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Abstract

This paper describes a robust and efficient algorithm for the numerical solution
of the steady compressible Reynolds-averaged Navier-Stokes equations, with a one
equation turbulence model. Highly stretched triangular and tetrahedral unstruc-
tured grids are used to integrate the equations to the wall.

An edge-collapse multigrid approach is introduced which is shown to be efficient,
robust and applicable to complex geometries in two and three dimensions, for
inviscid and viscous flows.

Special attention is paid to the treatment of the highly stretched grids in both
the discretization and the edge-collapse multigrid method.

1 SPATIAL DISCRETIZATION

This paper is concerned with solving the steady compressible Reynolds-averaged
Navier-Stokes equations in conjunction with the Spalart Allmaras turbulence model
[1]. Collectively, these may be expressed as
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Here Q(x) is the vector of conserved variables, (p, pu,pv, pw, E, )7, where p is
the density, u,v,w are the velocity components, E is the energy per unit volume
and 7 is the turbulence variable in the Spalart-Allmaras model [1]. F(n, Q,VQ)
is the flux in the direction of the unit vector n, and e;,¢ = 1,2,3, are the unit
vectors in a Cartesian coordinate system. The source term S is of the form
(0,0,0,0,0,9(Q,VQ))". *

The discretization described here is appropriate for both 2D triangular and 3D
tetrahedral grids. 2 Using the finite volume approach, equation (1) is integrated
over some control volume, which after the application of the divergence theorem
gives the expression

F(e:, 2,VQ) =8(Q,VQ). (1)

Rj = € F(n, Q,VQ)ds — /
‘/j oV;

Vi

S(Q,VQ)dv> =0, Vj (2)

LGenerally, in this paper calligraphic letters are used to denote analytic functions and variables,
whereas Roman letters are used to denote discrete quantities. Bold quantities are vectors in Cartesian
coordinates.

2Tn fact, the same code runs on either grid type. This is a major benefit for algorithm development
allowing methods to be designed and debugged in 2D, and then applied and tested in 3D.



where Vj is the area or volume of the control volume associated with index j. Here
the unknowns are stored at the nodes of a given triangular or tetrahedral grid,
and the control volume is the ‘median-dual’ [2] which is constructed around each
node x; of the grid. The flux integration in equation (2) is approximated by using
pre-computed weights for each edge of the grid, see [3, 4], giving
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where E; is the set of all nodes connected to node j via an edge, n;; a unit vector
and As;; a distance (2D) or area (3D) associated with the edge connecting nodes
i, j. The second term in the RHS correspond to additional contributions due to
boundary faces. Bj is the set of all boundary edges (2D) or faces (3D) connected to
node j, with corresponding normal nzj and distance or area Asij. The boundary
flux is evaluated at point x® which is defined as

X = 55 O (L (N +2)du)x (4)

iEBFy,

where N is the dimension of the problem, BF} the set of all nodes in boundary
face k, and ¢ the Kronecker delta [2, 3].
The discrete equivalent to equation (2) thus becomes

1 .
Rj=7j ZFijASij-i- ZF&' Asy;—SV; | V) (5)
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where Fj; is the flux in the direction n;; associated with an edge (4, 7), and F;?j is
the flux associated with a boundary face.

It now remains to define the discrete flux functions F and F?, and then the
spatial discretization is complete. The flux F can be split into an inviscid and
viscous part

f(n,Q,VQ) :fl(nz Q)—I—]:V(n,Q,VQ)

for any unit normal n. The discrete approximation of each of these parts is presen-
ted in the next two sections.

1.1 Ewvaluation of F’

The inviscid flux discretization is based on the flux-differencing ideas of Roe [5],
combining central differencing of the nonlinear invisicd fluxes with a smoothing
flux based on one-dimensional characteristic variables. In regions in which the flow
is smooth it takes the form

Ff = % (ffj (@) + Fi5(Q)) + %|Aij|(Li(Q) - Lf(Q))) ©

where -7:ij = f(nij, ,) and Ai]‘ = 8]-‘1/89

L is an undivided pseudo-Laplacian operator with unit central coefficient, a
generalization to unstructured grids of the second difference operator used in many
structured grid discretizations [6].



