
Wavelet compression for unsteady CFD dataM. GilesOxford University Computing LaboratoryOctober 7, 1997AbstractThis report presents an introduction to the ideas of wavelet compression for unsteady CFDdata and gives an overview of the MSc dissertation written by Graham Berridge on this topicwith sponsorship from Rolls-Royce.In summary, wavelet compression has a number of advantages relative to the Fourier com-pression which has been used previously. The wavelet transforms for a periodic time series havebeen implemented in FORTRAN, and this code could be used as the basis for future work incompressing the periodic data arising from 3D stator/rotor and utter applications.
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1 Fourier compressionSuppose one has data fn at N equally spaced intervals in time, and that the data is periodic sothat one may write fn = fn+N :If N is even, this data can be represented by a combination of cosine and sine functions,fn = N2Xm=0am cos � 2�mnN �+ N2 �1Xm=1 bm sin � 2�mnN � ;where am = 8>>>><>>>>: 1N NXn=1 fn cos � 2�mnN � ; m = 0; N22N NXn=1 fn cos � 2�mnN � ; m = 1; 2; : : : ; N2 � 1bm = 2N NXn=1 fn sin � 2�mnN � ; m = 1; 2; : : : ; N2 � 1:In unsteady CFD applications, fn is the ow data at a particular grid point. If the dataconsists simply of a mean component plus unsteadiness at the fundamental frequency, the Fouriertransform will result in non-zero values for a0; a1; b1; the remaining coe�cients will be zero andso need not be stored. More generally, the idea of Fourier compression is to �rst compute thefull set of am; bm coe�cients and then decide how many of these need to be retained in orderto reconstruct the original signal to within an acceptable accuracy.For subsonic ow applications in which only the �rst two harmonics need to be stored, thecompression is excellent, resulting in much smaller disk �les. For example, if N=50 then a 10:1compression ratio would be achieved. However, in transonic ow applications with shocks, thereare discontinuities in the unsteady data at a particular grid point due to the passing of shocks.This results in a very full Fourier spectrum (i.e. most of the am; bm are signi�cant) and so thecompression ratio is very poor.There are other problems as well due to the global nature of the cosine/sine functions. Theentire data is required before one can calculate any of the Fourier coe�cients. Therefore, theFourier compression can only be performed as a post-processing step. Also, the reconstructionat a particular instant in time requires all of the Fourier coe�cients. If one considers the Fouriercoe�cients needed for each point in an entire 3D CFD grid, the memory of the workstationsbeing used for visualisation will usually be inadequate. Therefore, the reconstruction cannot beperformed `on-the-y' as part of the visualisation. Instead, it would be necessary to re-constructthe data by working on one piece of the grid at a time, storing the reconstructed data in a disk�le, and then perform the visualisation by reading back in the reconstructed data as needed.It was the above concerns which led to the MSc project by Graham Berridge to investigatethe use of wavelets to transform and compression periodic time series data.
