
An Unstructured Algorithm for High ReynoldsNumber Flows on Highly-Stretched GridsP.I.Crumpton P.Moinier M.B.GilesJanuary 9, 1998AbstractThis paper describes a robust and e�cient algorithm for the numerical solutionof the steady compressible Reynolds-averaged Navier-Stokes equations, with a oneequation turbulence model. Highly stretched triangular and tetrahedral unstruc-tured grids are used to integrate the equations to the wall.An edge-collapse multigrid approach is introduced which is shown to be e�cient,robust and applicable to complex geometries in two and three dimensions, forinviscid and viscous ows.Special attention is paid to the treatment of the highly stretched grids in boththe discretization and the edge-collapse multigrid method.1 SPATIAL DISCRETIZATIONThis paper is concerned with solving the steady compressible Reynolds-averagedNavier-Stokes equations in conjunction with the Spalart Allmaras turbulence model[1]. Collectively, these may be expressed as@@xiF(ei;Q;rQ) = S(Q;rQ): (1)Here Q(x) is the vector of conserved variables, (�; �u; �v; �w;E; ~�)T , where � isthe density, u; v; w are the velocity components, E is the energy per unit volumeand ~� is the turbulence variable in the Spalart-Allmaras model [1]. F(n;Q;rQ)is the ux in the direction of the unit vector n, and ei; i = 1; 2; 3, are the unitvectors in a Cartesian coordinate system. The source term S is of the form(0; 0; 0; 0; 0; g(Q;rQ))T . 1The discretization described here is appropriate for both 2D triangular and 3Dtetrahedral grids. 2 Using the �nite volume approach, equation (1) is integratedover some control volume, which after the application of the divergence theoremgives the expressionRj = 1Vj  Z@Vj F(n;Q;rQ)ds� ZVj S(Q;rQ)dv! = 0; 8j (2)1Generally, in this paper calligraphic letters are used to denote analytic functions and variables,whereas Roman letters are used to denote discrete quantities. Bold quantities are vectors in Cartesiancoordinates.2In fact, the same code runs on either grid type. This is a major bene�t for algorithm developmentallowing methods to be designed and debugged in 2D, and then applied and tested in 3D.1



where Vj is the area or volume of the control volume associated with index j. Herethe unknowns are stored at the nodes of a given triangular or tetrahedral grid,and the control volume is the `median-dual' [2] which is constructed around eachnode xj of the grid. The ux integration in equation (2) is approximated by usingpre-computed weights for each edge of the grid, see [3, 4], givingZ@Vj F(n; ; ) � Xi2Ej F(nij ; ; )jx= 12 (xi+xj) 4 sij + Xk2Bj F(nbkj ; ; )��x=xbjk 4 sbkj (3)where Ej is the set of all nodes connected to node j via an edge, nij a unit vectorand 4sij a distance (2D) or area (3D) associated with the edge connecting nodesi, j. The second term in the RHS correspond to additional contributions due toboundary faces. Bj is the set of all boundary edges (2D) or faces (3D) connected tonode j, with corresponding normal nbkj and distance or area 4sbkj . The boundaryux is evaluated at point xb which is de�ned asxbjk = 12N + 2 Xi2BFk(1 + (N + 2))�ik)xi (4)where N is the dimension of the problem, BFk the set of all nodes in boundaryface k, and � the Kronecker delta [2, 3].The discrete equivalent to equation (2) thus becomesRj = 1Vj 0@Xi2Ej Fij 4 sij + Xk2Bj F bkj 4 sbkj � SjVj1A 8j (5)where Fij is the ux in the direction nij associated with an edge (i; j), and F bkj isthe ux associated with a boundary face.It now remains to de�ne the discrete ux functions F and F b, and then thespatial discretization is complete. The ux F can be split into an inviscid andviscous part F(n;Q;rQ) = FI (n;Q) + FV (n;Q;rQ)for any unit normal n. The discrete approximation of each of these parts is presen-ted in the next two sections.1.1 Evaluation of F IThe inviscid ux discretization is based on the ux-di�erencing ideas of Roe [5],combining central di�erencing of the nonlinear invisicd uxes with a smoothingux based on one-dimensional characteristic variables. In regions in which the owis smooth it takes the formF Iij = 12 �FIij(Qi) + FIij(Qj) + 13 jAij j(Li(Q)� Lj(Q))� (6)where Fij = F(nij ; ; ) and Aij = @FI=@Q.L is an undivided pseudo-Laplacian operator with unit central coe�cient, ageneralization to unstructured grids of the second di�erence operator used in manystructured grid discretizations [6]. 2



