
Monte Carlo Methods for Uncertainty Quantification

Mike Giles

Mathematical Institute, University of Oxford

Contemporary Numerical Techniques

Mike Giles (Oxford) Monte Carlo methods 2 1 / 23

Lecture outline

Lecture 2: Variance reduction

control variate

Latin Hypercube

randomised quasi-Monte Carlo

Mike Giles (Oxford) Monte Carlo methods 2 2 / 23

Control Variates

Suppose we want to estimate E[f (X)], and there is another function
g(X) for which we know E[g(X)].

We can use this by averaging N samples of a new estimator

f̂ = f − λ (g−E[g])

Again unbiased since E[f̂] = E[f]− λE[g−E[g]] = E[f]

Mike Giles (Oxford) Monte Carlo methods 2 3 / 23

Control Variates

For a single sample,

V[f − λ (g−E[g])] = V[f −λ g]

= V[f]− 2λCov[f , g] + λ2 V[g]

For an average of N samples,

V[f − λ (g−E[g])] = N−1
(
V[f]− 2λCov[f , g] + λ2V[g]

)

To minimise this, the optimum value for λ is

λ =
Cov[f , g]

V[g]

Mike Giles (Oxford) Monte Carlo methods 2 4 / 23

Control Variates

The resulting variance is

N−1 V[f]
(
1− (Cov[f , g])2

V[f]V[g]

)
= N−1 V[f]

(
1− ρ2

)

where −1 ≤ ρ ≤ 1 is the correlation between f and g .

The challenge is to choose a good g which is well correlated with f .

The covariance, and hence the optimal λ, can be estimated numerically.

Mike Giles (Oxford) Monte Carlo methods 2 5 / 23

Latin Hypercube

The central idea is to achieve a more regular sampling of the unit
hypercube [0, 1]d when trying to estimate

∫

[0,1]d
f (U)dU.

We start by considering a one-dimensional problem:

I =

∫ 1

0
f (U)dU.

Instead of taking N samples, drawn from uniform distribution on [0, 1],
break the interval into N strata (or sub-intervals) of width 1/N and take 1
sample from each, with a uniform random distribution within the stratum.

Mike Giles (Oxford) Monte Carlo methods 2 6 / 23

Stratified Sampling

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉
For j th stratum, if f (U) is differentiable then

f (U) ≈ f (Uj) + f ′(Uj) (U−Uj)

where Uj is midpoint of stratum, and hence

V[f (U) |U ∈ stratum j] ≈
(
f ′(Uj)

)2 V[U−Uj |U ∈ stratum j]

=
1

12N2

(
f ′(Uj)

)2

since the stratum has width 1/N so

V[U−Uj |U ∈ stratum j] =

∫ 1/(2N)

−1/(2N)
U2 N dU

Mike Giles (Oxford) Monte Carlo methods 2 7 / 23

Stratified Sampling

Summing all of the variances (due to independence) and dividing by N2

(due to averaging) the variance of the average over all strata is then

1

12N4

∑

j

(
f ′(Uj)

)2 ≈ 1

12N3

∫ (
f ′(U)

)2
dU

so the r.m.s. error is O(N−3/2), provided f ′(U) is square integrable.

This is much better than the usual O(N−1/2) r.m.s. error
– shows how powerful stratified sampling can be.

Mike Giles (Oxford) Monte Carlo methods 2 8 / 23

Latin Hypercube

Latin Hypercube gemeralises this idea to multiple dimensions.

Cut each dimension into L strata, and generate L points assigning them
randomly to the Ld cubes to give precisely one point in each stratum

✉
✉

✉

✉

Mike Giles (Oxford) Monte Carlo methods 2 9 / 23

Latin Hypercube

This gives one set of L points, with average

f = L−1
L∑

ℓ=1

f (Uℓ)

Since each of the points Um is uniformly distributed over the hypercube,

E[f] = E[f]

The fact that the points are not independently generated does not affect
the expectation, only the (reduced) variance

Mike Giles (Oxford) Monte Carlo methods 2 10 / 23

Latin Hypercube

We now take M independently-generated set of points, each giving an
average f m.

Averaging these

M−1
M∑

m=1

f m

gives an unbiased estimate for E[f], and the empirical variance for f m
gives a confidence interval in the usual way.

Mike Giles (Oxford) Monte Carlo methods 2 11 / 23

Latin Hypercube

Note: in the special case in which the function f (U) is a sum of
one-dimensional functions:

f (U) =
∑

i

fi(Ui)

where Ui is the i th component of U, then Latin Hypercube sampling
reduces to 1D stratified sampling in each dimension.

In this case, potential for very large variance reduction by using large
sample size L.

Much harder to analyse in general case.

Mike Giles (Oxford) Monte Carlo methods 2 12 / 23

Quasi Monte Carlo

Standard Monte Carlo approximates high-dimensional hypercube integral

∫

[0,1]d
f (x) dx

by

1

N

N∑

i=1

f (x(i))

with points chosen randomly, giving

r.m.s. error proportional to N−1/2

an unbiased estimator

confidence interval

Mike Giles (Oxford) Monte Carlo methods 2 13 / 23

Quasi Monte Carlo

Standard quasi Monte Carlo uses the same equal-weight estimator

1

N

N∑

i=1

f (x(i))

but chooses the points systematically so that

error roughly proportional to N−1

a biased estimator

no confidence interval

(We’ll fix the bias and get the confidence interval back later by adding
in some randomisation!)