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Figure 1: CDF 3,1 wavelet2 Wavelet compression2.1 General ideasThe Fourier transform and its inverse reconstruction are a particular example of a generaltransform pair which may be written asfn = NXm=1 amwn;m; am = NXn=1 fn ewm;n:Using matrix notation, these can be written asf =Wa; a = fWf;which reveals that fW =W�1. Hence WfW = fWW = I and soXm wn1;m ewm;n2 = ( 1; n1 = n20; n1 6= n2Xn ewm1;nwn;m2 = ( 1; m1 = m20; m1 6= m2In wavelet transforms, the function wn;m for a particular value of m is a `wavelet' which isnon-zero on only part of the period, as illustrated in Figure 1. Furthermore, the wavelets fordi�erent values of m have a variety of widths, and are centred on di�erent parts of the period.The narrow wavelets represent the high-frequency part of the data; the wide wavelets representthe low-frequency components.The dual wavelet ewm;n is non-zero on the same interval as the primary wavelet wn;m. Thus,the local nature of wavelets means that a discontinuity in the data only a�ects the amplitudes3



am of the relatively few wavelets whose span includes the discontinuity. This is the featurewhich makes wavelets better suited to handling data which is discontinuous.The local nature of wavelets also makes it possible to perform `on-the-y' compression andreconstruction, but to understand how this is done one needs to understand the recursive wayin which wavelet transforms are applied in practice. This is explained �rst for the simple Haarwavelets, before then discussing the CDF 3,1 wavelets which Graham Berridge found to be moste�ective of those he tested.2.2 Haar waveletsFor simplicity it will be assumed that N is a power of 2. Starting with the original data fn onede�nes the transformed data as a half of the sum and di�erence of each pair of values,sn = 12 (f2n+f2n�1); n = 1; 2; : : : ; N=2;dn = 12 (f2n�f2n�1); n = 1; 2; : : : ; N=2:The inverse transform, reconstructing the original data, is given byf2n = sn + dn; n = 1; 2; : : : ; N=2;f2n�1 = sn � dn; n = 1; 2; : : : ; N=2:The full wavelet transform comes from applying the above recursively, treating the N=2values sn as the function values at the next level, again computing one half of the sum anddi�erence of each pair of values.Using the notation s(m)n ; d(m)n to denote the appropriate values at level m, with the level 0values being the original data, s(0)n � fn;then the values at the higher levels are de�ned recursively bys(m)n = 12 (s(m�1)2n +s(m�1)2n�1 );d(m)n = 12 (s(m�1)2n �s(m�1)2n�1 ):Note that what is stored at each level are the values of the di�erences d(m)n . The number ofthese is halved at each level until �nally at the topmost level, M = log2N , there is a singledi�erence coe�cient d(M)1 and a single summation coe�cient s(M)1 which must also be stored.The inverse transform is given recursively bys(m)2n = s(m+1)n + d(m+1)n ;s(m)2n�1 = s(m+1)n � d(m+1)n ;starting with d(M)1 and s(M)1 and working downwards to m=0, adding in the contributions fromthe di�erence coe�cients at each level.Although this wavelet transform is very simple to apply, it is not very e�ective in compressingthe data. If fn is a constant, then the di�erence values will be zero at all levels and need not beretained. On the other hand, if fn is linear then the di�erence coe�cients will be non-zero at alllevels and will probably have to be kept. The CFD 3,1 wavelets described in the next section4



have the property that if fn is locally quadratic the di�erence coe�cients will be zero, and soneed not be kept. This makes it much more e�ective than the Haar wavelets in generating a lotof very small di�erence coe�cients which can be omitted in the compression phase.2.3 CDF 3,1 waveletsAs with the Haar wavelets, the CDF 3,1 wavelets are applied in a recursive manner. Unlike theHaar wavelets, the coe�cients for the CDF 3,1 wavelets at each level of recursion depend on 4values at the level below. s(m)n = 3Xk=0 ~hks(m�1)2n�k ;d(m)n = 3Xk=0 ~gks(m�1)2n�k :The recursion is applied until there are at most two elements on the top level, at which pointthe s(m)n values are stored in addition to the d(m)n coe�cients.The inverse transform is given bys(m)2n = h0s(m+1)n + h2s(m+1)n+1 + g0d(m+1)n + g2d(m+1)n+1 ;s(m)2n�1 = h1s(m+1)n + h3s(m+1)n+1 + g1d(m+1)n + g3d(m+1)n+1 :The elements of the vectors ~g; ~h; g; h are~g = f� 18 ; 38 ;� 38 ; 18g~h = f� 14 ; 34 ; 34 ;� 14gg = f 12 ; 32 ;� 32 ;� 12gh = f 14 ; 34 ; 34 ; 14gBy explicitly writing out the matrices W and fW (as de�ned earlier) for a single level of therecursive process, it is possible to con�rm that WfW = fWW = I and so the inverse transformdoes indeed restore the original data.Since the elements of the vector ~g correspond to the coe�cients of a third di�erence operator,it can be seen that the di�erence coe�cients will be zero if the underlying data is locallyquadratic. More generally, the di�erence coe�cients at the �rst level will be proportional to�t3 d3fdt3 ;which will be very small if the data is smooth and the timestep is small. Thus it is likely thata high degree of compression will be possible.
