lo (02). If up, and vy, were equal to v and v, then f;, and g5 would be equal to
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f and g. Thus, the residual errors f,—f and gp—g are a computable indication
of the extent to which uj, and vy, are not the true solutions.

Now, using the definitions and identities given above, we obtain the fol-
lowing expression for the functional:

(g,u) = (g,u

( ) — (gn,un—u) + (gh—g, up,—u)
= (g,un) — (L*vp,up—u) + (gn— g, un—u)
( ) = (vn, L(up—u)) + (gn— g, un—u)
(g,un) — (

Oy fo—f) + (gn—g, un—u).

=g, Up

The first term in the final expression is the value of the functional obtained
from the approximate solution uj. The second term is an inner product of
the residual error f—f and the approximate adjoint solution vy,. The adjoint
solution gives the weighting of the contribution of the local residual error to
the overall error in the computed functional. Therefore, by evaluating and
subtracting this adjoint error term we obtain a more accurate value for the
functional.

The third term is the remaining error after making the adjoint correction.
If gr,—g is of the same order of magnitude as vy, —v then the remaining error
has a bound which is proportional to the product ||up —ul|||vp—v|| (using
Ly norms), and thus the corrected functional value is superconvergent. If the
solution errors up —u and v, —v are both O(h?) so that halving the grid
spacing leads to a 2P reduction in the errors, then the error in the functional
is O(h??).

For simplicity of presentation, we have assumed above that the primal
problem has homogeneous boundary conditions, and that the functional is
simply an inner product over the whole domain and does not have a bound-
ary integral term. More generally, inhomogeneous boundary conditions and
boundary integrals in the functional are both permissible. Inhomogeneous
boundary conditions for the primal problem lead to a boundary integral term
for the adjoint formulation, and similarly a boundary integral in the primal
form of the functional leads to inhomogeneous adjoint boundary conditions.
Although the analysis is slightly more complicated, the final form of the ad-
joint error correction is exactly the same as before, provided the approximate
solutions up, and vy, still exactly satisfy the inhomogeneous boundary condi-
tions. If they do not, then there is an additional correction term to take
account of this error.

3 Linear example

The example is the one-dimensional Poisson equation,
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Fig. 1. Residual error for 1D Poisson equation.

on the unit interval [0, 1] subject to homogeneous boundary conditions
u(0) = u(1) = 0. This is approximated numerically on a uniform grid, with
spacing h, using a simple second order finite difference discretisation,

h™263u; = f(z;).

The approximate solution up, () is then defined by interpolation with a cubic
spline through the nodal values u;.
The dual problem is also a Poisson equation,
d?v
da?
subject to the same homogeneous boundary conditions, and the approximate

adjoint solution vy, is obtained in exactly the same manner.
Numerical results have been obtained for the case

=9

f=21-2)*, g=sin(r2).

Figure 1 shows the residual error fp — f when h = %, as well as the values
at the two Gaussian quadrature points on each sub-interval which are used
in the numerical integration of the inner product (v, fr— f). Since uy, is a
cubic spline, fp, = d;;;b is continuous and piecewise linear. The best piece-
wise linear approximation to f has an approximation error whose dominant
term is quadratic on each sub-interval; this explains the scalloped shape of
the residual error. Figure 2 shows the approximate adjoint solution vy, illus-
trating that the residual error in the center of the domain contributes most

significantly to the overall error in the functional.
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Fig. 2. Adjoint solution for 1D Poisson equation.
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Fig. 3. Error convergence for 1D Poisson equation.
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Figure 3 is a log-log plot of two quantities versus the number of cells: the
error in the base value of the functional (g, u;) and the error remaining after
subtracting the adjoint error correction term (v, fr,— f). The superimposed
lines have slopes of —2 and —4, confirming that the base solution is second
order accurate while the corrected functional is fourth order accurate. It is
also worth noting that on a grid with 16 cells, which might be a reasonable
choice for practical computations, the error in the corrected value is over 200
times smaller than in the uncorrected value.

4 Nonlinear theory

Let u be the solution of the nonlinear differential equation

N(u) = f,

on the domaon (2 subject to certain boundary conditions, and let the func-
tional of interest, J(u), be an integral over the domain of a nonlinear algebraic
function of u. The linear differential operator L, is defined to be the Fréchet
derivative [Collatz (66)] of N,

and, similarly, the function g(u) is defined by

(g(w), @) = Tim 20 E €D = J(W)

e—0 €

The linear adjoint problem is
Liv=yg,

subject to the appropriate homogeneous adjoint boundary conditions [Giles
(97)]. Now consider approximate solutions up, vs which have again been ob-
tained by interpolating the results of a finite volume calculation. The quan-
tities f, gn are defined by

