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PDEs with Uncertainty

Looking at the history of numerical methods for PDEs, the first steps
were about improving the modelling:

1D → 2D → 3D

steady → unsteady

laminar flow → turbulence modelling → large eddy simulation
→ direct Navier-Stokes

simple geometries (e.g. a wing) → complex geometries
(e.g. an aircraft in landing configuration)

adding new features such as combustion, coupling to structural /
thermal analyses, etc.

. . . and then engineering switched from analysis to design.

Mike Giles (Oxford) Monte Carlo methods 3 / 23

PDEs with Uncertainty

The big move now is towards handling uncertainty:

uncertainty in modelling parameters

uncertainty in geometry

uncertainty in initial conditions

uncertainty in spatially-varying material properties

inclusion of stochastic source terms

Engineering wants to move to “robust design” taking into account the
effects of uncertainty.

Other areas want to move into Bayesian inference, starting with an a priori
distribution for the uncertainty, and then using data to derive an improved
a posteriori distribution.
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PDEs with Uncertainty

Examples:

Long-term climate modelling:

Lots of sources of uncertainty including the effects of aerosols,
clouds, carbon cycle, ocean circulation
(http://climate.nasa.gov/uncertainties)

Short-range weather prediction

Considerable uncertainty in the initial data due to limited
measurements
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PDEs with Uncertainty

Engineering analysis

Perhaps the biggest uncertainty is geometric due to manufacturing
tolerances

Nuclear waste repository and oil reservoir modelling

Considerable uncertainty about porosity of rock

Astronomy

“Random” spatial/temporal variations in air density disturb
correlation in signals received by different antennas

Finance

Stochastic forcing due to market behaviour
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PDEs with Uncertainty

In the past, Monte Carlo simulation has been viewed as impractical due to
its expense, and so people have used other methods:

stochastic collocation

polynomial chaos

Because of Multilevel Monte Carlo, this is changing and there are now
several research groups using MLMC for PDE applications

The approach is very simple, in principle:

use a sequence of grids of increasing resolution in space (and time)

as with SDEs, determine the optimal allocation of computational
effort on the different levels

the savings can be much greater because the cost goes up more
rapidly with level
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MLMC Theorem

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo samples,
each costing Cℓ, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P ]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =





E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2 N
−1
ℓ 2−β ℓ

iv) E[Cℓ] ≤ c3 2
γ ℓ
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and Nℓ for which the multilevel estimator

Ŷ =
L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound E
[(

Ŷ − E[P ]
)2

]
< ε2

with a computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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Engineering Uncertainty Quantification

consider 3D elliptic PDE, with uncertain boundary data

use grid spacing proportional to 2−ℓ on level ℓ

cost is O(2+3ℓ), if using an efficient multigrid solver

2nd order accuracy means that

P̂ℓ(ω)− P(ω) ≈ c(ω) 2−2ℓ

=⇒ P̂ℓ−1(ω)− P̂ℓ(ω) ≈ 3 c(ω) 2−2ℓ

hence, α=2, β=4, γ=3

cost is O(ε−2) to obtain ε RMS accuracy
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SPDEs

great MLMC application – better cost savings than SDEs due to
higher dimensionality

range of applications
◮ Graubner & Ritter (Darmstadt → Kaiserslautern) – parabolic
◮ G, Reisinger (Oxford) – parabolic
◮ Cliffe, G, Scheichl, Teckentrup (Bath/Nottingham) – elliptic
◮ Barth, Jenny, Lang, Meyer, Mishra, Müller, Schwab, Sukys, Zollinger

(ETHZ) – elliptic, parabolic, hyperbolic
◮ Harbrecht, Peters (Basel) – elliptic
◮ Efendiev (Texas A&M) – numerical homogenization
◮ Vidal-Codina, G, Peraire (MIT) – reduced basis approximation
◮ G, Hou, Zhang (Caltech) – numerical homogenization
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PDEs with Uncertainty

I worked with Rob Scheichl (Bath) and Andrew Cliffe (Nottingham)
on multilevel Monte Carlo for the modelling of oil reservoirs and
groundwater contamination in nuclear waste repositories.