This simplest possible definition of this operator is the following

1
L@ =z .Z Qi - Q)), (7)
i€EE;
in which #(FE;) represents the number of elements in set E;. A similar smoothing
formulation has been used successfully on unstructured grids [4], but it has been
found to give poor results in general because of the fact that L;(Q) is not identically
zero when @ is a linear function [7]. Thus, in this work a modified version of the
pseudo-Laplacian is used which has the properties of admitting linear solutions and
at the same time being suited to highly stretched grids.
The first step is to define
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The second step is to define a ‘linearly-preserving’ pseudo-Laplacian
L@ = 1;(Q) - VQ;.L; (%)

The calculation of V(@Q); is approximated using the edge weights

VQi=) %(Qi + Q)i Asij+ Y Qi Asy; (8)
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which is exact when @Q is a linear function of x. Therefore, by construction, IA/IP(Q)
is identically zero if @) varies linearly.

If the first step is omitted, replacing f/(Q) by L(Q), the resulting discretization
is both accurate and robust for inviscid flows [8, 9, 10]. However, for the highly
stretched grids used in high Reynolds number viscous flow computations, the an-
isotropic scaling of the contributions to the pseudo-Laplacian from each edge is
required for numerical stability.

Figure 1 demonstrates the effect of the linear preserving modification for an
RAE2822 2D airfoil; wiggles in the Mach contours are evident when using IA/, but
do not appear when L' is used. This extra smoothness in the solution because
of the linear preserving dissipation is thought to be especially important for the
turbulence model, which uses highly non-linear functions of the solution to identify
different regions of the boundary layer.

The formulation above applies when the flow is smooth. To handle shocks, a
limiter is introduced for each variable so that the smoothing reverts to first order
characteristic upwinding at shocks [11].

1.2 Evaluation of FV

The viscous flux is approximated half-way along each edge (ie. F};) and then
use the usual integration rule around each volume, equation (2), thus giving a
consistent finite volume treatment of the inviscid and viscous terms. This requires
an approximation of V@ at the midpoint of each edge which is obtained by a
straightforward average,

VG, = 5 (Vi +7Q))



gé

%

7
Coy

N
o
s

\
N
0

N
TAV.)

‘,:‘:;A
5
S I
L I
Figure 1: Grid and Mach contours for RAE2822 (case 9)

However, as this is the average of two central differences, it will not damp high
frequency modes. Although the inviscid flux includes numerical dissipation terms
that will damp these modes, this is insufficient inside the boundary layer where the
viscous terms dominate. To remedy this, the component of V@Q in the direction
along the edge is replaced by a simple difference along the edge, giving

VQi; =VQ;; — [ VQy; - dsij — % 0sij 9)
i J
where
X; — X4
551“ = -7
T i = x

Without the addition of the edge-derivative terms the algorithm failed to con-
verge satisfactorily.

2 MULTIGRID METHOD

Multigrid has had a major impact on CFD, and has become an essential part of any
successful algorithm. However, the best approach in conjunction with unstructured
grids is not yet established. The fundamental concept behind any multigrid method
is to have a sequence of successively coarser grids that can represent the “smooth”
error modes of the finer grid, while some iterative “smoothing” procedure removes
all the high frequency error modes; thus all modes are being dealt with. This, along
with transfer operations of restriction (fine to coarse) and prolongation (coarse to
fine) defines a multigrid method [12]. The generation of a sequence of grids is
achieved, as in [13, 10], by using an edge-collapsing algorithm whose methodology is
to remove points to coarsen a given fine grid. This is completely automatic, needing
no interaction with any grid generation process. The resulting grid sequence can
be used by any grid based algorithm, including those which use an edge based data
structure.



2.1 Point-removal

The strategy is to replace two nodes connected by an edge, by a single node at the
mid-point of the original edge. The basic edge-collapsing method for an edge 14, j
in a triangular (2D) or tetrahedral (3D) mesh is summarized below.

1. construct T a unique list of all the cells connected to i and j;
2. construct G the list of boundary faces that appear only once in T
3. construct S a set of new cells connecting the node x™*“ to each face in G,
where
%(Xz’ +x;) if di=d;
x"Y = X; if d; > dj
X;j if d; >d;
where dj, is the number of boundary surfaces touching node k;
4. if all the volumes in S are positive, replace T" with S in the global mesh.