N(un) = fn, Ly, vn = gn-

Note the use of Lj, , the Fréchet derivative based on wuj which is known,
instead of L} based on u which is not known. In addition, the analysis requires

averaged Fréchet derivatives L, ,,) and g(u, up) defined by

1
L(U,Uh) = /0 L|u+9(uh7u) da’

g(u, up) =/0 g(u + 0(up—u))do,
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so that

1
N(up)—N(u) = %N(u + O(up—u)) db
Jo
= L(U’“h) (up —u),
and similarly
J(un) = J(w) = (g(u, un), up—u).

Using the above definitions, we obtain the following result:

J(u) = J(un) = (G(u,un), un—u)
= J(up) — (gn,un—u) + (gn—g(u, up), up—u)
= J(un) — (L3, vn, up—u) + (gn —g(u, up), up —u)
= J(un) = (vn, Lu, (un—w)) + (gn —g(u, un), un —u)
= J(up) — (vh,f(u7uh)(uh—u)) + (gn—g(u,up), up—u)

— (U (L, — L)) (un —u))
= J(up) = (vn, N(up)—N(u)) + (gn —g(u, un), un —u)

— (v, (Luy, = Ly ) (un —u))
= J(un) = (vn, fo—Ff) + (9 —9(u, un), un—u)

— (Uns (Luy, — Ly ) (un — 1))

The first term in the final result is the functional evaluated using the
approximate solution uy. The second term is the adjoint error correction term
which is again an inner product of the residual error and the approximate
adjoint solution. Since both of these are known, this second term can be
computed and subtracted from the first to form a corrected value for the
functional.

The last two terms, which cannot be computed since the analytic solu-
tion w is not known, form the remaining error in the corrected functional.
If the solution error for the nonlinear primal problem and the linear adjoint
problem are of the same order, and they are both sufficiently smooth that
the corresponding residual errors are also of the same order, then the order
of accuracy of the functional approximation after making the adjoint correc-
tion is twice the order of accuracy of the the primal and adjoint solutions on
which it is based.

5 Quasi-1D Euler equations

The steady quasi-1D Euler equations in conservative form are

d dA
LA -“p-
da:( ) dz 0,
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where A(z) is the cross-sectional area of the duct and U, F' and P are defined

p Pq 0
U=\|pq |, F=|pi+p]|, P={|p
pE paH 0

Here p is the density, ¢ is the velocity, p is the pressure, E is the total internal
energy and H is the stagnation enthalpy. The system is closed by the equation
of state for an ideal gas,

H=F+L =20+ 3¢,

where + is the ratio of specific heats.

Numerical results have been obtained using a standard second order finite
volume method with characteristic smoothing on a uniform computational
grid. Except when there is a shock, the approximate solution uy(z) is con-
structed from the discrete nodal values u; by cubic spline interpolation of the
three components of U. All other variables are then calculated from these.
Evaluation of the residual error f — f requires first derivatives of flow quan-
tities; these are obtained by differentiating the cubic spline representation.

The linear adjoint problem is approximated by the ‘continuous’ method,
which involves linearising the nonlinear flow equations, constructing the ana-
lytic adjoint equations, and then forming a discrete approximation to these on
the same uniform grid as the flow solution [Jameson (95), Jameson (97), An-
derson (97)]. An alternative approach which could have been used is the
‘discrete’ method in which one takes the discretised nonlinear flow equa-
tions, linearises them and then uses the transpose of the linear matrix as
the discrete adjoint operator [Elliott (97)]. Previous research has shown that
both approaches produce consistent approximations to the analytic adjoint
solution which has been determined in closed form for the quasi-1D Euler
equations [Giles (98)].

Results have been obtained for three test cases: a subsonic flow, a shock-
free transonic flow with subsonic inflow and supersonic outflow, and a shocked
flow with supersonic inflow and subsonic outflow. The Mach number distribu-
tions for these three cases are shown in Figure 4. In each case the functional
of interest is the integral of pressure along the duct; this serves as a prototype
for the lift in airfoil and aircraft calculations.

5.1 Subsonic flow

Figure 5 shows the error convergence for a subsonic flow in a converging-
diverging duct. The base error, which is the error before applying the adjoint
correction, is second order, as indicated by the superimposed line of slope —2.
This is as expected given the second order truncation error in approximating
the nonlinear flow equations. The other superimposed line of slope —4 shows
that the error remaining after the adjoint correction is fourth order.
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Fig. 5. Error convergence for quasi-1D subsonic flow.
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5.2 Isentropic transonic flow

Figure 6 shows the error convergence for a transonic flow in a converging-
diverging duct with the throat located at & = 0. The flow is subsonic upstream
of the throat and supersonic downstream of the throat. Again the results show
that the base error is second order while the remaining error after the adjoint
correction is fourth order.

