
Monte Carlo Methods for Uncertainty Quantification: Practical 2

This practical is about the use of MLMC (multilevel Monte Carlo) for
uncertainty quantification in two settings.

1. Download from the course webpage the Matlab routines mlmc test.m,

mlmc.m, gbm.m, ellip.m.

• mlmc test.m performs a number of tests for an MLMC
application.

• mlmc.m does the main MLMC computation, working out the
optimal number of samples to use on each level of approximation.

• gbm.m is an application for a financial option based on an
underyling stock represented by a Geometric Brownian Motion
model.

• ellip.m is a very simple 1D elliptic solver with random forcing.

2. Start with the gbm.m application. Look carefully at the routine gbm l

which computes N` fine path samples Sf and coarse path samples Sc,
and the corresponding payoff functions P f

` and P c
`−1, for a given level `.

Run the code and see the results it produces. Look at the code and see
how the fine and coarse paths are computed; check that this matches
the explanation given in the lectures.

Note that in gbm l the sample paths are computed in groups of 10,000.
This is a trick to minimise the overheads in MATLAB. If programmed
in C / C++ / FORTRAN you would typically do one path at a time.

The Euler discretisation is not very accurate. Modify the code to
instead use the Milstein approximation:

Sn+1 = Sn + r Sn ∆t+ σSn∆Wn + 1
2
σ2Sn(∆W 2

n − ∆t)

This gives first order strong convergence, so you should see the
multilevel variance decay more quickly with level.

3. ellip.m solves the 1D elliptic PDE:

u′′(x) = 100Z sin(πx), 0 < x < 1

where Z is a standard Normal random variable (zero mean and unit
variance), and the boundary conditions are u(0) = u(1) = 0.

1



The output of interest is taken to be

P =

∫ 1

0

u2(x) dx.

A simple finite difference approximation is used for the PDE, and the
integral is approximated by trapezoidal integration.

Since the coefficients of the tri-diagonal matrix do not vary, the matrix
is precomputed. This then allows us to compute samples 100 at a time
to minimise the MATLAB overhead.

(a) Modify the code so that it is solving

(a u′)′ = 100, 0 < x < 1

with a(x) = exp(−Z sin(πx)), where Z is again a standard Normal
random variable, and the boundary conditions are still
u(0) = u(1) = 0.

Note that in this case you will need to generate a separate matrix
for each random sample, and so you will need to process all of the
samples one by one.

(b) Modify the code so that the boundary conditions are u(0) = 0,
u(1) = Z2, where Z2 is a second independent standard Normal
random variable.

(c) If you want, you can also experiment with different output
functions.

2


