
Monte Carlo Methods for Uncertainty Quantification: Practical 1

1. Suppose that a and b are two scalar random variables with zero mean,
i.e. E[a] = E[b] = 0.

Note that
E[ (a−λ b)2] ≥ 0

for any constant λ.

By considering
λ = ±

√
E[a2]/E[b2]

prove that
|E[ab]| ≤

√
E[a2] E[b2].

Hence, prove that for any two scalar random variables x and y, the
correlation

ρ ≡ E[ (x− E[x]) (y − E[y]) ]√
V[x]V[y]

has magnitude |ρ| ≤ 1.

2. Suppose that a and b are again two scalar random variables with zero
mean.

Using the result from the previous question, prove that√
E[ (a+b)2] ≤

√
E[a2] +

√
E[b2].

Hence, prove that for any two scalar random variables x and y,√
V[x+y] ≤

√
V[x] +

√
V[y].

3. Suppose that a1, a2, . . . , aN are independent samples from the same
distribution with zero mean and variance σ2, i.e. E[a] = 0, and
V[a] = E[a2] = σ2.

If we define

aN ≡ N−1
N∑

n=1

an, σ̃2 ≡ N−1
N∑

n=1

(an−aN)2

then prove that

σ̃2 =

(
N−1

N∑
n=1

a2n

)
− a2N ,

and

E[σ̃2] =
N−1

N
σ2.
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4. The probability density function for the Normal distribution with zero
mean and unit variance is

φ(x) =
1√
2π

exp
(
−1

2
x2
)

Note that the integral of the p.d.f. is equal to 1, the mean is zero, and
the variance is 1, so we have

E[1] =

∫ ∞
−∞

φ(x) dx = 1,

E[X] =

∫ ∞
−∞

xφ(x) dx = 0,

E[X2] =

∫ ∞
−∞

x2 φ(x) dx = 1.

Use integration by parts to prove that for n > 2,

E[Xn] = (n−1) E[Xn−2],

and hence determine V[X2].

5. (a) In Matlab, generate 106 independent unit Normal random
variables using randn, and then use these to estimate the value of

E[X2+X+1]

where X is a unit Normal random variable.

(b) Determine the error in the estimate.

(c) How does this compare to the error bound given by the Central
Limit Theorem?

(Note that you can use the result from the previous question to
determine V[X2 +X + 1] which will help you to compute the
variance of the Monte Carlo estimate.)
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6. Let U be uniformly distributed on [0, 1]. You are to use Monte Carlo
simulation to estimate the value of

f = E[f(U)] =

∫ 1

0

f(U) dU

where
f(x) = x cos πx.

(a) Calculate analytically the exact value for f and

σ2 = E[(f(U)− f)2] =

∫ 1

0

(f(U)− f)2 dU

(b) Using the Matlab rand function, write a Matlab program which
computes

Ym = N−1
N∑

n=1

f(U (m,n))

for 1000 different sets of 1000 independent random variables
U (m,n).

(c) Sort the Ym into ascending order, and then plot
Cm = (m− 1/2)/1000 versus Ym – this is the numerical
cumulative distribution function.

Superimpose on the same plot the cumulative distribution
function you would expect from the Central Limit Theorem (using
the Matlab normcdf or norminv functions) and comment on your
results.

You may like to experiment by trying larger or smaller sets of
points to improve your understanding of the asymptotic behaviour
described by the CLT.

(d) Modify your code to use a single set of 106 random numbers, and
plot

YN = N−1
N∑

n=1

f(U (n))

versus N for N = 103 − 106. This should demonstrate the
convergence to the true value predicted by the Strong Law of
Large Numbers.

Following the Matlab code in lecture 1, for each N , also compute
an unbiased estimate for the variance σ2 and hence add to the
plot upper and lower confidence bounds based on 3 standard
deviations of the variation in the mean.

Add a line corresponding to the true value. Does this lie inside the
bounds?
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