
Monte Carlo Methods for Uncertainty Quantification

Mike Giles

Mathematical Institute, University of Oxford

Contemporary Numerical Techniques

Mike Giles (Oxford) Monte Carlo methods 1 1 / 26

Lecture outline

Lecture 1: Monte Carlo basics

motivating applications

basics of mean and variance

random number generation

Monte Carlo estimation

Central Limit Theorem and confidence interval

Lecture 2: Variance reduction

control variate

Latin Hypercube

randomised quasi-Monte Carlo

Mike Giles (Oxford) Monte Carlo methods 1 2 / 26

Lecture outline

Lecture 3: financial applications

financial models

approximating SDEs

weak and strong convergence

mean square error decomposition

multilevel Monte Carlo

Lecture 4: PDE applications

PDEs with uncertainty

examples

multilevel Monte Carlo

Mike Giles (Oxford) Monte Carlo methods 1 3 / 26

Application 1

Consider a bridge with 7 elements and pinned joints:

�
�
�
�
�
�❅

❅
❅
❅
❅
❅

❅
❅
❅
❅
❅
❅�

�
�
�
�
�

❡ ❡ ❡

❡ ❡

❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

Design will compute a force balance, work out compression / extension
of each element, and therefore determine the natural length to be cast.

However, the manufactured elements will vary from design in both length
and extensibility – 14 uncertain inputs.

If two supporting joints have fixed position, then analysis has 6 unknowns
(coordinates of free joints) and 6 equations (force balance at free joints).

Mike Giles (Oxford) Monte Carlo methods 1 4 / 26

Application 1

Given manufacturing data on the variability of the natural length and
extensibility, what might we want to know?

RMS deviation of joint position from design

RMS deviation of forces from design

probability of maximum compression / extension force being
outside some specified range

Note: if we turn this into a full finite element analysis, then the
computational cost becomes much larger.

Mike Giles (Oxford) Monte Carlo methods 1 5 / 26

Application 2

Consider a square trampoline, with vertical position given by

T

(
∂2Z

∂x2
+

∂2Z

∂y2

)
= L(x , y), 0<x<1, 0<y<1

where T is the tension and L(x , y) is the applied load.

Here the uncertainty could be in the boundary conditions:

simplest case would be uncertainty in the 4 corner values of Z (x , y)
with straight line interpolation along each edge

a more complicated case might add a Fourier decomposition
of the perturbation from the straight line interpolation

Z (x , 0) = (1−x)Z0,0 + x Z1,0 +

∞∑

n=1

an sin(nπx)

Could also have uncertainty in the tension and the loading.

Mike Giles (Oxford) Monte Carlo methods 1 6 / 26

Application 2

Again there are various outputs we might be interested in:

average values for minZ (x , y) and maxZ (x , y)

RMS variation in these due to uncertainty

Note: biggest displacements likely to occur in the middle, not significantly
affected by high order Fourier perturbations on the boundary.

Mike Giles (Oxford) Monte Carlo methods 1 7 / 26

Application 3

In computational finance, the behaviour of assets (e.g.stocks) is modelled
by stochastic differential equations such as:

dS = r S dt + σ S dW

where dW is the increment of a Brownian motion, which is Normally
distributed with zero mean and variance dt.

The stochastic term σ S dW models the uncertainty in the day-to-day
evolution of the asset price, due to random events.

We will not cover the theory of Ito calculus which is necessary to work
with SDEs, but it can be proved that

d log S = (r − 1
2σ

2)dt + σ dW

and hence
S(T) = S(0) exp

(
(r − 1

2σ
2)T + σW (T)

)

Mike Giles (Oxford) Monte Carlo methods 1 8 / 26

Application 3

Later, we will consider a basket call option based on 5 assets, each with

Si(T) = Si(0) exp
(
(r − 1

2σ
2
i)T + σiWi (T)

)

and with the option value being

f = exp(−rT) max

(
0, 15

∑

i

Si(T)− K

)

What we want to estimate is the expected value of this option.