This simplest possible de�nition of this operator is the followingLj(Q) = 1#(Ej) Xi2Ej (Qi �Qj) ; (7)in which #(Ej) represents the number of elements in set Ej . A similar smoothingformulation has been used successfully on unstructured grids [4], but it has beenfound to give poor results in general because of the fact that Lj(Q) is not identicallyzero when Q is a linear function [7]. Thus, in this work a modi�ed version of thepseudo-Laplacian is used which has the properties of admitting linear solutions andat the same time being suited to highly stretched grids.The �rst step is to de�neL̂j(Q) =0@Xi2Ej 1jxi � xj j1A�1 Xi2Ej (Qi �Qj)jxi � xj j :The second step is to de�ne a `linearly-preserving' pseudo-LaplacianL̂lpj (Q) = L̂j(Q)�rQj :L̂j(x):The calculation of rQj is approximated using the edge weightsrQj = Xi2Ej 12(Qi +Qj)nij 4 sij + Xk2Bj Qbnbkj 4 sbkj ; (8)which is exact when Q is a linear function of x. Therefore, by construction, L̂lp(Q)is identically zero if Q varies linearly.If the �rst step is omitted, replacing L̂(Q) by L(Q), the resulting discretizationis both accurate and robust for inviscid ows [8, 9, 10]. However, for the highlystretched grids used in high Reynolds number viscous ow computations, the an-isotropic scaling of the contributions to the pseudo-Laplacian from each edge isrequired for numerical stability.Figure 1 demonstrates the e�ect of the linear preserving modi�cation for anRAE2822 2D airfoil; wiggles in the Mach contours are evident when using L̂, butdo not appear when L̂lp is used. This extra smoothness in the solution becauseof the linear preserving dissipation is thought to be especially important for theturbulence model, which uses highly non-linear functions of the solution to identifydi�erent regions of the boundary layer.The formulation above applies when the ow is smooth. To handle shocks, alimiter is introduced for each variable so that the smoothing reverts to �rst ordercharacteristic upwinding at shocks [11].1.2 Evaluation of F VThe viscous ux is approximated half-way along each edge (ie. FVij ) and thenuse the usual integration rule around each volume, equation (2), thus giving aconsistent �nite volume treatment of the inviscid and viscous terms. This requiresan approximation of rQ at the midpoint of each edge which is obtained by astraightforward average, rQij = 12 (rQi +rQj) :3



Grid L̂ L̂lpFigure 1: Grid and Mach contours for RAE2822 (case 9)However, as this is the average of two central di�erences, it will not damp highfrequency modes. Although the inviscid ux includes numerical dissipation termsthat will damp these modes, this is insu�cient inside the boundary layer where theviscous terms dominate. To remedy this, the component of rQ in the directionalong the edge is replaced by a simple di�erence along the edge, givingrQij = rQij ��rQij � �sij � (Qi �Qj)jxi � xj j � �sij (9)where �sij = xi � xjjxi � xj j :Without the addition of the edge-derivative terms the algorithm failed to con-verge satisfactorily.2 MULTIGRID METHODMultigrid has had a major impact on CFD, and has become an essential part of anysuccessful algorithm. However, the best approach in conjunction with unstructuredgrids is not yet established. The fundamental concept behind any multigrid methodis to have a sequence of successively coarser grids that can represent the \smooth"error modes of the �ner grid, while some iterative \smoothing" procedure removesall the high frequency error modes; thus all modes are being dealt with. This, alongwith transfer operations of restriction (�ne to coarse) and prolongation (coarse to�ne) de�nes a multigrid method [12]. The generation of a sequence of grids isachieved, as in [13, 10], by using an edge-collapsing algorithm whose methodology isto remove points to coarsen a given �ne grid. This is completely automatic, needingno interaction with any grid generation process. The resulting grid sequence canbe used by any grid based algorithm, including those which use an edge based datastructure. 4