Mike Giles (Oxford) Monte Carlo methods 2 14 / 23

Quasi-Monte Carlo

The key is to use points which are fairly uniformly spread within the
hypercube, not clustered anywhere.

There is theory to prove that for certain point constructions, and certain
function classes,

Error < C
(logN)d

N

for small dimension d , (d<10?) this is much better than N−1/2

r.m.s. error for standard MC

for large dimension d , (logN)d could be enormous,
so not clear there is any benefit

Mike Giles (Oxford) Monte Carlo methods 2 15 / 23

Sobol Sequences

Sobol sequences x(i) have the property that for small dimensions d<40
the subsequence 2m ≤ i < 2m+1 has precisely 2m−d points in each
sub-unit formed by d bisections of the original hypercube.

For example:

cutting it into halves in any dimension, each has 2m−1 points

cutting it into quarters in any dimension, each has 2m−2 points

cutting it into halves in one direction, then halves in another
direction, each quarter has 2m−2 points

etc.

The generation of these sequences is a bit complicated, but it is fast
and plenty of software is available to do it. MATLAB has sobolset
as part of the Statistics toolbox.

Mike Giles (Oxford) Monte Carlo methods 2 16 / 23

Sobol Sequences

Two dimensions: 256 points

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

Sobol points

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

random points

Mike Giles (Oxford) Monte Carlo methods 2 17 / 23

Randomised QMC

In the best cases, QMC error is O(N−1) instead of O(N−1/2) but with
bias and no confidence interval.

To fix this, we introduce randomisation through a “digital scrambling”
which maintains the special properties of the Sobol sequence.

For the i th point in the mth set of points, we define

x(i ,m) = x(i)∨ X (m)

where X (m) is a uniformly-distributed random point in [0, 1)d , and the
exclusive-or operation ∨ is applied elementwise and bitwise so that

0 . 1 0 1 0 0 1 1

∨ 0 . 0 1 1 0 1 1 0

= 0 . 1 1 0 0 1 0 1

MATLAB’s sobolset supports this digital scrambling.

Mike Giles (Oxford) Monte Carlo methods 2 18 / 23

Randomised QMC

For each m, let

f m =
1

N

N∑

i=1

f (x(i ,m))

This is a random variable, and since E[f (x(i ,m))] = E[f] it follows that
E[f m] = E[f]

By using multiple sets, we can estimate V[f] in the usual way and so
get a confidence interval

More sets =⇒ better variance estimate, but poorer error.

Some people use as few as 10 sets, but I prefer 32.

Mike Giles (Oxford) Monte Carlo methods 2 19 / 23

Finance Application

In the basket call option example, the asset simulation can be turned into

Si(T) = Si(0) exp
(
(r − 1

2σ
2
i)T + (LY)i

)

where Y is a vector of 5 independent unit normals and

L LT = Σ

with Σij = σi σj ρij .

There are two standard ways of generating L:

Cholesky factorisation (so L is lower-triagular)

PCA factorisation (L = UΛ1/2, where Λ is diagonal matrix of
eigenvalues, and U is orthonormal matrix of eigenvectors)

Mike Giles (Oxford) Monte Carlo methods 2 20 / 23

Financial Application

5 underlying assets starting at S0 = 100, with call option on
arithmetic mean with strike K = 100

Geometric Brownian Motion model, r = 0.05,T = 1

volatility σ = 0.2 and covariance matrix

Σ = σ2




1 0.1 0.1 0.1 0.1
0.1 1 0.1 0.1 0.1
0.1 0.1 1 0.1 0.1
0.1 0.1 0.1 1 0.1
0.1 0.1 0.1 0.1 1




Mike Giles (Oxford) Monte Carlo methods 2 21 / 23

Financial Application

Numerical results using 220 ≈ 106 samples in total, comparing MC, Latin
Hypercube and Sobol QMC, each with either Cholesky or PCA
factorisation of Σ.

Cholesky PCA

Val Err Bnd Val Err Bnd

Monte Carlo 7.0193 0.0239 7.0250 0.0239
Latin Hypercube 7.0244 0.0081 7.0220 0.0015

Sobol QMC 7.0228 0.0007 7.0228 0.0001

Mike Giles (Oxford) Monte Carlo methods 2 22 / 23

Final comments

Control variates can sometimes be very useful – needs good insight to
find a suitable control variate

Latin Hypercube achieves a more uniform spread of sampling points –
particularly effective when function can be almost decomposed into a
sum of 1D functions

quasi-Monte Carlo can give a much lower error than standard MC;
O(N−1) in best cases, instead of O(N−1/2)

randomised QMC is important to regain confidence interval and
eliminate bias

Mike Giles (Oxford) Monte Carlo methods 2 23 / 23