The accuracy of the corrected functional in this case is a little puzzling
because the adjoint solution has a logarithmic singularity at the throat [Giles
(98)], as shown in Figure 7. Therefore, vy, —v is O(1) in a small region of size
O(h) on either side of the throat. Based on this, one would expect that the
remaining error might be O(h?) since the numerical results confirm that the
residual error for the nonlinear equations is O(h?). The explanation for the
fourth order convergence must lie in a leading order cancellation within the
two remaining error integrals, but we do not yet have a complete understand-
ing of this phenomenon.

5.3 Shocked transonic flow

The final example is for flow in a diverging duct, where a shock separates
supersonic upstream and subsonic downstream regions. Previous research has
proved that the analytic adjoint solution is continuous and has zero gradient
at the shock, so the adjoint variables pose no special difficulty in this case
[Giles (98)]. The challenge is the reconstruction of the approximate solution
up () from the nodal quantities u; coming from the finite volume calculation.

The analytic solution is discontinuous at the shock, and satisfies the
Rankine-Hugoniot shock jump relations which require that there is no discon-
tinuity in the nonlinear flux F. The discrete solution has a slightly smeared
shock, and so if one interpolates the conservative variables U it is clear that
locally in a neighborhood of size O(h) the error in the reconstructed solution
up(z) will be O(1).

To recover a discontinuous approximate solution uy(z) we instead use the
fact that F is known to be continuous at the shock and therefore choose
to interpolate the nodal values of F'. From these one can deduce the con-
servation variables U by solving a quadratic equation, one branch of which
gives a subsonic flow solution, the other being supersonic. Therefore, given
a shock position, one can reconstruct a supersonic solution on the upstream
side, a subsonic solution on the downstream side, and automatically satisfy
the Rankine-Hugoniot shock jump conditions at the shock itself. To deter-
mine the shock position, we rely on prior research [Giles (96)] which shows
that the integrated pressure along the duct is correct to second order when
using a finite volume method which is conservative and second order accu-
rate in smooth flow regions. Therefore, we iteratively adjust the position of
the shock until the reconstructed solution has the same base functional value



Superconvergent lift estimates through adjoint error analysis 11

Error Convergence
_2 T T

log, (Error)
>

_9, -
_10, |
11k O O Base Error |

* % Remaining Error
_12 1 1 |
15 2 3 35 4

2'?oglo(CeIIs)

Fig. 6. Error convergence for quasi-1D shock-free transonic flow.
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Fig. 8. Error convergence for quasi-1D shocked flow.

(i.e. without the adjoint correction) as the original numerical approximation,
thereby obtaining the correct shock position to second order.

Figure 8 shows the error convergence. As expected, the base error is again
second order. Because there is still an O(h) error in the approximate solution
up(x) in the neighbourhood of the shock, the corrected error is now third
order, not fourth. However, in future work we hope to recover overall fourth
order accuracy, based on the average cell size, by using local grid adaptation
at the shock.

6 Concluding remarks

In this paper we have outlined a means of calculating improved estimates
of integral quantities such as lift and drag from CFD calculations, by eval-
uating an adjoint correction term which is an inner product of the residual
error in approximating the flow equations and an approximate solution to
the corresponding adjoint equations. The numerical results demonstrate the
effectiveness of the technique applied to a second order finite volume approx-
imation of the quasi-1D Euler equations. When the flow is smooth, the error
in the integrated pressure is fourth order; when there is a shock, it is third
order.

The theory is equally applicable to the Fuler and Navier-Stokes equa-
tions in multiple dimensions. However, there are three important issues to
be addressed before similar results can be obtained for airfoil and aircraft
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applications of engineering interest. The first is the treatment of curved sur-
faces; to achieve fourth order accuracy for corrected functional such as Ifit and
drag, it is likely that smooth curved surfaces will need to be approximated
in a way which ensures continuity in the surface normal, as opposed to the
use of simple linear (or bi-linear) facets. The second issue is the resolution
of singularities; the adjoint flow solution in two dimensional airfoil applica-
tions has an inverse square root singularity along the incoming stagnation
streamline [Giles (97)] and this will need to be well resolved. The final issue
concerns unstructured grid calculations which are needed for complex appli-
cations. The approximate solution up needs to be sufficiently smooth that the
error in Vuy is of the same order as the error in wuy, itself. To achieve this on
unstructured grids where the solution error has a significant high-frequency
content may require the use of multi-dimensional smoothed cubic splines.

Another interesting direction for future research is a posteriori estimation
of the error remaining after making the adjoint correction. The goal of such
research would be to develop a mathematical framework on which one could
base efficent grid refinement indicators, and thereby obtain the value of a
functional to the desired level of accuracy and at a minimum computational
cost.
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