Mike Giles (Oxford) Monte Carlo methods 1 9 / 26

Objective

In general, we

start with a random sample ω

usually compute some intermediate quantity U

then evaluate a scalar output f (U)

ω → U → f (U)

The objective is then to compute the expected (or average) value

E[f (U)]

Mike Giles (Oxford) Monte Carlo methods 1 10 / 26

Basics
In some cases, the random inputs are discrete: X has value xi with
probability pi , and then

E[f (X)] =
∑

i

f (xi) pi

In other cases, the random inputs are continuous random variables:
scalar X has probability density p(x) if

P(X ∈ (x , x+dx)) = p(x)dx + o(dx)

Then

E[f (X)] =

∫
f (x) p(x)dx

In either case, if a, b are random variables, and λ, µ are constants, then

E[a+ µ] = E[a] + µ

E[λ a] = λ E[a]

E[a+ b] = E[a] + E[b]

Mike Giles (Oxford) Monte Carlo methods 1 11 / 26

Basics

The variance is defined as

V[a] ≡ E

[
(a − E[a])2

]

= E

[
a2 − 2aE[a] + (E[a])2

]

= E
[
a2
]
− (E[a])2

It then follows that

V[a + µ] = V[a]

V[λ a] = λ2
V[a]

V[a + b] = V[a] + 2Cov[a, b] + V[b]

where
Cov[a, b] ≡ E

[
(a − E[a]) (b − E[b])

]

Mike Giles (Oxford) Monte Carlo methods 1 12 / 26

Basics

X1 and X2 are independent continuous random variables if

pjoint(x1, x2) = p1(x1) p2(x2)

We then get

E[f1(X1) f2(X2)] =

∫ ∫
f1(x1) f2(x2) pjoint(x1, x2) dx1 dx2

=

∫ ∫
f1(x1) f2(x2) p1(x1) p2(x2) dx1 dx2

=

(∫
f1(x1) p1(x1) dx1

)(∫
f2(x2) p2(x2) dx2

)

= E[f1(X1)] E[f2(X2)]

Hence, if a, b are independent, Cov[a, b]=0 =⇒ V[a+b] = V[a] + V[b]
More generally, the variance of the sum of independent r.v.’s is the sum
of their variances.

Mike Giles (Oxford) Monte Carlo methods 1 13 / 26

Random Number Generation

Monte Carlo simulation starts with random number generation, usually
split into 2 stages:

generation of independent uniform (0, 1) random variables

conversion into random variables with a particular distribution
(e.g. Normal)

Very important: never write your own generator, always use a well
validated generator from a reputable source

Matlab

Intel MKL

Mike Giles (Oxford) Monte Carlo methods 1 14 / 26

Uniform Random Variables

Pseudo-random generators use a deterministic (i.e. repeatable) algorithm
to generate a sequence of (apparently) random numbers on (0, 1) interval.

What defines a good generator?

a long period – how long it takes before the sequence repeats itself
232 is not enough (need at least 240)

various statistical tests to measure “randomness” – well validated
software will have gone through these checks

For information see

Intel MKL information
www.intel.com/cd/software/products/asmo-na/eng/266864.htm

Matlab information
www.mathworks.com/moler/random.pdf

Wikipedia information
en.wikipedia.org/wiki/Random number generation

Mike Giles (Oxford) Monte Carlo methods 1 15 / 26

Normal Random Variables

N(0, 1) Normal random variables (mean 0, variance 1) have the
probability distribution

p(x) = φ(x) ≡ 1√
2π

exp(− 1
2x

2)

The Box-Muller method takes two independent uniform (0, 1) random
numbers y1, y2, and defines

x1 =
√

−2 log(y1) cos(2πy2)

x2 =
√

−2 log(y1) sin(2πy2)

It can be proved that x1 and x2 are N(0, 1) random variables, and
independent:

pjoint(x1, x2) = p(x1) p(x2)

Mike Giles (Oxford) Monte Carlo methods 1 16 / 26

Inverse CDF

A more flexible alternative uses the cumulative distribution function
CDF (x) for a random variable X , defined as

CDF (x) = P(X < x)

If Y is a uniform (0, 1) random variable, then can define X by

X = CDF−1(Y).

For N(0, 1) Normal random variables,

CDF (x) = Φ(x) ≡
∫

x

−∞

φ(s) ds =
1√
2π

∫
x

−∞

exp
(
− 1

2s
2
)
ds

Φ−1(y) is approximated in software in a very similar way to the
implementation of cos, sin, log.