An illustration of this procedure for a 2D case can be seen in Fig. 2.

choose edge see if valid

Figure 2: An example of a collapsed edge

This full edge-collapse procedure is applied to a grid in the following manner.

do until stopping criterion is satisfied
color nodes ;
do over each color
do over nodes of color
if possible, collapse the shortest edge;
end do
end do
end do

The node coloring is used as a method of removing points evenly across the grid,
to prevent all of the nodes being removed from a particular part of the grid. The
shortest edge is chosen to make the collapsed grid as isotropic as possible. Isotropic
grids, without any highly stretched cells, enable the smoother to damp equally in
all direction.

For inviscid grids this has been highly successful [13, 10]. However, for the
highly stretched grids required for high Reynolds number flows this procedure was
inadequate, since the choice of the shortest edge for edge-collapsing resulted in the
highly stretched part of a grid in the boundary layer becoming over-coarsened in the
direction across the boundary layer. The procedure adopted is to limit the degree
of grid coarsening dependent on the grid stretching. For example, for regions
of the grid where the aspect ratio is big, only half the points will be removed,
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Figure 3: RAE2822 grids (1)-(3) and Mach contours for case 9

approximately, regardless of the dimension of the problem. This is essentially a
semi-coarsening strategy, which is common for explicit smoothers on structured
grids [12, 14].

The iterative scheme used to converge the discrete residuals to zero is pseudo
time-stepping using the 5-stage Runge-Kutta method developed by Martinelli [15].

3 RESULTS

Firstly, we consider the standard 2D RAE2822 airfoil test case 9 [16] (Mo = 0.73,
a = 2.8, Re = 6.5 x 10°%). Three grids are considered, and each grid is collapsed
twice to produce a multigrid grid sequence; all the base grids can be seen in Fig. 3,
and details of all grids are summarized in the table below, with the number in
parentheses being the ratio of fine to coarse nodes. This ratio is expected to be
lower than that for isotropic inviscid grids because of the semi-coarsening strategy.

number of nodes

grid || base grid | collapsed once | collapsed twice
(1) 3089 1161(2.7) 541(2.2)
(2) 9030 3563(2.5) 1633(2.2)
(3) 30087 11061(2.7) 4648(2.4)

Figure 4 shows the edge-collapse grid sequence used for grid (2). As expected,
where the base grid (2) has high aspect ratio the coarse grid is only halved, and for
the essentially inviscid isotropic part of the grid, the number of nodes is reduced
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Figure 4: Multigrid sequence used for grid (2)

by three quarters. Since for grids (1)-(3) approximately half the points are of high
aspect ratio, then the relative number of nodes on the coarse grid is % (%) + % (%)
giving a fine to coarse ratio of 8/3 & 2.7 which is similar to that achieved.

Grids (1)-(3) have been generated using Delauney insertion [17]. The viscous
part of the grid is generated by inserting points in a line normal to the wall in
a geometric progression up to 5% of chord away from the airfoil. The first point
nearest to the wall is fixed for each grid at 5 x 107%, which for a unit chord airfoil
at this Reynolds number has been found to give adequate resolution of the laminar
sub-layer, that is y* < 1 for the first point. The grid sequence is generated by
halving the chord-wise grid distribution in conjunction to doubling the number of
points normal to the wall. Grids (1)-(3) have 13, 25, and 50 points in a line normal
to the wall from 5 x 10~ °-to-5% chord respectively. The wake grid is added in order
to mimic a C-grid. To avoid any spurious far-field effects, the far field was set 1000
chords away from the airfoil.

Figure 3 shows Mach contours on the grids (1)-(3); a clear qualitative agreement
is observed. Figure 5 shows the comparison of pressure coefficient and skin friction
with the experimental data of reference [16]. It is evident from the skin friction
comparison that the solution from grid (1) does not achieve the experimental fric-
tion levels pre- and post-shock. In addition, grids (1) and (2) predict the shock
slightly upstream of the experimental data. However, it is worth emphasizing that
all these grids are relatively coarse, grids (1)-(3) are equivalent in terms of number
of nodes to (128 x 24), (256 x 35), (256 x 117) structured grids respectively. None
of these structured grids would be thought particularly fine for a 2D calculation,
and it is thought that grid (1) gives good accuracy considering the mesh resolution.
In 3D, however, this type of chord-wise grid resolution in grids (1)-(2) is all that
can be realistically afforded.