2.1 Point-removalThe strategy is to replace two nodes connected by an edge, by a single node at themid-point of the original edge. The basic edge-collapsing method for an edge i, jin a triangular (2D) or tetrahedral (3D) mesh is summarized below.1. construct T a unique list of all the cells connected to i and j;2. construct G the list of boundary faces that appear only once in T ;3. construct S a set of new cells connecting the node xnew to each face in G,where xnew = ( 12 (xi + xj) if di = djxi if di > djxj if dj > diwhere dk is the number of boundary surfaces touching node k;4. if all the volumes in S are positive, replace T with S in the global mesh.An illustration of this procedure for a 2D case can be seen in Fig. 2.
choose edge see if validFigure 2: An example of a collapsed edgeThis full edge-collapse procedure is applied to a grid in the following manner.do until stopping criterion is satis�edcolor nodes ;do over each colordo over nodes of colorif possible, collapse the shortest edge;end doend doend doThe node coloring is used as a method of removing points evenly across the grid,to prevent all of the nodes being removed from a particular part of the grid. Theshortest edge is chosen to make the collapsed grid as isotropic as possible. Isotropicgrids, without any highly stretched cells, enable the smoother to damp equally inall direction.For inviscid grids this has been highly successful [13, 10]. However, for thehighly stretched grids required for high Reynolds number ows this procedure wasinadequate, since the choice of the shortest edge for edge-collapsing resulted in thehighly stretched part of a grid in the boundary layer becoming over-coarsened in thedirection across the boundary layer. The procedure adopted is to limit the degreeof grid coarsening dependent on the grid stretching. For example, for regionsof the grid where the aspect ratio is big, only half the points will be removed,5



grid(1) grid(2) grid(3)Figure 3: RAE2822 grids (1)-(3) and Mach contours for case 9approximately, regardless of the dimension of the problem. This is essentially asemi-coarsening strategy, which is common for explicit smoothers on structuredgrids [12, 14].The iterative scheme used to converge the discrete residuals to zero is pseudotime-stepping using the 5-stage Runge-Kutta method developed by Martinelli [15].3 RESULTSFirstly, we consider the standard 2D RAE2822 airfoil test case 9 [16] (M1 = 0:73,� = 2:8, Re = 6:5 � 106). Three grids are considered, and each grid is collapsedtwice to produce a multigrid grid sequence; all the base grids can be seen in Fig. 3,and details of all grids are summarized in the table below, with the number inparentheses being the ratio of �ne to coarse nodes. This ratio is expected to belower than that for isotropic inviscid grids because of the semi-coarsening strategy.number of nodesgrid base grid collapsed once collapsed twice(1) 3089 1161(2.7) 541(2.2)(2) 9030 3563(2.5) 1633(2.2)(3) 30087 11061(2.7) 4648(2.4)Figure 4 shows the edge-collapse grid sequence used for grid (2). As expected,where the base grid (2) has high aspect ratio the coarse grid is only halved, and forthe essentially inviscid isotropic part of the grid, the number of nodes is reduced6