Mike Giles (Oxford) Monte Carlo methods 1 17 / 26

Normal Random Variables

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

Φ
(x

)

0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

x

Φ
−

1
(x

)

Mike Giles (Oxford) Monte Carlo methods 1 18 / 26

MATLAB

rand(n,m) generates a matrix of independent r.v.’s each uniformly
distributed on unit interval (0, 1)

randn(n,m) generates a matrix of independent r.v.’s each Normally
distributed with zero mean and unit variance

clear all at the beginning of your MATLAB code will reset
everything, including the random number generators, so every time
you run the program you get the same “random” numbers

norminv(u) computes Φ−1(u)

normcdf(x) computes Φ(x)

normpdf(x) computes φ(x)

Mike Giles (Oxford) Monte Carlo methods 1 19 / 26

Expectation and Integration

If X is a random variable uniformly distributed on [0, 1] then its probability
density function is

p(x) =

{
1, 0<x<1
0, otherwise

and therefore

E[f (X)] = I [f] =

∫ 1

0
f (x)dx .

The generalisation to a d -dimensional “cube” I d = [0, 1]d , is

E[f (X)] = I [f] =

∫

I d

f (x)dx .

Thus the problem of finding expectations is directly connected to the
problem of numerical quadrature (integration), often in very large
dimensions.

Mike Giles (Oxford) Monte Carlo methods 1 20 / 26

Expectation and Integration

Suppose we have a sequence Xn of independent samples from the
uniform distribution.

An approximation to the expectation/integral is given by

IN [f] = N−1
N∑

n=1

f (Xn).

Note that this is an unbiased estimator, since for each n,

E[f (Xn)] = E[f (X)] = I [f]

and therefore
E

[
IN [f]

]
= I [f]

Mike Giles (Oxford) Monte Carlo methods 1 21 / 26

Central Limit Theorem

In general, define

error εN(f) = I [f]− IN [f]

RMSE, “root-mean-square-error” =
√

E[(εN(f))2]

The Central Limit Theorem proves (roughly speaking) that for large N

εN(f) ∼ σN−1/2 Z

with Z a N(0, 1) random variable and σ2 the variance of f :

σ2 = V[f (X)] =

∫

I d

(f (x)− I [f])2 dx .

provided σ2 is finite.

Mike Giles (Oxford) Monte Carlo methods 1 22 / 26

Central Limit Theorem

More precisely, provided σ is finite, then as N −→ ∞,

CDF(N1/2σ−1εN) −→ CDF(Z)

so that
P

[
N1/2σ−1εN < s

]
−→ P [Z < s] = Φ(s)

and
P

[∣∣∣N1/2σ−1εN

∣∣∣ > s
]

−→ P [|Z | > s] = 2 Φ(−s)

P

[∣∣∣N1/2σ−1εN

∣∣∣ < s
]

−→ P [|Z | < s] = 1− 2 Φ(−s)

Mike Giles (Oxford) Monte Carlo methods 1 23 / 26

Estimated Variance

Given N samples, the empirical variance is

σ̃2 = N−1
N∑

n=1

(f (xn)− IN)
2 = I

(2)
N

− (IN)
2

where

IN = N−1
N∑

n=1

f (xn), I
(2)
N

= N−1
N∑

n=1

(f (xn))
2

σ̃2 is a slightly biased estimator for σ2; an unbiased estimator is

σ̂2 = (N−1)−1
N∑

n=1

(f (xn)− IN)
2 =

N

N−1

(
I
(2)
N

− (IN)
2
)

Mike Giles (Oxford) Monte Carlo methods 1 24 / 26

Confidence Interval
How many samples do we need for an accuracy of ε with probability c?

Since
P

[
N1/2σ−1|ε| < s

]
≈ 1− 2 Φ(−s),

define s so that 1−2 Φ(−s) = c ⇐⇒ s = −Φ−1((1−c)/2)

c 0.683 0.9545 0.9973 0.99994

s 1.0 2.0 3.0 4.0

|ε| < N−1/2 σ s with probability c – this is the confidence interval.

To ensure |ε| < ε with probability c we can put

N−1/2 σ̂ s(c) = ε =⇒ N =

(
σ̂ s(c)

ε

)2

.

Note: twice as much accuracy requires 4 times as many samples.
Mike Giles (Oxford) Monte Carlo methods 1 25 / 26

Summary so far

Monte Carlo estimation / quadrature is straightforward and robust

confidence bounds can be obtained as part of the calculation

can calculate the number of samples N needed for chosen accuracy

accuracy = O(N−1/2), CPU time = O(N)

=⇒ accuracy = O(CPU time−1/2)

=⇒ CPU time = O(accuracy−2)

the key now is to reduce number of samples required by reducing
the variance

Mike Giles (Oxford) Monte Carlo methods 1 26 / 26