The convergence can be seen in Fig. 6, where multigrid iteration is plotted
against log residual. As is often the case with a highly non-linear turbulence
equation, the convergence is not monotonic as with the inviscid case. However,
a satisfactory level of convergence is achieved, and the asymptotic rates are similar
for the three grids. To illustrate the benefits of this multigrid approach over the
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Figure 5: Comparison between solutions on grids (1)-(3) and experimental data [16] for
RAE2822 test case 9
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Figure 6: Multigrid convergence for RAE2822 test case 9

single grid method, Fig. 6 plots the single and multigrid convergence, against work.
Clearly a huge benefit is gained from the multigrid, even though the coarse grids
contain many points.

To exemplify the robustness of the method a number of test cases are considered
below.

Multi-Element Airfoil Figure 7 shows Mach contour plots and base grid for
a multi-element airfoil. The grid is generated in the same manner as for
the RAE2822, however, here the various elements of the complete airfoil are
so close that the boundary layer grids from neighboring elements intersect.
The Delauney method connects the points in what appears to be a highly
undesirable fashion. The grid is thought to be very poor in the boundary layer,
and wiggles are evident in the Mach plots. However, the solver converged
despite both the low free stream Mach number (Mo, = 0.1), and the highly
distorted grid.

2D Bypass duct Figure 8 shows a bypass duct of a turbofan engine with Mach
contour plot and the grid sequence used for multigrid acceleration. The flow
is from left to right, with periodic boundary conditions top and bottom. Here
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Figure 8: Mach contours and multigrid sequence for the bypass duct geometry, M;net = 0.5,
Re =10°% a = 0.

there is a blade row and a pylon; the latter is treated with inviscid bound-
ary conditions to reduce the computational requirements of the calculation,
and because the purpose of studying this geometry did not require the pylon
boundary layer to be resolved. The grid resolution used for each of the blades
in the row is roughly equivalent to that used in grid (2) for the RAE2822
airfoil. The Mach contours reveal that the turbulent wake emanating from
the blade row disappears when the grid cannot resolve it. If the location
of the wake was of paramount importance then grid adaption would be re-
quired. The multigrid sequence of grids illustrates the difference between the
coarsening strategy in the isotropic inviscid part of the grid (pylon and sur-
rounding area), and the anisotropic viscous part of the grid (the blade row).
A point of interest is the treatment of the periodic boundary condition on
the top and bottom of this geometry. The base grid is generated such that
the nodes on the periodic boundary conditions have identical x co-ordinates,
and yYiop — Yvot = const. The collapse procedure is constrained so that this is
also true for the coarse grids. The benefit of using multigrid over the single
fine grid iteration can be seen in Fig. 9. Clearly, for this complex geometry a
large computational saving has been achieved.

Finally we concentrate on a 3D bypass duct. The grid is constructed by stacking
a sequence of 2D grids, which is evident from inspection of the base grid shown in
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Fig. 10. The grid sequence used for multigrid can be seen in Fig. 10; the sizes of
the grids are tabulated below.

number of nodes
# base | collapsed once

274730 138595(2.0)

collapsed twice

79308(1.7)
The ratio of fine to coarse grid nodes is low because the multigrid strategy is using
semi-coarsening throughout most of the highly stretched grid. Figure 9 shows work
plotted against log residual for the multigrid and single grid case. Clearly, despite
the now very expensive multigrid iteration, a huge convergence benefit has been
obtained.
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Figure 10: Multigrid sequence for 3D viscous bypass duct problem
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4

CONCLUSIONS

A robust and efficient unstructured grid algorithm for both 2D triangular and
3D tetrahedral grids has been developed. The robustness arises from appropriate
treatment of the highly stretched grids required for high Reynolds number flows,
whilst the efficiency is achieved through an edge-collapse multigrid technique.
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