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Threshold Sawtooth Sinusoidal0.01 22 80.001 23 160.0001 25 44Table 1: Compressed number of wavelet coe�cients for 2 test cases3 Compression resultsA FORTRAN program has been written to perform the CDF 3,1 wavelet transformation andreconstruction. The compression capability is assessed here by considering two simple test cases,a sawtooth wave which is a combination of a linear function plus a single discontinuity, and asingle sinusoidal wave. For each function, 1024 data values were generated. Table 1 lists for eachtest case the number of wavelet coe�cients exceeding certain threshold values; these thresholdlevels correspond approximately to the error in the reconstructed data. Figure 2 presents for thesawtooth wave the original data and the reconstructed data using the 0.01 threshold; Figure 3shows the corresponding results for the sinusoidal test function. In both cases, the reconstructionerror is barely visible.For the sawtooth test case, theory shows that the number of non-zero wavelet coe�cientsshould be no more than 3 log2N . The numerical results are consistent with this. The compres-sion this provides is excellent, especially in comparison to Fourier transforms which o�er almostno compression.In the sinusoidal test case, the number of coe�cients which need to be retained is stronglydependent on the accuracy required. For 1% accuracy, which is quite su�cient for plottingand visualisation, only 8 coe�cients are needed. This is very good but not as good as Fouriercompression in which only 1 coe�cient would be needed. If the phase of the sinusoidal waveis shifted by an arbitrary amount, and a constant is added, the number of non-zero Fouriercoe�cients would increase to 3, while the wavelet compression would still require 8 coe�cients.Thus, the wavelet compression would still be worse than the Fourier compression, but not bysuch a large margin.
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Figure 2: Sawtooth test case { original + reconstruction with 1% threshold
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Figure 3: Sinusoidal test case { original + reconstruction with 1% threshold
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4 Overview of MSc dissertationIn his dissertation Berridge presents a comprehensive introduction to the theory of wavelets,with a substantial list of references. He investigated 14 di�erent wavelets to determine theire�ectiveness in compressing some test data consisting of a combination of two sinusoidal func-tions plus several discontinuous `sawtooth' functions. On the basis of these tests, he found thatthe CDF 3,1 wavelet was the most e�ective.As a �nal test, he applied the wavelet compression to some unsteady CFD data. This datacame from a transonic wake/rotor interaction in which there were propagating shocks, and soFourier compression was able to reduce the data by only 10%. The wavelet compression reducedit by 20%, which was better but still disappointing. Berridge attributes this to the fact that thedata consisted of only 50 timesteps per period. The data had such a rich content (i.e. there wassubstantial variation throughout the period) that many coe�cients were needed to representthat. His belief is that if the number of stored timesteps per period were increased, then thecompression ratio would increase because the number of coe�cients needing to be retained wouldnot increase linearly with the total number of timesteps stored. This suggests that one shouldperhaps store more timesteps per period and thereby substantially reduce the error due to lackof temporal resolution at the expense of only slightly greater storage. This increased storagecould be o�set by storing information on a coarser grid, the error due to the loss of spatialresolution being less than the error due to the limited temporal resolution.Berridge also discusses another approach to compressing data storage. CFD codes now oftenuse 64-bit arithmetic, and by default will write unformatted �les with 64-bit data. This is anunnecessary level of precision. If one stores the minimum and maximum values, the data canthen be renormalised to lie between 0 and 1. Multiplying by 216 and rounding to the nearestinteger gives an integer value which can be stored in 16-bits. If necessary, two such numbers canbe combined in a single 32-bit integer. This gives a compression ratio of 4:1 with a negligibleloss of accuracy since the fractional error is 2�16 � 10�5. Being more aggressive, one could packthree numbers within a single 32-bit integer, giving a compression ratio of 6:1 and a fractionalerror of 2�32=3 � 0:6�10�3 which is still not large enough to a�ect the visualisation of the data.A �nal observation is that the bene�ts are not simply reduced disk usage. Since it is probablethat there will still be too much data to be held within the memory of the workstation beingused for visualisation, it will be necessary to read the data from disk during the visualisation.Reducing the quantity of data to be read from disk will greatly improve the speed of thisoperation. This may become very important since disk capacities have increased much morerapidly than disk i/o rates.
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