base 1st collapse 2nd collapseFigure 4: Multigrid sequence used for grid (2)by three quarters. Since for grids (1)-(3) approximately half the points are of highaspect ratio, then the relative number of nodes on the coarse grid is 12 � 12�+ 12 � 14�giving a �ne to coarse ratio of 8=3 � 2:7 which is similar to that achieved.Grids (1)-(3) have been generated using Delauney insertion [17]. The viscouspart of the grid is generated by inserting points in a line normal to the wall ina geometric progression up to 5% of chord away from the airfoil. The �rst pointnearest to the wall is �xed for each grid at 5� 10�6, which for a unit chord airfoilat this Reynolds number has been found to give adequate resolution of the laminarsub-layer, that is y+ < 1 for the �rst point. The grid sequence is generated byhalving the chord-wise grid distribution in conjunction to doubling the number ofpoints normal to the wall. Grids (1)-(3) have 13, 25, and 50 points in a line normalto the wall from 5�10�6-to-5% chord respectively. The wake grid is added in orderto mimic a C-grid. To avoid any spurious far-�eld e�ects, the far �eld was set 1000chords away from the airfoil.Figure 3 shows Mach contours on the grids (1)-(3); a clear qualitative agreementis observed. Figure 5 shows the comparison of pressure coe�cient and skin frictionwith the experimental data of reference [16]. It is evident from the skin frictioncomparison that the solution from grid (1) does not achieve the experimental fric-tion levels pre- and post-shock. In addition, grids (1) and (2) predict the shockslightly upstream of the experimental data. However, it is worth emphasizing thatall these grids are relatively coarse, grids (1)-(3) are equivalent in terms of numberof nodes to (128� 24), (256� 35), (256� 117) structured grids respectively. Noneof these structured grids would be thought particularly �ne for a 2D calculation,and it is thought that grid (1) gives good accuracy considering the mesh resolution.In 3D, however, this type of chord-wise grid resolution in grids (1)-(2) is all thatcan be realistically a�orded.The convergence can be seen in Fig. 6, where multigrid iteration is plottedagainst log residual. As is often the case with a highly non-linear turbulenceequation, the convergence is not monotonic as with the inviscid case. However,a satisfactory level of convergence is achieved, and the asymptotic rates are similarfor the three grids. To illustrate the bene�ts of this multigrid approach over the7
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Figure 5: Comparison between solutions on grids (1)-(3) and experimental data [16] forRAE2822 test case 9
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grids (2) grid (1)-(3)Figure 6: Multigrid convergence for RAE2822 test case 9single grid method, Fig. 6 plots the single and multigrid convergence, against work.Clearly a huge bene�t is gained from the multigrid, even though the coarse gridscontain many points.To exemplify the robustness of the method a number of test cases are consideredbelow.Multi-Element Airfoil Figure 7 shows Mach contour plots and base grid fora multi-element airfoil. The grid is generated in the same manner as forthe RAE2822, however, here the various elements of the complete airfoil areso close that the boundary layer grids from neighboring elements intersect.The Delauney method connects the points in what appears to be a highlyundesirable fashion. The grid is thought to be very poor in the boundary layer,and wiggles are evident in the Mach plots. However, the solver convergeddespite both the low free stream Mach number (M1 = 0:1), and the highlydistorted grid.2D Bypass duct Figure 8 shows a bypass duct of a turbofan engine with Machcontour plot and the grid sequence used for multigrid acceleration. The owis from left to right, with periodic boundary conditions top and bottom. Here8



Figure 7: Mach contours and grid for a multi-element airfoil M1 = 0:1, � = 10o, Re = 6�106 .
Figure 8: Mach contours and multigrid sequence for the bypass duct geometry, Minlet = 0:5,Re = 106, � = 0.there is a blade row and a pylon; the latter is treated with inviscid bound-ary conditions to reduce the computational requirements of the calculation,and because the purpose of studying this geometry did not require the pylonboundary layer to be resolved. The grid resolution used for each of the bladesin the row is roughly equivalent to that used in grid (2) for the RAE2822airfoil. The Mach contours reveal that the turbulent wake emanating fromthe blade row disappears when the grid cannot resolve it. If the locationof the wake was of paramount importance then grid adaption would be re-quired. The multigrid sequence of grids illustrates the di�erence between thecoarsening strategy in the isotropic inviscid part of the grid (pylon and sur-rounding area), and the anisotropic viscous part of the grid (the blade row).A point of interest is the treatment of the periodic boundary condition onthe top and bottom of this geometry. The base grid is generated such thatthe nodes on the periodic boundary conditions have identical x co-ordinates,and ytop� ybot = const. The collapse procedure is constrained so that this isalso true for the coarse grids. The bene�t of using multigrid over the single�ne grid iteration can be seen in Fig. 9. Clearly, for this complex geometry alarge computational saving has been achieved.Finally we concentrate on a 3D bypass duct. The grid is constructed by stackinga sequence of 2D grids, which is evident from inspection of the base grid shown in9
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Fig. 10. The grid sequence used for multigrid can be seen in Fig. 10; the sizes ofthe grids are tabulated below. number of nodes# base collapsed once collapsed twice274730 138595(2.0) 79308(1.7)The ratio of �ne to coarse grid nodes is low because the multigrid strategy is usingsemi-coarsening throughout most of the highly stretched grid. Figure 9 shows workplotted against log residual for the multigrid and single grid case. Clearly, despitethe now very expensive multigrid iteration, a huge convergence bene�t has beenobtained.

Figure 10: Multigrid sequence for 3D viscous bypass duct problem
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