Here we have an elliptic SPDE coming from Darcy’s law:

∇·
(
κ(x)∇p

)
= 0

where the permeability κ(x) is uncertain, and log κ(x) is often modelled as
being Normally distributed with a spatial covariance such as

cov(log κ(x1), log κ(x2)) = σ2 exp(−‖x1−x2‖/λ)
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Elliptic SPDE

A typical realisation of κ for λ = 0.01, σ = 1.
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Elliptic SPDE

Samples of log k are provided by a Karhunen-Loève expansion:

log k(x, ω) =
∞∑

n=0

√
θn ξn(ω) fn(x),

where θn, fn are eigenvalues / eigenfunctions of the correlation function:

∫
R(x, y) fn(y) dy = θn fn(x)

and ξn(ω) are standard Normal random variables.

Numerical experiments truncate the expansion.

(Latest 2D/3D work uses an efficient FFT construction based on a
circulant embedding.)
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Elliptic SPDE
Decay of 1D eigenvalues
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When λ = 1, can use a low-dimensional polynomial chaos approach, but
it’s impractical for smaller λ.
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Elliptic SPDE

Discretisation:

cell-centred finite volume discretisation on a uniform grid – for rough
coefficients we need to make grid spacing very small on finest grid

each level of refinement has twice as many grid points in each
direction

current numerical experiments use a direct solver for simplicity,
but in 3D will use an efficient AMG multigrid solver with a cost
roughly proportional to the total number of grid points
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2D Results

Boundary conditions for unit square [0, 1]2:
– fixed pressure: p(0, x2)=1, p(1, x2)=0
– Neumann b.c.: ∂p/∂x2(x1, 0)=∂p/∂x2(x1, 1)=0

Output quantity – mass flux: −
∫

k
∂p

∂x1
dx2

Correlation length: λ = 0.2

Coarsest grid: h = 1/8 (comparable to λ)

Finest grid: h = 1/128

Karhunen-Loève truncation: mKL = 4000

Cost taken to be proportional to number of nodes
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2D Results
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V[P̂ℓ−P̂ℓ−1] ∼ h2ℓ E[P̂ℓ−P̂ℓ−1] ∼ h2ℓ
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2D Results
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Complexity analysis

Relating things back to the MLMC theorem:

E[P̂ℓ−P ] ∼ 2−2ℓ =⇒ α = 2

Vℓ ∼ 2−2ℓ =⇒ β = 2

Cℓ ∼ 2dℓ =⇒ γ = d (dimension of PDE)

To achieve r.m.s. accuracy ε requires finest level grid spacing h ∼ ε1/2

and hence we get the following complexity:

dim MC MLMC

1 ε−2.5 ε−2

2 ε−3 ε−2(log ε)2

3 ε−3.5 ε−2.5
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Other SPDE applications

For more on multilevel for SPDEs, see the work of Christoph Schwab and
his group (ETH Zurich):

http://www.math.ethz.ch/∼schwab/

elliptic, parabolic and hyperbolic PDEs

stochastic coefficients, initial data, boundary data

Schwab used to work on alternative techniques such as “polynomial chaos”
but has now switched to multilevel because of its superior efficiency for
many applications.

For other papers on multilevel, see my MLMC community homepage:

http://people.maths.ox.ac.uk/gilesm/mlmc community.html
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Non-geometric multilevel

Almost all applications of multilevel in the literature so far use a geometric
sequence of levels, refining the timestep (or the spatial discretisation for
PDEs) by a constant factor when going from level ℓ to level ℓ+ 1.

Coming from a multigrid background, this is very natural, but it is NOT
a requirement of the multilevel Monte Carlo approach.

All MLMC needs is a sequence of levels with

increasing accuracy

increasing cost

increasingly small difference between outputs on successive levels
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Final comments

Uncertainty Quantification is a hot topic, with its own conferences
and journals

Monte Carlo methods are a powerful approach to handle uncertainty
in a number of different settings

Multilevel Monte Carlo greatly reduces the cost in a lot of settings,
particularly when dealing with PDEs

for more details, can read my new Acta Numerica review article

CCFE (Culham Centre for Fusion Energy) has a 10-week project on
using MLMC for uncertainty quantification
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